Skip to main content

Long-Chain Omega-3 Fatty Acids and Psychotic Disorders

  • Chapter
  • First Online:
  • 2873 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

Schizophrenia and other psychoses are heterogeneous and severe psychiatric disorders, with a worldwide prevalence of schizophrenia of 1–2% (1). Psychotic disorders are characterized by positive (e.g., delusions, hallucinations), negative (e.g., affective flattening, alogia, avolition), and cognitive symptoms (e.g., disorganized thinking, low concentration), all of which largely affect psychosocial well-being and functioning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mueser KT, McGurk SR. Schizophrenia. Lancet. 2004;363(9426):2063–72.

    Article  PubMed  Google Scholar 

  2. Ohara K. The n-3 polyunsaturated fatty acid/dopamine hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(2):469–74.

    Article  PubMed  CAS  Google Scholar 

  3. Schachter HM, Kourad K, Merali Z, Lumb A, Tran K, Miguelez M. Effects of omega-3 fatty acids on mental health. Evid Rep Technol Assess (Summ). 2005;116:1–11.

    Google Scholar 

  4. Irving CB, Mumby-Croft R, Joy LA. Polyunsaturated fatty acid supplementation for schizophrenia. Cochrane Database Syst Rev. 2006;3:CD001257.

    Google Scholar 

  5. Fusar-Poli D, Berger GE. Eicosapentaneoic acid interventions in schizophrenia: meta analysis of randomized placebo controlled studies. J Clin Psychopharmacol. 2012;32(2):179–85.

    Google Scholar 

  6. Amminger GP, Schafer MR, Papageorgiou K, Klier CM, Cotton SM, Harrigan SM, et al. Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry. 2010;67(2):146–54.

    Article  PubMed  CAS  Google Scholar 

  7. Berger GE, Proffitt TM, McConchie M, Yuen H, Wood SJ, Amminger GP, et al. Ethyl-eicosapentaenoic acid in first-episode psychosis: a randomized, placebo-controlled trial. J Clin Psychiatry. 2007;68(12):1867–75.

    Article  PubMed  CAS  Google Scholar 

  8. Peet M, Brind J, Ramchand CN, Shah S, Vankar GK. Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res. 2001;49(3):243–51.

    Article  PubMed  CAS  Google Scholar 

  9. Hashimoto K, Yoshizawa AC, Okuda S, Kuma K, Goto S, Kanehisa M. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J Lipid Res. 2008;49(1):183–91.

    Article  PubMed  CAS  Google Scholar 

  10. Bourre JM, Faivre A, Dumont O, Nouvelot A, Loudes C, Puymirat J, et al. Effect of polyunsaturated fatty acids on fetal mouse brain cells in culture in a chemically defined medium. J Neurochem. 1983;41(5):1234–42.

    Article  PubMed  CAS  Google Scholar 

  11. Bourre JM, Pascal G, Durand G, Masson M, Dumont O, Piciotti M. Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. J Neurochem. 1984;43(2):342–8.

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi R, Ito H, Horrobin DF. Fatty acid composition of serum phospholipids in an elderly institutionalized Japanese population. J Nutr Sci Vitaminol (Tokyo). 1991;37(4):401–9.

    Article  CAS  Google Scholar 

  13. Brenner RR. Nutritional and hormonal factors influencing desaturation of essential fatty acids. Prog Lipid Res. 1981;20:41–7.

    Article  PubMed  CAS  Google Scholar 

  14. Horrobin DF. Post-viral fatigue syndrome, viral infections in atopic eczema, and essential fatty acids. Med Hypotheses. 1990;32(3):211–7.

    Article  PubMed  CAS  Google Scholar 

  15. Burdge GC, Jones AE, Wootton SA. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men*. Br J Nutr. 2002;88(4):355–63.

    Article  PubMed  CAS  Google Scholar 

  16. Burdge GC, Wootton SA. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr. 2002;88(4):411–20.

    Article  PubMed  CAS  Google Scholar 

  17. Sinclair AJ, Murphy KJ, Li D. Marine lipids: overview “news insights and lipid composition of Lyprinol”. Allerg Immunol (Paris). 2000;32(7):261–71.

    CAS  Google Scholar 

  18. Torres IC, Mira L, Ornelas CP, Melim A. Study of the effects of dietary fish intake on serum lipids and lipoproteins in two populations with different dietary habits. Br J Nutr. 2000;83(4):371–9.

    PubMed  CAS  Google Scholar 

  19. Cunnane SC, Francescutti V, Brenna JT, Crawford MA. Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids. 2000;35(1):105–11.

    Article  PubMed  CAS  Google Scholar 

  20. Simopoulos AP. Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins Leukot Essent Fatty Acids. 1999;60(5–6):421–9.

    Article  PubMed  CAS  Google Scholar 

  21. Hibbeln JR, Nieminen LR, Blasbalg TL, Riggs JA, Lands WE. Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr. 2006;83(6 Suppl):1483S–93.

    PubMed  CAS  Google Scholar 

  22. Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, Guralnik JM, et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet. 2009;5(1):e1000338.

    Article  PubMed  CAS  Google Scholar 

  23. Lattka E, Illig T, Heinrich J, Koletzko B. Do FADS genotypes enhance our knowledge about fatty acid related phenotypes? Clin Nutr. 2010;29(3):277–87.

    Article  PubMed  CAS  Google Scholar 

  24. Simopoulos AP. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp Biol Med (Maywood). 2010;235(7):785–95.

    Article  CAS  Google Scholar 

  25. Rzehak P, Heinrich J, Klopp N, Schaeffer L, Hoff S, Wolfram G, et al. Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr. 2009;101(1):20–6.

