Skip to main content

Optimal Omega-3 Levels for Different Age Groups

  • Chapter
  • First Online:
Omega-6/3 Fatty Acids

Part of the book series: Nutrition and Health ((NH))

  • 2835 Accesses

Abstract

Some sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have disappeared from our diet, like brain, because of fears of bovine spongiform encephalitis. Other sources are declining in content, like farmed fish, because fish oil prices rise, and EPA- and DHA-rich fish oil is replaced by other oils, containing little or no EPA and DHA (1). For similar reasons, few eggs contain appreciable amounts of EPA and/or DHA (2). Under current Western dietary conditions, one-third of humans cannot convert alpha-linolenic acid (ALA) to EPA, about one-third convert some, and about one-third can convert up to 5% of ALA ingested to EPA (3). In humans, conversion of EPA to DHA is negligible, while retroconversion of DHA to EPA seems more efficient (3, 4). Taken together, ingestion of EPA and DHA has been and is continuing to be declining, and plant-derived ALA is not a viable alternative. Alternative sources, like algae-derived DHA, currently cannot provide sufficient quantities of EPA and DHA to compensate for the declining availability and intake of EPA and DHA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, et al. Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A. 2009;106:15103–10.

    Article  PubMed  CAS  Google Scholar 

  2. Bourre JM. Effect of increasing the omega-3 fatty acid in the diets of animals on the animal products consumed by humans. Med Sci (Paris). 2005;21:773–9 [Article in French].

    Article  Google Scholar 

  3. Brenna JT, Salem Jr N, Sinclair AJ, Cunnane SC, International Society for the Study of Fatty Acids and Lipids, ISSFAL. alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids. 2009;80:85–9.

    Article  PubMed  CAS  Google Scholar 

  4. Plourde M, Chouinard-Watkins R, Vandal M, Zhang Y, Lawrence P, Brenna JT, et al. Plasma incorporation, apparent retroconversion and β-oxidation of 13C-docosahexaenoic acid in the elderly. Nutr Metab (Lond). 2011;8:5.

    Article  CAS  Google Scholar 

  5. von Schacky C. The omega-3 index as a risk factor for cardiovascular diseases. Prostaglandins Other Lipid Mediat. 2011;96:94–8. doi:10.1016/j.prostaglandins.2011.06.008.

    Article  Google Scholar 

  6. von Schacky C, Weber PC. Metabolism and effects on platelet function of the purified eicosapentaenoic and docosahexaenoic acids in humans. J Clin Invest. 1985;76:2446–50.

    Article  Google Scholar 

  7. von Schacky C, Fischer S, Weber PC. Long-term effects of dietary marine omega-3 fatty acids upon plasma and cellular lipids, platelet function, and eicosanoid formation in humans. J Clin Invest. 1985;76:1626–31.

    Article  Google Scholar 

  8. von Schacky C, Angerer P, Kothny W, Theisen K, Mudra H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1999;130:554–62.

    Article  Google Scholar 

  9. Harris WS, von Schacky C. The omega-3 index: a new risk factor for death from CHD? Prev Med. 2004; 39:212–20.

    Article  PubMed  CAS  Google Scholar 

  10. Siscovick DS, Raghunathan TE, King I, Weinmann S, Wicklund KG, Albright J, et al. Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. J Am Med Assoc. 1995;275:836–7.

    Article  Google Scholar 

  11. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, et al. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med. 2002;346:1113–8.

    Article  PubMed  CAS  Google Scholar 

  12. Harris WS, Thomas RM. Biological variability of blood omega-3 biomarkers. Clin Biochem. 2010;43:338–40.

    Article  PubMed  CAS  Google Scholar 

  13. Ebbesson SO, Devereux RB, Cole S, Ebbesson LO, Fabsitz RR, Haack K, et al. Heart rate is associated with red blood cell fatty acid concentration: the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study. Am Heart J. 2010;159:1020–5.

    Article  PubMed  CAS  Google Scholar 

  14. Sala-Vila A, Harris WS, Cofán M, Pérez-Heras AM, Pintó X, Lamuela-Raventós RM, et al. Determinants of the omega-3 index in a Mediterranean population at increased risk for CHD. Br J Nutr. 2011;106:425–31.

    Article  PubMed  CAS  Google Scholar 

  15. Köhler A, Bittner D, Löw A, von Schacky C. Effects of a convenience drink fortified with n-3 fatty acids on the n-3 index. Br J Nutr. 2010;104:729–36.

    Article  PubMed  Google Scholar 

  16. Carver JD, Benford VJ, Han B, Cantor AB. The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res Bull. 2001;56:79–85.

    Article  PubMed  CAS  Google Scholar 

  17. Cunningham P, McDermott L. Long chain PUFA transport in human term placenta. J Nutr. 2009;139:636–9.

    Article  PubMed  CAS  Google Scholar 

  18. Larqué E, Demmelmair H, Gil-Sánchez A, Prieto-Sánchez MT, Blanco JE, Pagán A, et al. Placental transfer of fatty acids and fetal implications. Am J Clin Nutr. 2011;94(6 Suppl):1908S–13.

    Article  PubMed  Google Scholar 

  19. Dunstan JA, Mori TA, Barden A, Beilin LJ, Holt PG, Calder PC, et al. Effects of n-3 polyunsaturated fatty acid supplementation in pregnancy on maternal and fetal erythrocyte fatty acid composition. Eur J Clin Nutr. 2004;58:429–37.

    Article  PubMed  CAS  Google Scholar 

  20. Brenna JT, Lapillonne A. Background paper on fat and fatty acid requirements during pregnancy and lactation. Ann Nutr Metab. 2009;55:97–122.

    Article  PubMed  CAS  Google Scholar 

  21. von Schacky C. Schwangerschaft, kindliche entwicklung, omega-3-fettsäuren und HS-omega-3 index. J Frauengesundheit. 2010;3:10–21.

    Google Scholar 

  22. Koletzko B, Cetin I, Brenna JT, Perinatal Lipid Intake Working Group, Child Health Foundation, Diabetic Pregnancy Study Group, European Association of Perinatal Medicine, European Association of Perinatal Medicine, European Society for Clinical Nutrition and Metabolism, European Society for Paediatric Gastroenterology, Hepatology and Nutrition, Committee on Nutrition, International Federation of Placenta Associations, International Society for the Study of Fatty Acids and Lipids. Dietary fat intakes for pregnant and lactating women. Br J Nutr. 2007;98:873–7.

    Article  PubMed  CAS  Google Scholar 

  23. Minns LM, Kerling EH, Neely MR, Sullivan DK, Wampler JL, Harris CL, et al. Toddler formula supplemented with docosahexaenoic acid (DHA) improves DHA status and respiratory health in a randomized, double-blind, controlled trial of US children less than 3 years of age. Prostaglandins Leukot Essent Fatty Acids. 2010;82:287–93.

    Article  PubMed  CAS  Google Scholar 

  24. Clayton EH, Hanstock TL, Hirneth SJ, Kable CJ, Garg ML, Hazell PL. Long-chain omega-3 polyunsaturated fatty acids in the blood of children and adolescents with juvenile bipolar disorder. Lipids. 2008;43:1031–8.

    Article  PubMed  CAS  Google Scholar 

  25. Walser B, Stebbins CL. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise. Eur J Appl Physiol. 2008;104:455–61.

    Article  PubMed  CAS  Google Scholar 

  26. Peoples GE, McLennan PL, Howe PR, Groeller H. Fish oil reduces heart rate and oxygen consumption during exercise. J Cardiovasc Pharmacol. 2008;52:540–7.

    Article  PubMed  CAS  Google Scholar 

  27. Moyers B, Farzaneh-Far R, Harris WS, Garg S, Na B, Whooley MA. Relation of whole blood n-3 fatty acid levels to exercise parameters in patients with stable coronary artery disease (from the Heart and Soul Study). Am J Cardiol. 2011;107:1149–54.

    Article  PubMed  CAS  Google Scholar 

  28. O’Keefe Jr JH, Abuissa H, Sastre A, Steinhaus DM, Harris WS. Effects of omega-3 fatty acids on resting heart rate, heart rate recovery after exercise, and heart rate variability in men with healed myocardial infarctions and depressed ejection fractions. Am J Cardiol. 2006;97:1127–30.

    Article  PubMed  Google Scholar 

  29. Baghai TC, Varallo-Bedarida G, Born C, Häfner S, Schüle C, Eser D, et al. Major depressive disorder is associated with cardiovascular risk factors and low omega-3 index. J Clin Psychiatry. 2011;72:1242–7.

    Article  PubMed  CAS  Google Scholar 

  30. Lin PY, Huang SY, Su KP. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry. 2010;68:140–7.

    Article  PubMed  CAS  Google Scholar 

  31. Sublette ME, Ellis SP, Geant AL, Mann JJ. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry. 2011;72:1577–84.

    Article  PubMed  CAS  Google Scholar 

  32. Sarris J, Mischoulon D, Schweitzer I. Omega-3 for bipolar disorder: meta-analyses of use in mania and bipolar depression. J Clin Psychiatry. 2012;73:81–6.

    Article  PubMed  CAS  Google Scholar 

  33. Matsuoka Y, Nishi D, Nakaya N, Sone T, Hamazaki K, Hamazaki T, et al. Attenuating posttraumatic distress with omega-3 polyunsaturated fatty acids among disaster medical assistance team members after the Great East Japan Earthquake: the APOP randomized controlled trial. BMC Psychiatry. 2011;11:132.

    Article  PubMed  CAS  Google Scholar 

  34. Pottala JV, Garg S, Cohen BE, Whooley MA, Harris WS. Blood eicosapentaenoic and docosahexaenoic acids predict all-cause mortality in patients with stable coronary heart disease: the Heart and Soul Study. Circ Cardiovasc Qual Outcomes. 2010;3:406–12.

    Article  PubMed  Google Scholar 

  35. Abuannadi M, O’Keefe JH, Spertus JA, Kennedy KF, Harris WS, et al. Omega-3 index: an independent predictor of 1 year all cause mortality in myocardial infarction (MI) patients. Poster 174, AHA QCOR Meeting, 19–21 May 2010. Accessible at http://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_319392.pdf

  36. Aarsetoey H, Pönitz V, Grundt H, Staines H, Harris WS, Nilsen DW. (n-3) fatty acid content of red blood cells does not predict risk of future cardiovascular events following an acute coronary syndrome. J Nutr. 2009;139:507–13.

    Article  PubMed  CAS  Google Scholar 

  37. Block RC, Harris WS, Reid KJ, Sands SA, Spertus JA. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis. 2008;197:821–8.

    Article  PubMed  CAS  Google Scholar 

  38. Salisbury AC, Harris WS, Amin AP, Reid KJ, O’Keefe Jr JH, Spertus JA. Relation between red blood cell omega-3 fatty acid index and bleeding during acute myocardial infarction. Am J Cardiol. 2012;109:13–8.

    Article  PubMed  CAS  Google Scholar 

  39. Park Y, Lim J, Lee J, Kim SG. Erythrocyte fatty acid profiles can predict acute non-fatal myocardial infarction. Br J Nutr. 2009;102:1355–6.

    Article  PubMed  CAS  Google Scholar 

  40. von Schacky C. Omega-3 Index and cardiovascular disease prevention: principle and rationale. Lipid Technol. 2010;22:151–4.

    Article  Google Scholar 

  41. von Schacky C. Omega-3 fatty acids vs. cardiac disease: the contribution of the omega-3 index. Cell Mol Biol. 2010;56:90–8.

    Google Scholar 

  42. Farzneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303:250–7.

    Article  Google Scholar 

  43. Filion KB, El Khoury F, Bielinski M, Schiller I, Dendukuri N, Brophy JM. Omega-3 fatty acids in high-risk cardiovascular patients: a meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2010;10:24.

    Article  PubMed  Google Scholar 

  44. Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–30.

    Article  PubMed  Google Scholar 

  45. von Schacky C, Harris WS. Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res. 2007;73:310–5.

    Article  Google Scholar 

  46. Ghio S, Scelsi L, Latini R, Masson S, Eleuteri E, Palvarini M, et al.; GISSI-HF investigators. Effects of n-3 polyunsaturated fatty acids and of rosuvastatin on left ventricular function in chronic heart failure: a substudy of GISSI-HF trial. Eur J Heart Fail. 2010;12:1345–53

    Google Scholar 

  47. Moertl D, Hammer A, Steiner S, Hutuleac R, Vonbank K, Berger R. Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study. Am Heart J. 2011;161:915.e1–9.

    Article  Google Scholar 

  48. Nodari S, Triggiani M, Campia U, Manerba A, Milesi G, Cesana BM, et al. Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2011;57:870–9.

    Article  PubMed  CAS  Google Scholar 

  49. Duda MK, O’Shea KM, Tintinu A, Xu W, Khairallah RJ, Barrows BR, et al. Fish oil but not flaxseed oil decreases inflammation and prevents pressure-overload induced cardiac dysfunction. Cardiovasc Res. 2009;81:319–27.

    Article  PubMed  CAS  Google Scholar 

  50. Signori C, El-Bayoumy K, Russo J, Thompson HJ, Richie JP, Hartman TJ, et al. Chemoprevention of breast cancer by fish oil in preclinical models: trials and tribulations. Cancer Res. 2011;71:6091–6.

    Article  PubMed  CAS  Google Scholar 

  51. Hori S, Butler E, McLoughlin J. Prostate cancer and diet: food for thought? BJU Int. 2011;107:1348–59.

    Article  PubMed  CAS  Google Scholar 

  52. Szymanski KM, Wheeler DC, Mucci LA. Fish consumption and prostate cancer risk: a review and meta-analysis. Am J Clin Nutr. 2010;92:1223–33.

    Article  PubMed  CAS  Google Scholar 

  53. Fasano E, Serini S, Piccioni E, Innocenti I, Calviello G. Chemoprevention of lung pathologies by dietary n-3 polyunsaturated fatty acids. Curr Med Chem. 2010;17:3358–76.

    Article  PubMed  CAS  Google Scholar 

  54. Dupertuis YM, Meguid MM, Pichard C. Colon cancer therapy: new perspectives of nutritional manipulations using polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care. 2007;10:427–32.

    Article  PubMed  CAS  Google Scholar 

  55. Huang TL. Omega-3 fatty acids, cognitive decline, and Alzheimer’s disease: a critical review and evaluation of the literature. J Alzheimers Dis. 2010;21:673–90.

    PubMed  CAS  Google Scholar 

  56. Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB, Van Dyck C, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA. 2010;304:1903–11.

    Article  PubMed  CAS  Google Scholar 

  57. Lopez LB, Kritz-Silverstein D, Barrett Connor E. High dietary and plasma levels of the omega-3 fatty acid docosahexaenoic acid are associated with decreased dementia risk: the Rancho Bernardo study. J Nutr Health Aging. 2011;15:25–31.

    Article  PubMed  CAS  Google Scholar 

  58. Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol. 2006;63:1545–50.

    Article  PubMed  Google Scholar 

  59. Yurko-Mauro K, McCarthy D, Rom D, Nelson EB, Ryan AS, Blackwell A, et al.; MIDAS Investigators. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 2010;6:456–64

    Google Scholar 

  60. Dangour AD, Allen E, Elbourne D, Fasey N, Fletcher AE, Hardy P, et al. Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. Am J Clin Nutr. 2010;91:1725–32.

    Article  PubMed  CAS  Google Scholar 

  61. Andreeva VA, Kesse-Guyot E, Barberger-Gateau P, Fezeu L, Hercberg S, Galan P. Cognitive function after supplementation with B vitamins and long-chain omega-3 fatty acids: ancillary findings from the SU.FOL.OM3 randomized trial. Am J Clin Nutr. 2011;94:278–86.

    Article  PubMed  CAS  Google Scholar 

  62. van de Rest O, Geleijnse JM, Kok FJ, van Staveren WA, Dullemeijer C, Olderikkert MG, et al. Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. Neurology. 2008;71:430–8.

    Article  PubMed  Google Scholar 

  63. Hwang I, Cha A, Lee H, Yoon H, Yoon T, Cho B, et al. n-3 Polyunsaturated fatty acids and atopy in Korean preschoolers. Lipids. 2007;42(4):345–9.

    Article  PubMed  CAS  Google Scholar 

  64. Park Y, Park S, Yi H, Kim HY, Kang SJ, Kim J, et al. Low level of n-3 polyunsaturated fatty acids in erythrocytes is a risk factor for both acute ischemic and hemorrhagic stroke in Koreans. Nutr Res. 2009;29:825–30.

    Article  PubMed  CAS  Google Scholar 

  65. Ladesich JB, Pottala JV, Romaker A, Harris WS. Membrane levels of omega-3 docosahexaenoic acid is associated with obstructive sleep apnea. J Clin Sleep Med. 2011;7:391–6.

    PubMed  Google Scholar 

  66. Gnanasekaran G. Epidemiology of depression in heart failure. Heart Fail Clin. 2011;7:1–10.

    Article  PubMed  Google Scholar 

  67. McKelvie RS, Moe GW, Cheung A, Costigan J, Ducharme A, Estrella-Holder E, et al. The 2011 Canadian Cardiovascular Society heart failure management guidelines update: focus on sleep apnea, renal dysfunction, mechanical circulatory support, and palliative care. Can J Cardiol. 2011;27:319–38.

    Article  PubMed  Google Scholar 

  68. Block RC, Harris WS, Reid KJ, Spertus JA. Omega-6 and trans fatty acids in blood cell membranes: a risk factor for acute coronary syndromes? Am Heart J. 2008;156:1117–23.

    Article  PubMed  CAS  Google Scholar 

  69. Aarsetoey H, Aarsetoey R, Lindner T, Staines H, Harris WS, Nilsen DW. Low levels of the omega-3 index are associated with sudden cardiac arrest and remain stable in survivors in the subacute phase. Lipids. 2011;46:151–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens von Schacky MD, FAHA, FESC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

von Schacky, C. (2013). Optimal Omega-3 Levels for Different Age Groups. In: De Meester, F., Watson, R., Zibadi, S. (eds) Omega-6/3 Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-215-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-215-5_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-214-8

  • Online ISBN: 978-1-62703-215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics