Skip to main content

Cell Therapy of Neurological Disorders

  • Chapter
  • First Online:
Book cover Applications of Biotechnology in Neurology

Abstract

Cell therapy for neurologic disorders means the use of cells of neural or nonneural origin to replace, repair or enhance the function of the damaged nervous system. This is also called neurotransplantation, and is usually achieved by transplantation of the cells that are isolated and may be modified, for example, by genetic engineering. Tissue engineering in the nervous system is the science of designing, creating, and realizing systems where neural cells are organized in a controlled manner, to perform appropriate diagnostic, palliative, and therapeutic tasks in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amariglio N, Hirshberg A, Scheithauer BW, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 2009;6:e1000029.

    Article  PubMed  Google Scholar 

  • An MC, Zhang N, Scott G, et al. Genetic Correction of Huntington’s Disease Phenotypes in Induced Pluripotent Stem Cells. Cell Stem Cell 2012 Jun 26; Epub ahead of print.

    Google Scholar 

  • Andres RH, Horie N, Slikker W, et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 2011;134(Pt 6):1777–89.

    Article  PubMed  Google Scholar 

  • Bachoud-Levi AC, Rémy P, Nguyen JP, et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 2000;356:1975–9.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund A, Stenevi U. Intracerebral neural grafting: a historical perspective. In: Bjorklund A, Stenevi U, editors. Neural grafting in mammalian CNS. Amsterdam: Elsevier, 1985:3–14.

    Google Scholar 

  • Bjorklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 1979;177:555–60.

    Article  PubMed  CAS  Google Scholar 

  • Blondheim NR, Levy YS, Ben-Zur T, et al. Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev 2006;15:141–64.

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Skinner SJM, Geaney M, et al. Neuroprotection by encapsulated choroid plexus in a rodent model of Huntington’s disease. Neuroreport 2004;15:2521–5.

    Article  PubMed  Google Scholar 

  • Burns TC, Steinberg GK. Stem cells and stroke: opportunities, challenges and strategies. Expert Opin Biol Ther 2011;11:447–61

    Article  PubMed  Google Scholar 

  • Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE. Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci USA 2010;107:11068–73.

    Article  PubMed  CAS  Google Scholar 

  • Cashman N, Tan LY, Krieger C, et al. Pilot study of granulocyte colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells in amyotrophic lateral sclerosis (ALS). Muscle Nerve 2008;37(5):620–5.

    Article  PubMed  CAS  Google Scholar 

  • Delcroix GJ, Schiller PC, Benoit JP, Montero-Menei CN. Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials 2010;31:2105–20.

    Article  PubMed  CAS  Google Scholar 

  • Dunn EH. Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat. J Comp Neurol 1917;27:565–82.

    Article  Google Scholar 

  • Evans M, Kaufman M. Establishment in culture of pluripotent cells from mouse embryos. Nature 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  • Gajavelli S, Castellanos DA, Furmanski O, Schiller PC, Sagen J. Sustained analgesic peptide secretion and cell labeling using a novel genetic modification. Cell Transplant 2008;17:445–55.

    Article  PubMed  CAS  Google Scholar 

  • Garbuzova-Davis S, Sanberg CD, Kuzmin-Nichols N, et al. Human umbilical cord blood treatment in a mouse model of ALS: optimization of cell dose. PLoS ONE 2008;3:e2494.

    Article  PubMed  Google Scholar 

  • Glass JD, Boulis NM, Johe K, et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 2012;30:1144–51.

    Article  PubMed  CAS  Google Scholar 

  • Goldman SA, Windrem MS. Cell replacement therapy in neurological disease. Philos Trans R Soc Lond B Biol Sci 2006;361:1463–75.

    Article  PubMed  Google Scholar 

  • Goodman JW, Hodgson GS. Evidence for stem cells in the peripheral blood of mice. Blood 1962;19:213–7.

    Google Scholar 

  • Hantraye P, Riche D, Maziere M, et al. A primate model of Huntington’s disease: behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp Neurol 1990;108:91–104.

    Article  PubMed  CAS  Google Scholar 

  • Hauser RA, Furtado S, Cimino CR, et al. Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 2002;58:687–95.

    Article  PubMed  CAS  Google Scholar 

  • Honmou O, Houkin K, Matsunaga T, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 2011;134(Pt 6):1790–807.

    Article  PubMed  Google Scholar 

  • Jain KK. Cell therapy for pain. Expert Opin Biol Ther 2008;8:1847–53.

    Article  PubMed  CAS  Google Scholar 

  • Jain KK. Cell therapy. Jain PharmaBiotech Publications, Basel, Switzerland, 2012.

    Google Scholar 

  • Jeon D, Chu K, Lee ST, et al. A cell-free extract from human adipose stem cells protects mice against epilepsy. Epilepsia 2011;52:1617–26.

    Article  PubMed  Google Scholar 

  • Jozan S, Aziza J, Châtelin S, et al. Human fetal chromaffin cells: a potential tool for cell pain therapy. Exp Neurol 2007;205:525–35.

    Article  PubMed  Google Scholar 

  • Kalladka D, Muir KW. Stem cell therapy in stroke: designing clinical trials. Neurochem Int 2011;59:367–70.

    Article  PubMed  CAS  Google Scholar 

  • Kan I, Melamed E, Offen D. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases. Handb Exp Pharmacol 2007;180:219–42.

    Article  PubMed  CAS  Google Scholar 

  • Kershaw TR, Rashid-Doubell F, Sinden JD. Immunocharacterization of H-2Kb-tsA58 transgenic mouse hippocampal neuroepithelial cells. Neuroreport 1994;5:2197–200.

    Article  PubMed  CAS  Google Scholar 

  • Le Gros Clark WE. Neuronal differentiation in implanted fetal cortical tissue. J Neurol Psychiatry 1940;3:263–84.

    Google Scholar 

  • Madrazo I, Leon V, Torres C, et al. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N Engl J Med 1988;318:51.

    PubMed  CAS  Google Scholar 

  • Olson SD, Pollock K, Kambal A, et al. Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington’s disease. Mol Neurobiol 2012;45:87–98.

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Kim DY, Sung IY, et al. Long-term Results of Spinal Cord Injury Therapy Using Mesenchymal Stem Cells Derived From Bone Marrow in Humans. Neurosurgery 2012;70:1238–47.

    Article  PubMed  Google Scholar 

  • Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells. J Comp Neurol 2006;494:415–34.

    Article  PubMed  Google Scholar 

  • Ramos-Cabrer P, Justicia C, Wiedermann D, Hoehn M. Stem cell mediation of functional recovery after stroke in the rat. PLoS ONE 2010;5:e12779.

    Article  PubMed  Google Scholar 

  • Rice CM, Mallam EA, Whone AL, et al. Safety and feasibility of autologous bone marrow cellular therapy in relapsing-progressive multiple sclerosis. Clin Pharmacol Ther 2010;87:679–85.

    Article  PubMed  CAS  Google Scholar 

  • Richards K, Kurtberg J, Provenzale JM, et al. Improved neurodevelopment following neonatal hematopoietic stem cell transplantation for infantile Krabbe’s disease. Neurology 2002;58 (Suppl 3):A8.

    Google Scholar 

  • Riley J, Federici T, Polak M, et al. Intraspinal Stem Cell Transplantation in ALS: A Phase I Safety Trial, Technical Note & Lumbar Safety Outcomes. Neurosurgery 2012;71:405–16.

    Article  PubMed  Google Scholar 

  • Rosenbluth J, Hasegawa M, Shirasaki N, et al. Myelin formation following transplantation of normal fetal glia into myelin-deficient rat spinal cord. J Neurocytol 1990;19:718–30.

    Article  PubMed  CAS  Google Scholar 

  • Rosser AE, Barker RA, Harrower T, et al. Unilateral transplantation of human primary fetal tissue in four patients with Huntington’s disease: NEST-UK safety report ISRCTN no 36485475. J Neurol Neurosurg Psychiatry 2002;73:678–85.

    Google Scholar 

  • Shi G, Ma K, Pappas GD, Qu T. Phenotypic characteristics of hybrid cells produced by cell fusion of porcine adrenal chromaffin cells with human mesenchymal stem cells: a preliminary study. Neurol Res 2008;30:217–22.

    Article  PubMed  Google Scholar 

  • Sol JC, Li RY, Sallerin B, et al. Intrathecal grafting of porcine chromaffin cells reduces formalin-evoked c-Fos expression in the rat spinal cord. Cell Transplant 2005;14:353–65.

    Article  PubMed  CAS  Google Scholar 

  • Stroemer P, Hope A, Patel S, Pollock K, Sinden J. Development of a human neural stem cell line for use in recovery from disability after stroke. Front Biosci 2008;13:2290–2.

    Article  PubMed  CAS  Google Scholar 

  • Sugaya I, Qu T, Sugaya K, Pappas GD. Genetically engineered human mesenchymal stem cells produce met-enkephalin at augmented higher levels in vitro. Cell Transplant 2006;15:225–30.

    Article  PubMed  Google Scholar 

  • Thompson WG. Successful brain grafting. NY Med J 1890;51:701.

    Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski MH, Thal L, Pay M, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005;11:551–5.

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen M, Van Oers MH. Successful autologous stem cell transplantation in a patient with chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry 2002;72:127–8.

    Article  PubMed  CAS  Google Scholar 

  • Wang XL, Yang YJ, Xie M, Yu XH, Wang QH. Hyperbaric oxygen promotes the migration and differentiation of endogenous neural stem cells in neonatal rats with hypoxic-ischemic brain damage. Zhongguo Dang Dai Er Ke Za Zhi 2009;11:749–52.

    PubMed  Google Scholar 

  • Weick JP, Liu Y, Zhang SC. Human embryonic stem cell-derived neurons adopt and regulate the activity of an established neural network. Proc Natl Acad Sci USA 2011;108:20189–94.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Tian XB, An K, Yang H, Tian YK. Lumbar transplantation of immortalized enkephalin-expressing astrocytes attenuates chronic neuropathic pain. Eur J Pain 2008;12:525–33.

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Aziza J, Sol JC, et al. Cell therapy of pain: Characterization of human fetal chromaffin cells at early adrenal medulla development. Exp Neurol 2006;198:370–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jain, K.K. (2013). Cell Therapy of Neurological Disorders. In: Applications of Biotechnology in Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-272-8_11

Download citation

Publish with us

Policies and ethics