    Article  PubMed  CAS  Google Scholar 

  26. Schaeffer L, Gohlke H, Muller M, Heid IM, Palmer LJ, Kompauer I, et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet. 2006;15(11):1745–56.

    Article  PubMed  CAS  Google Scholar 

  27. Breckenridge WC, Gombos G, Morgan IG. The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim Biophys Acta. 1972;266(3):695–707.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson RE, Benolken RM, Dudley PA, Landis DJ, Wheeler TG. Proceedings: polyunsaturated fatty acids of photoreceptor membranes. Exp Eye Res. 1974;18(3):205–13.

    Article  PubMed  CAS  Google Scholar 

  29. Law MH, Cotton RG, Berger GE. The role of phospholipases A2 in schizophrenia. Mol Psychiatry. 2006;11(6):547–56.

    Article  PubMed  CAS  Google Scholar 

  30. Yao JK, van Kammen DP. Membrane phospholipids and cytokine interaction in schizophrenia. Int Rev Neurobiol. 2004;59:297–326.

    Article  PubMed  CAS  Google Scholar 

  31. Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003;48(3):195–203.

    PubMed  Google Scholar 

  32. McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids. 2006;75(4–5):329–49.

    Article  PubMed  CAS  Google Scholar 

  33. Hamazaki K, Itomura M, Huan M, Nishizawa H, Sawazaki S, Tanouchi M, et al. Effect of omega-3 fatty acid-containing phospholipids on blood catecholamine concentrations in healthy volunteers: a randomized, placebo-controlled, double-blind trial. Nutrition. 2005;21(6):705–10.

    Article  PubMed  CAS  Google Scholar 

  34. Sawazaki S, Hamazaki T, Yazawa K, Kobayashi M. The effect of docosahexaenoic acid on plasma catecholamine concentrations and glucose tolerance during long-lasting psychological stress: a double-blind placebo-controlled study. J Nutr Sci Vitaminol (Tokyo). 1999;45(5):655–65.

    Article  CAS  Google Scholar 

  35. Uauy R, Dangour AD. Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev. 2006;64(5 Pt 2):S24–33. discussion S72–91.

    Article  PubMed  Google Scholar 

  36. Bazan NG. Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol Neurobiol. 2005;32(1):89–103.

    Article  PubMed  CAS  Google Scholar 

  37. Hibbeln JR, Bissette G, Umhau JC, George DT. Omega-3 status and cerebrospinal fluid corticotrophin releasing hormone in perpetrators of domestic violence. Biol Psychiatry. 2004;56(11):895–7.

    Article  PubMed  CAS  Google Scholar 

  38. Kim HY, Akbar M, Kim KY. Inhibition of neuronal apoptosis by polyunsaturated fatty acids. J Mol Neurosci. 2001;16(2–3):223–7. discussion 79–84.

    Article  PubMed  Google Scholar 

  39. Kim HY, Akbar M, Lau A. Effects of docosapentaenoic acid on neuronal apoptosis. Lipids. 2003;38(4):453–7.

    Article  PubMed  CAS  Google Scholar 

  40. Calderon F, Kim HY. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem. 2004;90(4):979–88.

    Article  PubMed  CAS  Google Scholar 

  41. Jump DB. Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol. 2002;13(2):155–64.

    Article  PubMed  CAS  Google Scholar 

  42. Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M, et al. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry. 2006;67(12):1954–67.

    Article  PubMed  CAS  Google Scholar 

  43. Seung Kim HF, Weeber EJ, Sweatt JD, Stoll AL, Marangell LB. Inhibitory effects of omega-3 fatty acids on protein kinase C activity in vitro. Mol Psychiatry. 2001;6(2):246–8.

    Article  PubMed  CAS  Google Scholar 

  44. Nunez EA. Preface—fatty acids and cell signalling. Prostaglandins Leukot Essent Fatty Acids. 1993;48(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  45. Akhtar Khan N. Polyunsaturated fatty acids in the modulation of T-cell signalling. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4–6):179–87.

    Article  PubMed  CAS  Google Scholar 

  46. Wood SJ, Cocchi L, Proffitt TM, McConchie M, Jackson GD, Takahashi T, et al. Neuroprotective effects of ethyl-eicosapentaenoic acid in first episode psychosis: a longitudinal T2 relaxometry pilot study. Psychiatry Res. 2010;182(2):180–2.

    Article  PubMed  CAS  Google Scholar 

  47. Hirashima F, Parow AM, Stoll AL, Demopulos CM, Damico KE, Rohan ML, et al. Omega-3 fatty acid treatment and T(2) whole brain relaxation times in bipolar disorder. Am J Psychiatry. 2004;161(10):1922–4.

    Article  PubMed  Google Scholar 

  48. Nakamura N, Kumasaka R, Osawa H, Yamabe H, Shirato K, Fujita T, et al. Effects of eicosapentaenoic acids on oxidative stress and plasma fatty acid composition in patients with lupus nephritis. In Vivo. 2005;19(5):879–82.

    PubMed  CAS  Google Scholar 

  49. Dringen R. Glutathione metabolism and oxidative stress in neurodegeneration. Eur J Biochem. 2000;267(16):4903.

    Article  PubMed  CAS  Google Scholar 

  50. Gegg ME, Beltran B, Salas-Pino S, Bolanos JP, Clark JB, Moncada S, et al. Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem. 2003;86(1):228–37.

    Article  PubMed  CAS  Google Scholar 

  51. Gegg ME, Clark JB, Heales SJ. Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity. Brain Res. 2005;1036(1–2):1–6.

    Article  PubMed  CAS  Google Scholar 

  52. Berger GE, Wood SJ, Wellard RM, Proffitt TM, McConchie M, Amminger GP, et al. Ethyl-eicosapentaenoic acid in first-episode psychosis. A 1H-MRS study. Neuropsychopharmacology. 2008;33(10):2467–73.

    Article  PubMed  CAS  Google Scholar 

  53. Hibbeln JR. Fish consumption and major depression. Lancet. 1998;351(9110):1213.

    Article  PubMed  CAS  Google Scholar 

  54. Peet M. International variations in the outcome of schizophrenia and the prevalence of depression in relation to national dietary practices: an ecological analysis. Br J Psychiatry. 2004;184:404–8.

    Article  PubMed  Google Scholar 

  55. Hibbeln JR. Seafood consumption, the DHA content of mothers’ milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. J Affect Disord. 2002;69(1–3):15–29.

    Article  PubMed  CAS  Google Scholar 

  56. Noaghiul S, Hibbeln JR. Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am J Psychiatry. 2003;160(12):2222–7.

    Article  PubMed  Google Scholar 

  57. Silvers KM, Scott KM. Fish consumption and self-reported physical and mental health status. Public Health Nutr. 2002;5(3):427–31.

    Article  PubMed  Google Scholar 

  58. Suzuki S, Akechi T, Kobayashi M, Taniguchi K, Goto K, Sasaki S, et al. Daily omega-3 fatty acid intake and depression in Japanese patients with newly diagnosed lung cancer. Br J Cancer. 2004;90(4):787–93.

    Article  PubMed  CAS  Google Scholar 

  59. Tanskanen A, Hibbeln JR, Hintikka J, Haatainen K, Honkalampi K, Viinamaki H. Fish consumption, depression, and suicidality in a general population. Arch Gen Psychiatry. 2001;58(5):512–3.

    Article  PubMed  CAS  Google Scholar 

  60. Tanskanen A, Hibbeln JR, Tuomilehto J, Uutela A, Haukkala A, Viinamaki H, et al. Fish consumption and depressive symptoms in the general population in Finland. Psychiatr Serv. 2001;52(4):529–31.

    Article  PubMed  CAS  Google Scholar 

  61. Timonen M, Horrobin D, Jokelainen J, Laitinen J, Herva A, Rasanen P. Fish consumption and depression: the Northern Finland 1966 birth cohort study. J Affect Disord. 2004;82(3):447–52.

    PubMed  Google Scholar 

  62. Appleton KM, Peters TJ, Hayward RC, Heatherley SV, McNaughton SA, Rogers PJ, et al. Depressed mood and n-3 polyunsaturated fatty acid intake from fish: non-linear or confounded association? Soc Psychiatry Psychiatr Epidemiol. 2007;42(2):100–4.

    Article  PubMed  Google Scholar 

  63. Appleton KM, Woodside JV, Yarnell JW, Arveiler D, Haas B, Amouyel P, et al. Depressed mood and dietary fish intake: direct relationship or indirect relationship as a result of diet and lifestyle? J Affect Disord. 2007;104(1–3):217–23.

    Article  PubMed  CAS  Google Scholar 

  64. Barberger-Gateau P, Jutand MA, Letenneur L, Larrieu S, Tavernier B, Berr C. Correlates of regular fish consumption in French elderly community dwellers: data from the Three-City study. Eur J Clin Nutr. 2005;59(7):817–25.

    Article  PubMed  CAS  Google Scholar 

  65. Iribarren C, Markovitz JH, Jacobs Jr DR, Schreiner PJ, Daviglus M, Hibbeln JR. Dietary intake of n-3, n-6 fatty acids and fish: relationship with hostility in young adults—the CARDIA study. Eur J Clin Nutr. 2004;58(1):24–31.

    Article  PubMed  CAS  Google Scholar 

  66. Christensen O, Christensen E. Fat consumption and schizophrenia. Acta Psychiatr Scand. 1988;78(5):587–91.

    Article  PubMed  CAS  Google Scholar 

  67. Peet M. Nutrition and schizophrenia: beyond omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2004;70(4):417–22.

    Article  PubMed  CAS  Google Scholar 

  68. Stokes C, Peet M. Dietary sugar and polyunsaturated fatty acid consumption as predictors of severity of schizophrenia symptoms. Nutr Neurosci. 2004;7(4):247–9.

    Article  PubMed  CAS  Google Scholar 

  69. Hedelin M, Lof M, Olsson M, Lewander T, Nilsson B, Hultman CM, et al. Dietary intake of fish, omega-3, omega-6 polyunsaturated fatty acids and vitamin D and the prevalence of psychotic-like symptoms in a cohort of 33,000 women from the general population. BMC Psychiatry. 2010;10:38.

    Article  PubMed  CAS  Google Scholar 

  70. Peet M, Horrobin DF. A dose-ranging exploratory study of the effects of ethyl-eicosapentaenoate in patients with persistent schizophrenic symptoms. J Psychiatr Res. 2002;36(1):7–18.

    Article  PubMed  Google Scholar 

  71. Peet M, Horrobin DF. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch Gen Psychiatry. 2002;59(10):913–9.

    Article  PubMed  CAS  Google Scholar 

  72. Neuringer M, Connor WE, Van Petten C, Barstad L. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest. 1984;73(1):272–6.

    Article  PubMed  CAS  Google Scholar 

  73. Thorsdottir I, Birgisdottir BE, Halldorsdottir S, Geirsson RT. Association of fish and fish liver oil intake in pregnancy with infant size at birth among women of normal weight before pregnancy in a fishing community. Am J Epidemiol. 2004;160(5):460–5.

    Article  PubMed  Google Scholar 

  74. Harper KN, Hibbeln JR, Deckelbaum R, Quesenberry Jr CP, Schaefer CA, Brown AS. Maternal serum docosahexaenoic acid and schizophrenia spectrum disorders in adult offspring. Schizophr Res. 2011;128(1–3):30–6.

    Article  PubMed  Google Scholar 

  75. Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, et al. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet. 2007;369(9561):578–85.

    Article  PubMed  Google Scholar 

  76. US Department of Health and Human Services UEPA. What you need to know about mercury in fish and shellfish. EPA and FDA advice for women who might become pregnant, women who are pregnant, nursing mothers, young children. Washington, DC; 2004 Contract No.: Report number EPA-823-R-04-005.

    Google Scholar 

  77. McCreadie RG. The Nithsdale schizophrenia surveys 16: breastfeeding and schizophrenia, preliminary results and hypotheses. Br J Psychiatry. 1997;170:334–7.

    Article  PubMed  CAS  Google Scholar 

  78. Peet M, Poole J, Laugharne J. Infant feeding and the development of schizophrenia. Schizophr Res. 1997;24:255–6.

    Article  Google Scholar 

  79. Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 2010;304(15):1675–83.

    Article  PubMed  CAS  Google Scholar 

  80. Leask SJ, Done DJ, Crow TJ, Richards M, Jones PB. No association between breast-feeding and adult psychosis in two national birth cohorts. Br J Psychiatry. 2000;177:218–21.

    Article  PubMed  CAS  Google Scholar 

  81. Sasaki T, Okazaki Y, Akaho R, Masui K, Harada S, Lee I, et al. Type of feeding during infancy and later development of schizophrenia. Schizophr Res. 2000;42(1):79–82.

    Article  PubMed  CAS  Google Scholar 

  82. Amore M, Balista C, McCreadie RG, Cimmino C, Pisani F, Bevilacqua G, et al. Can breast-feeding protect against schizophrenia? Case-control Study. Biol Neonate. 2003;83(2):97–101.

    Article  PubMed  CAS  Google Scholar 

  83. Oken RJ, Schulzer M. At issue: schizophrenia and rheumatoid arthritis: the negative association revisited. Schizophr Bull. 1999;25(4):625–38.

    Article  PubMed  CAS  Google Scholar 

  84. Marchand WE, Sarota B, Marble HC, Leary TM, Burbank CB, Bellinger MJ. Occurrence of painless acute surgical disorders in psychotic patients. N Engl J Med. 1959;260(12):580–5.

    Article  PubMed  CAS  Google Scholar 

  85. Lipper S, Werman DS. Schizophrenia and intercurrent physical illness: a critical review of the literature. Compr Psychiatry. 1977;18(1):11–22.

    Article  PubMed  CAS  Google Scholar 

  86. Horrobin DF. Schizophrenia as a prostaglandin deficiency disease. Lancet. 1977;1(8018):936–7.

    Article  PubMed  CAS  Google Scholar 

  87. Horrobin DF, Glen AI, Vaddadi K. The membrane hypothesis of schizophrenia. Schizophr Res. 1994;13(3):195–207.

    Article  PubMed  CAS  Google Scholar 

  88. Horrobin DF. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res. 1998;30(3):193–208.

    Article  PubMed  CAS  Google Scholar 

  89. Fenton WS, Hibbeln J, Knable M. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry. 2000;47(1):8–21.

    Article  PubMed  CAS  Google Scholar 

  90. Sethom MM, Fares S, Bouaziz N, Melki W, Jemaa R, Feki M, et al. Polyunsaturated fatty acids deficits are associated with psychotic state and negative symptoms in patients with schizophrenia. Prostaglandins Leukot Essent Fatty Acids. 2010;83(3):131–6.

    Article  PubMed  CAS  Google Scholar 

  91. Yao JK, van Kammen DP, Gurklis JA. Abnormal incorporation of arachidonic acid into platelets of drug-free patients with schizophrenia. Psychiatry Res. 1996;60(1):11–21.

    Article  PubMed  CAS  Google Scholar 

  92. Assies J, Lieverse R, Vreken P, Wanders RJ, Dingemans PM, Linszen DH. Significantly reduced docosahexaenoic and docosapentaenoic acid concentrations in erythrocyte membranes from schizophrenic patients compared with a carefully matched control group. Biol Psychiatry. 2001;49(6):510–22.

    Article  PubMed  CAS  Google Scholar 

  93. Connor WE, Neuringer M, Lin DS. Dietary effects on brain fatty acid composition: the reversibility of n-3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes, and plasma of rhesus monkeys. J Lipid Res. 1990;31(2):237–47.

    PubMed  CAS  Google Scholar 

  94. Bentsen H, Solberg DK, Refsum H, Gran JM, Bohmer T, Torjesen PA, et al. Bimodal distribution of polyunsaturated fatty acids in schizophrenia suggests two endophenotypes of the disorder. Biol Psychiatry. 2011;70(1):97–105.

    Article  PubMed  CAS  Google Scholar 

  95. Reddy RD, Keshavan MS, Yao JK. Reduced red blood cell membrane essential polyunsaturated fatty acids in first episode schizophrenia at neuroleptic-naive baseline. Schizophr Bull. 2004;30(4):901–11.

    Article  PubMed  Google Scholar 

  96. Peet M, Shah S, Selvam K, Ramchand CN. Polyunsaturated fatty acid levels in red cell membranes of unmedicated schizophrenic patients. World J Biol Psychiatry. 2004;5(2):92–9.

    Article  PubMed  Google Scholar 

  97. Sumiyoshi T, Higuchi Y, Matsui M, Itoh H, Uehara T, Itoh T, et al. Membrane fatty acid levels as a predictor of treatment response in chronic schizophrenia. Psychiatry Res. 2011;186(1):23–7.

    Article  PubMed  CAS  Google Scholar 

  98. Evans DR, Parikh VV, Khan MM, Coussons C, Buckley PF, Mahadik SP. Red blood cell membrane essential fatty acid metabolism in early psychotic patients following antipsychotic drug treatment. Prostaglandins Leukot Essent Fatty Acids. 2003;69(6):393–9.

    Article  PubMed  CAS  Google Scholar 

  99. Khan MM, Evans DR, Gunna V, Scheffer RE, Parikh VV, Mahadik SP. Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr Res. 2002;58(1):1–10.

    Article  PubMed  Google Scholar 

  100. Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, Tretta MG, et al. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry. 1991;48(6):563–8.

    Article  PubMed  CAS  Google Scholar 

  101. Berger GE, Wood SJ, Pantelis C, Velakoulis D, Wellard RM, McGorry PD. Implications of lipid biology for the pathogenesis of schizophrenia. Aust N Z J Psychiatry. 2002;36(3):355–66.

    Article  PubMed  Google Scholar 

  102. Fukuzako H. Neurochemical investigation of the schizophrenic brain by in vivo phosphorus magnetic resonance spectroscopy. World J Biol Psychiatry. 2001;2(2):70–82.

    Article  PubMed  CAS  Google Scholar 

  103. Keshavan MS, Stanley JA, Montrose DM, Minshew NJ, Pettegrew JW. Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder: an in vivo 31P MRS study. Mol Psychiatry. 2003;8(3):316–23. 251.

    Article  PubMed  CAS  Google Scholar 

  104. Hamazaki K, Choi KH, Kim HY. Phospholipid profile in the postmortem hippocampus of patients with schizophrenia and bipolar disorder: no changes in docosahexaenoic acid species. J Psychiatr Res. 2010;44(11):688–93.

    Article  PubMed  Google Scholar 

  105. McNamara RK, Jandacek R, Rider T, Tso P, Hahn CG, Richtand NM, et al. Abnormalities in the fatty acid composition of the postmortem orbitofrontal cortex of schizophrenic patients: gender differences and partial normalization with antipsychotic medications. Schizophr Res. 2007;91(1–3):37–50.

    Article  PubMed  Google Scholar 

  106. Yao JK, Leonard S, Reddy RD. Membrane phospholipid abnormalities in postmortem brains from schizophrenic patients. Schizophr Res. 2000;42(1):7–17.

    Article  PubMed  CAS  Google Scholar 

  107. Horrobin DF, Manku MS, Hillman H, Iain A, Glen M. Fatty acid levels in the brains of schizophrenics and normal controls. Biol Psychiatry. 1991;30(8):795–805.

    Article  PubMed  CAS  Google Scholar 

  108. Landen M, Davidsson P, Gottfries CG, Mansson JE, Blennow K. Reduction of the synaptophysin level but normal levels of glycerophospholipids in the gyrus cinguli in schizophrenia. Schizophr Res. 2002;55(1–2):83–8.

    Article  PubMed  Google Scholar 

  109. Arvindakshan M, Sitasawad S, Debsikdar V, Ghate M, Evans D, Horrobin DF, et al. Essential polyunsaturated fatty acid and lipid peroxide levels in never-medicated and medicated schizophrenia patients. Biol Psychiatry. 2003;53(1):56–64.

    Article  PubMed  CAS  Google Scholar 

  110. McNamara RK, Jandacek R, Rider T, Tso P, Stanford KE, Hahn CG, et al. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res. 2008;160(3):285–99.

    Article  PubMed  CAS  Google Scholar 

  111. McNamara RK, Hahn CG, Jandacek R, Rider T, Tso P, Stanford KE, et al. Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biol Psychiatry. 2007;62(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  112. Balsinde J, Balboa MA, Insel PA, Dennis EA. Regulation and inhibition of phospholipase A2. Annu Rev Pharmacol Toxicol. 1999;39:175–89.

    Article  PubMed  CAS  Google Scholar 

  113. Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994;269(18):13057–60.

    PubMed  CAS  Google Scholar 

  114. Sun GY, Xu J, Jensen MD, Simonyi A. Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res. 2004;45(2):205–13.

    Article  PubMed  CAS  Google Scholar 

  115. Winstead MV, Balsinde J, Dennis EA. Calcium-independent phospholipase A(2): structure and function. Biochim Biophys Acta. 2000;1488(1–2):28–39.

    PubMed  CAS  Google Scholar 

  116. Gattaz WF, Hubner CV, Nevalainen TJ, Thuren T, Kinnunen PK. Increased serum phospholipase A2 activity in schizophrenia: a replication study. Biol Psychiatry. 1990;28(6):495–501.

    PubMed  CAS  Google Scholar 

  117. Gattaz WF, Kollisch M, Thuren T, Virtanen JA, Kinnunen PK. Increased plasma phospholipase-A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol Psychiatry. 1987;22(4): 421–6.

    Article  PubMed  CAS  Google Scholar 

  118. Gattaz WF, Schmitt A, Maras A. Increased platelet phospholipase A2 activity in schizophrenia. Schizophr Res. 1995;16(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  119. Lasch J, Willhardt I, Kinder D, Sauer H, Smesny S. Fluorometric assays of phospholipase A2 activity with three different substrates in biological samples of patients with schizophrenia. Clin Chem Lab Med. 2003;41(7):908–14.

    Article  PubMed  CAS  Google Scholar 

  120. Ross BM, Hudson C, Erlich J, Warsh JJ, Kish SJ. Increased phospholipid breakdown in schizophrenia. Evidence for the involvement of a calcium-independent phospholipase A2 [see comments]. Arch Gen Psychiatry. 1997;54(5):487–94.

    Article  PubMed  CAS  Google Scholar 

  121. Ross BM, Turenne S, Moszczynska A, Warsh JJ, Kish SJ. Differential alteration of phospholipase A2 activities in brain of patients with schizophrenia. Brain Res. 1999;821(2):407–13.

    Article  PubMed  CAS  Google Scholar 

  122. Smesny S, Kinder D, Willhardt I, Rosburg T, Lasch J, Berger G, et al. Increased calcium-independent phospholipase A2 activity in first but not in multiepisode chronic schizophrenia. Biol Psychiatry. 2005;57(4):399–405.

    Article  PubMed  CAS  Google Scholar 

  123. Tavares H, Yacubian J, Talib LL, Barbosa NR, Gattaz WF. Increased phospholipase A2 activity in schizophrenia with absent response to niacin. Schizophr Res. 2003;61(1):1–6.

    Article  PubMed  Google Scholar 

  124. Katila H, Appelberg B, Rimon R. No differences in phospholipase-A2 activity between acute psychiatric patients and controls. Schizophr Res. 1997;26(2–3):103–5.

    Article  PubMed  CAS  Google Scholar 

  125. Macdonald DJ, Boyle RM, Glen AC, Ross BM, Glen AI, Ward PE, et al. The investigation of cytosolic phospholipase A2 using ELISA. Prostaglandins Leukot Essent Fatty Acids. 2004;70(4):377–81.

    Article  PubMed  CAS  Google Scholar 

  126. Noponen M, Sanfilipo M, Samanich K, Ryer H, Ko G, Angrist B, et al. Elevated PLA2 activity in schizophrenics and other psychiatric patients. Biol Psychiatry. 1993;34(9):641–9.

    Article  PubMed  CAS  Google Scholar 

  127. Pangerl AM, Steudle A, Jaroni HW, Rufer R, Gattaz WF. Increased platelet membrane lysophosphatidylcholine in schizophrenia. Biol Psychiatry. 1991;30:837–40.

    Article  PubMed  CAS  Google Scholar 

  128. Hudson C, Gotowiec A, Seeman M, Warsh J, Ross BM. Clinical subtyping reveals significant differences in calcium-dependent phospholipase A2 activity in schizophrenia. Biol Psychiatry. 1999;46(3):401–5.

    Article  PubMed  CAS  Google Scholar 

  129. Albers M, Meurer H, Marki F, Klotz J. Phospholipase A2 activity in serum of neuroleptic-naive psychiatric inpatients. Pharmacopsychiatry. 1993;26(3):94–8.

    Article  PubMed  CAS  Google Scholar 

  130. Smesny S, Kunstmann C, Kunstmann S, Willhardt I, Lasch J, Yotter RA, et al. Phospholipase A(2) activity in first episode schizophrenia: associations with symptom severity and outcome at week 12. World J Biol Psychiatry. 2010;12(8):598–607.

    Article  PubMed  Google Scholar 

  131. Smesny S, Milleit B, Nenadic I, Preul C, Kinder D, Lasch J, et al. Phospholipase A2 activity is associated with structural brain changes in schizophrenia. Neuroimage. 2010;52(4):1314–27.

    Article  PubMed  CAS  Google Scholar 

  132. Gattaz WF, Brunner J. Phospholipase A2 and the hypofrontality hypothesis of schizophrenia. Prostaglandins Leukot Essent Fatty Acids. 1996;55(1–2):109–13.

    Article  PubMed  CAS  Google Scholar 

  133. Itil TM. Qualitative and quantitative EEG findings in schizophrenia. Schizophr Bull. 1977;3(1):61–79.

    Article  PubMed  CAS  Google Scholar 

  134. Boutros NN, Arfken C, Galderisi S, Warrick J, Pratt G, Iacono W. The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophr Res. 2008;99(1–3):225–37.

    Article  PubMed  Google Scholar 

  135. Galderisi S, Mucci A, Volpe U, Boutros N. Evidence-based medicine and electrophysiology in schizophrenia. Clin EEG Neurosci. 2009;40(2):62–77.

    Article  PubMed  Google Scholar 

  136. Zimmermann R, Gschwandtner U, Wilhelm FH, Pflueger MO, Riecher-Rossler A, Fuhr P. EEG spectral power and negative symptoms in at-risk individuals predict transition to psychosis. Schizophr Res. 2010;123(2–3):208–16.

    Article  PubMed  Google Scholar 

  137. Sumich A, Matsudaira T, Gow RV, Ibrahimovic A, Ghebremeskel K, Crawford M, et al. Resting state electroencephalographic correlates with red cell long-chain fatty acids, memory performance and age in adolescent boys with attention deficit hyperactivity disorder. Neuropharmacology. 2009;57(7–8):708–14.

    Article  PubMed  CAS  Google Scholar 

  138. Fontani G, Corradeschi F, Felici A, Alfatti F, Migliorini S, Lodi L. Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest. 2005;35(11):691–9.

    Article  PubMed  CAS  Google Scholar 

  139. Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP. Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res. 2003;62(3):195–204.

    Article  PubMed  Google Scholar 

  140. Emsley R, Myburgh C, Oosthuizen P, van Rensburg SJ. Randomized, placebo-controlled study of ethyl-eicosapentaenoic acid as supplemental treatment in schizophrenia. Am J Psychiatry. 2002;159(9):1596–8.

    Article  PubMed  Google Scholar 

  141. Fenton WS, Dickerson F, Boronow J, Hibbeln JR, Knable M. A placebo-controlled trial of omega-3 fatty acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive impairment in schizophrenia. Am J Psychiatry. 2001;158(12):2071–4.

    Article  PubMed  CAS  Google Scholar 

  142. Mellor JE, Laugharne JD, Peet M. Schizophrenic symptoms and dietary intake of n-3 fatty acids. Schizophr Res. 1995;18(1):85–6.

    Article  PubMed  CAS  Google Scholar 

  143. Sivrioglu EY, Kirli S, Sipahioglu D, Gursoy B, Sarandol E. The impact of omega-3 fatty acids, vitamins E and C supplementation on treatment outcome and side effects in schizophrenia patients treated with haloperidol: an open-label pilot study. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(7):1493–9.

    Article  PubMed  CAS  Google Scholar 

  144. Fusar-Poli P, Crossley N, Woolley J, Carletti F, Perez-Iglesias R, Broome M, et al. White matter alterations related to P300 abnormalities in individuals at high risk for psychosis: an MRI-EEG study. J Psychiatry Neurosci. 2011;36(1):100083.

    Article  PubMed  CAS  Google Scholar 

  145. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261–76.

    Article  PubMed  CAS  Google Scholar 

  146. McGorry PD, Nelson B, Goldstone S, Yung AR. Clinical staging: a heuristic and practical strategy for new research and better health and social outcomes for psychotic and related mood disorders. Can J Psychiatry. 2010;55(8):486–97.

    PubMed  Google Scholar 

  147. Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, et al. Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res. 2003;60(1):21–32.

    Article  PubMed  Google Scholar 

  148. Addington J, Cadenhead KS, Cannon TD, Cornblatt B, McGlashan TH, Perkins DO, et al. North American Prodrome Longitudinal Study: a collaborative multisite approach to prodromal schizophrenia research. Schizophr Bull. 2007;33(3):665–72.

    Article  PubMed  Google Scholar 

  149. Miller TJ, McGlashan TH, Rosen JL, Somjee L, Markovich PJ, Stein K, et al. Prospective diagnosis of the initial prodrome for schizophrenia based on the Structured Interview for Prodromal Syndromes: preliminary evidence of interrater reliability and predictive validity. Am J Psychiatry. 2002;159(5):863–5.

    Article  PubMed  Google Scholar 

  150. Riecher-Rossler A, Gschwandtner U, Aston J, Borgwardt S, Drewe M, Fuhr P, et al. The Basel early-detection-of-psychosis (FEPSY)-study—design and preliminary results. Acta Psychiatr Scand. 2007;115(2):114–25.

    Article  PubMed  CAS  Google Scholar 

  151. Ruhrmann S, Schultze-Lutter F, Klosterkotter J. Early detection and intervention in the initial prodromal phase of schizophrenia. Pharmacopsychiatry. 2003;36 Suppl 3:S162–7.

    PubMed  Google Scholar 

  152. Preti A, Cella M. Randomized-controlled trials in people at ultra high risk of psychosis: a review of treatment effectiveness. Schizophr Res. 2010;123(1):30–6.

    Article  PubMed  Google Scholar 

  153. McGlashan TH, Zipursky RB, Perkins D, Addington J, Miller T, Woods SW, et al. Randomized, double-blind trial of olanzapine versus placebo in patients prodromally symptomatic for psychosis. Am J Psychiatry. 2006;163(5):790–9.

    Article  PubMed  Google Scholar 

  154. McGorry PD, Yung AR, Phillips LJ, Yuen HP, Francey S, Cosgrave EM, et al. Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms. Arch Gen Psychiatry. 2002;59(10):921–8.

    Article  PubMed  Google Scholar 

  155. Morrison AP, French P, Parker S, Roberts M, Stevens H, Bentall RP, et al. Three-year follow-up of a randomized controlled trial of cognitive therapy for the prevention of psychosis in people at ultrahigh risk. Schizophr Bull. 2007;33(3):682–7.

    Article  PubMed  Google Scholar 

  156. Nordentoft M, Thorup A, Petersen L, Ohlenschlaeger J, Melau M, Christensen TO, et al. Transition rates from schizotypal disorder to psychotic disorder for first-contact patients included in the OPUS trial. A randomized clinical trial of integrated treatment and standard treatment. Schizophr Res. 2006;83(1):29–40.

    Article  PubMed  Google Scholar 

  157. Morrison AP, French P, Walford L, Lewis SW, Kilcommons A, Green J, et al. Cognitive therapy for the prevention of psychosis in people at ultra-high risk: randomised controlled trial. Br J Psychiatry. 2004;185:291–7.

    Article  PubMed  Google Scholar 

  158. Addington J, Epstein I, Liu L, French P, Boydell KM, Zipursky RB. A randomized controlled trial of cognitive behavioral therapy for individuals at clinical high risk of psychosis. Schizophr Res. 2011;125(1):54–61.

    Article  PubMed  Google Scholar 

  159. Berger GE, Dell’Olio M, Amminger GP. Neuroprotection in emerging psychotic disorder. Early Interv Psychiatry. 2007;1(1):114–27.

    Article  Google Scholar 

  160. Emsley R, Niehaus DJ, Koen L, Oosthuizen PP, Turner HJ, Carey P, et al. The effects of eicosapentaenoic acid in tardive dyskinesia: a randomized, placebo-controlled trial. Schizophr Res. 2006;84(1):112–20.

    Article  PubMed  Google Scholar 

  161. Wolkin A, Jordan B, Peselow E, Rubinstein M, Rotrosen J. Essential fatty acid supplementation in tardive dyskinesia. Am J Psychiatry. 1986;143(7):912–4.

    PubMed  CAS  Google Scholar 

  162. van Rensburg SJ, Smuts CM, Hon D, Kidd M, van der Merwe S, Myburgh C, et al. Changes in erythrocyte membrane fatty acids during a clinical trial of eicosapentaenoic acid (EPA) supplementation in schizophrenia. Metab Brain Dis. 2009;24(4):659–72.

    Article  PubMed  CAS  Google Scholar 

  163. Vaddadi KS, Gilleard CJ, Soosai E, Polonowita AK, Gibson RA, Burrows GD. Schizophrenia, tardive dyskinesia and essential fatty acids. Schizophr Res. 1996;20(3):287–94.

    Article  PubMed  CAS  Google Scholar 

  164. Bleuler M. Some aspects of endocrinologic psychiatry. J Nerv Ment Dis. 1951;113(1):74–6.

    Article  PubMed  CAS  Google Scholar 

  165. McEvoy JP, Meyer JM, Goff DC, Nasrallah HA, Davis SM, Sullivan L, et al. Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophr Res. 2005;80(1):19–32.

    Article  PubMed  Google Scholar 

  166. Jacobson TA. Role of n-3 fatty acids in the treatment of hypertriglyceridemia and cardiovascular disease. Am J Clin Nutr. 2008;87(6):1981S–90.

    PubMed  CAS  Google Scholar 

  167. Laidlaw M, Holub BJ. Effects of supplementation with fish oil-derived n-3 fatty acids and gamma-linolenic acid on circulating plasma lipids and fatty acid profiles in women. Am J Clin Nutr. 2003;77(1):37–42.

    PubMed  CAS  Google Scholar 

  168. Skulas-Ray AC, Kris-Etherton PM, Harris WS, Vanden Heuvel JP, Wagner PR, West SG. Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am J Clin Nutr. 2010;93(2):243–52.

    Article  PubMed  CAS  Google Scholar 

  169. Emsley R, Niehaus DJ, Oosthuizen PP, Koen L, Ascott-Evans B, Chiliza B, et al. Safety of the omega-3 fatty acid, eicosapentaenoic acid (EPA) in psychiatric patients: results from a randomized, placebo-controlled trial. Psychiatry Res. 2008;161(3):284–91.

    Article  PubMed  CAS  Google Scholar 

  170. Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189(1): 19–30.

    Article  PubMed  CAS  Google Scholar 

  171. Caniato RN, Alvarenga ME, Garcia-Alcaraz MA. Effect of omega-3 fatty acids on the lipid profile of patients taking clozapine. Aust N Z J Psychiatry. 2006;40(8):691–7.

    Article  PubMed  Google Scholar 

  172. Breslow JL. n-3 fatty acids and cardiovascular disease. Am J Clin Nutr. 2006;83(6 Suppl):1477S–82.

    PubMed  CAS  Google Scholar 

  173. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106(21):2747–57.

    Article  PubMed  Google Scholar 

  174. Massaro M, Scoditti E, Carluccio MA, Campana MC, De Caterina R. Omega-3 fatty acids, inflammation and angiogenesis: basic mechanisms behind the cardioprotective effects of fish and fish oils. Cell Mol Biol (Noisy-le-Grand). 2010;56(1):59–82.

    CAS  Google Scholar 

  175. Scorza FA, Cysneiros RM, Cavalheiro EA, Arida RM, de Albuquerque M. Omega-3 fatty acids and sudden cardiac death in schizophrenia: if not a friend, at least a great colleague. Schizophr Res. 2007;94(1–3):375–6.

    Article  PubMed  Google Scholar 

  176. Department of Health and Human Services USoAFaDA. 1997. Contract No.: 21 CFR Part 184 (Docket No. 86 G-0289).

    Google Scholar 

  177. Harris WS. Expert opinion: omega-3 fatty acids and bleeding-cause for concern? Am J Cardiol. 2007;99(6A):44C–6.

    Article  PubMed  CAS  Google Scholar 

  178. Durst R, Dorevitch A, Fraenkel Y. Platelet dysfunction associated with clozapine therapy. South Med J. 1993;86(10):1170–2.

    Article  PubMed  CAS  Google Scholar 

  179. Harrison-Woolrych M, Clark DW. Nose bleeds associated with use of risperidone. BMJ. 2004;328(7453):1416.

    Article  PubMed  Google Scholar 

  180. Mossaheb N, Schloegelhofer M, Schaefer MR, Fusar-Poli P, Smesny S, McGorry P, Berger G, Amminger GP. Polyunsaturated fatty acids in emerging psychosis. Curr Pharm Des. 2012;18(4): 576–591.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilufar Mossaheb MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mossaheb, N. et al. (2013). Long-Chain Omega-3 Fatty Acids and Psychotic Disorders. In: De Meester, F., Watson, R., Zibadi, S. (eds) Omega-6/3 Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-215-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-215-5_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-214-8

  • Online ISBN: 978-1-62703-215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics