Skip to main content

Reactive Oxygen and Nitrogen Species in Biological Systems: Reactions and Regulation by Carotenoids

  • Chapter
  • First Online:
Book cover Carotenoids and Human Health

Part of the book series: Nutrition and Health ((NH))

Abstract

ROS/RNS originate primarily from oxygen reduction processes, differ markedly in reactivity and lifetimes, and are essential high fidelity sensors of the redox status in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair. 2008;1(1):5.

    PubMed  Google Scholar 

  2. Palmer HJ, Paulson KE. Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr Rev. 1997;55(10):353–61.

    PubMed  CAS  Google Scholar 

  3. Valko M, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40.

    PubMed  CAS  Google Scholar 

  4. Raedschelders K, Ansley DM, Chen DD. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther. 2012;133(2):230–55.

    PubMed  CAS  Google Scholar 

  5. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

    PubMed  CAS  Google Scholar 

  6. Gechev TS, et al. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays. 2006;28(11):1091–101.

    PubMed  CAS  Google Scholar 

  7. Brown GC, Borutaite V. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion. 2012;12(1):1–4.

    PubMed  CAS  Google Scholar 

  8. Breusing N, Grune T. Biomarkers of protein oxidation from a chemical, biological and medical point of view. Exp Gerontol. 2010;45(10):733–7.

    PubMed  CAS  Google Scholar 

  9. Ivashchenko O, et al. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell. 2011;22(9):1440–51.

    PubMed  CAS  Google Scholar 

  10. Gabaldon T. Peroxisome diversity and evolution. Philos Trans R Soc Lond B Biol Sci. 2010;365(1541):765–73.

    PubMed  CAS  Google Scholar 

  11. Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997;17(1):3–8.

    PubMed  CAS  Google Scholar 

  12. Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45(7–8):466–72.

    PubMed  CAS  Google Scholar 

  13. Brand MD, et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med. 2004;37(6):755–67.

    PubMed  CAS  Google Scholar 

  14. Miwa S, Brand MD. The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochim Biophys Acta. 2005;1709(3):214–9.

    PubMed  CAS  Google Scholar 

  15. Schwarzlander M, et al. Confocal imaging of glutathione redox potential in living plant cells. J Microsc. 2008;231(2):299–316.

    PubMed  CAS  Google Scholar 

  16. Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000;153(1–3):83–104.

    PubMed  CAS  Google Scholar 

  17. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82(2):291–5.

    PubMed  CAS  Google Scholar 

  18. Palozza P, Catalano A, Simone R. Carotenoids as modulators of molecular pathways involved in cell proliferation and apoptosis. In: Landrum JT, editor. Carotenoids: physical, chemical, and biological functions and properties. Boca Raton: CRC; 2010. p. 465–84.

    Google Scholar 

  19. Ben-Dor A, et al. Carotenoids activate the antioxidant response element transcription system. Mol Cancer Ther. 2005;4(1):177–86.

    PubMed  CAS  Google Scholar 

  20. Sharoni Y, et al. Carotenoids and transcription. Arch Biochem Biophys. 2004;430(1):89–96.

    PubMed  CAS  Google Scholar 

  21. Fraticelli A, et al. Hydrogen peroxide and superoxide modulate leukocyte adhesion molecule expression and leukocyte endothelial adhesion. Biochim Biophys Acta. 1996;1310(3):251–9.

    PubMed  Google Scholar 

  22. Van Antwerpen VL, et al. Plasma levels of beta-carotene are inversely correlated with circulating neutrophil counts in young male cigarette smokers. Inflammation. 1995;19(4):405–14.

    PubMed  Google Scholar 

  23. Dahlen SE, et al. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA. 1981;78(6):3887–91.

    PubMed  CAS  Google Scholar 

  24. Prasadam I, Crawford R, Xiao Y. Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes—possible pathogenic role in osteoarthritis. J Rheumatol. 2012;39:621–34.

    PubMed  CAS  Google Scholar 

  25. Blake DR, Winyard PG, Marok R. The contribution of hypoxia-reperfusion injury to inflammatory synovitis: the influence of reactive oxygen intermediates on the transcriptional control of inflammation. Ann N Y Acad Sci. 1994;723:308–17.

    PubMed  CAS  Google Scholar 

  26. Yang D, et al. Synthetic fluorescent probes for imaging of peroxynitrite and hypochlorous acid in living cells. Methods Mol Biol. 2010;591:93–103.

    PubMed  CAS  Google Scholar 

  27. Yee DJ, et al. Fluorogenic metabolic probes for direct activity readout of redox enzymes: selective measurement of human AKR1C2 in living cells. Proc Natl Acad Sci USA. 2006;103(36):13304–9.

    PubMed  CAS  Google Scholar 

  28. Brandes RP, Janiszewski M. Direct detection of reactive oxygen species ex vivo. Kidney Int. 2005;67(5):1662–4.

    PubMed  CAS  Google Scholar 

  29. Baier J, et al. Direct detection of singlet oxygen generated by UVA irradiation in human cells and skin. J Invest Dermatol. 2007;127(6):1498–506.

    PubMed  CAS  Google Scholar 

  30. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15(4):316–28.

    PubMed  Google Scholar 

  31. Bolin C, Cardozo-Pelaez F. Assessing biomarkers of oxidative stress: analysis of guanosine and oxidized guanosine nucleotide triphosphates by high performance liquid chromatography with electrochemical detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;856(1–2):121–30.

    PubMed  CAS  Google Scholar 

  32. Olinski R, et al. Oxidative DNA damage in cancer patients: a cause or a consequence of the disease development? Mutat Res. 2003;531(1–2):177–90.

    PubMed  CAS  Google Scholar 

  33. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011;208(3):417–20.

    PubMed  CAS  Google Scholar 

  34. Pryor WA. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol. 1986;48:657–67.

    PubMed  CAS  Google Scholar 

  35. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.

    PubMed  CAS  Google Scholar 

  36. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344(8924):721–4.

    PubMed  CAS  Google Scholar 

  37. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.

    PubMed  CAS  Google Scholar 

  38. Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res. 2007;55(3):207–16.

    PubMed  CAS  Google Scholar 

  39. Winyard PG, Blake DR. Antioxidants, redox-regulated transcription factors, and inflammation. Adv Pharmacol. 1997;38:403–21.

    PubMed  CAS  Google Scholar 

  40. Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging. 2001;18(9):685–716.

    PubMed  CAS  Google Scholar 

  41. Greenacre SA, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res. 2001;34(6):541–81.

    PubMed  CAS  Google Scholar 

  42. Wolin MS, Ahmad M, Gupte SA. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol. 2005;289(2):L159–73.

    PubMed  CAS  Google Scholar 

  43. Dowling DK, Simmons LW. Reactive oxygen species as universal constraints in life-history evolution. Proc Biol Sci. 2009;276(1663):1737–45.

    PubMed  CAS  Google Scholar 

  44. Foyer CH, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant. 2003;119:355–64.

    CAS  Google Scholar 

  45. Yamamizo C, et al. Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol. 2006;140(2):681–92.

    PubMed  CAS  Google Scholar 

  46. Doke N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissue to infection with an incompatible race of Phytophthora infestans and the hyphal wall components. Physiol Plant Pathol. 1983;23:345–57.

    CAS  Google Scholar 

  47. Kawasaki T, et al. The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci USA. 1999;96(19):10922–6.

    PubMed  CAS  Google Scholar 

  48. Oracz K, et al. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 2007;50(3):452–65.

    PubMed  CAS  Google Scholar 

  49. Gapper C, Dolan L. Control of plant development by reactive oxygen species. Plant Physiol. 2006;141(2):341–5.

    PubMed  CAS  Google Scholar 

  50. Schopfer P, et al. Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta. 2002;214(6):821–8.

    PubMed  CAS  Google Scholar 

  51. Schopfer P. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J. 2001;28(6):679–88.

    PubMed  CAS  Google Scholar 

  52. Schopfer P, Plachy C, Frahry G. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol. 2001;125(4):1591–602.

    PubMed  CAS  Google Scholar 

  53. Kelley EE, et al. Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med. 2010;48(4):493–8.

    PubMed  CAS  Google Scholar 

  54. Moilanen E, et al. Nitric oxide synthase is expressed in human macrophages during foreign body inflammation. Am J Pathol. 1997;150(3):881–7.

    PubMed  CAS  Google Scholar 

  55. Gao X, et al. Role of TNF-alpha-induced reactive oxygen species in endothelial dysfunction during reperfusion injury. Am J Physiol Heart Circ Physiol. 2008;295(6):H2242–9.

    PubMed  CAS  Google Scholar 

  56. Gao Y, et al. Preservation of cGMP-induced relaxation of pulmonary veins of fetal lambs exposed to chronic high altitude hypoxia: role of PKG and Rho kinase. Am J Physiol Lung Cell Mol Physiol. 2008;295(5):L889–96.

    PubMed  CAS  Google Scholar 

  57. Heitzer T, et al. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Kidney Int. 1999;55(1):252–60.

    PubMed  CAS  Google Scholar 

  58. Kasten TP, et al. Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase. Proc Natl Acad Sci USA. 1994;91(9):3569–73.

    PubMed  CAS  Google Scholar 

  59. Brandi ML, et al. Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Proc Natl Acad Sci USA. 1995;92(7):2954–8.

    PubMed  CAS  Google Scholar 

  60. Huang L, et al. Nitroglycerin enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via nitric oxide pathway. Acta Pharmacol Sin. 2008;29(5):580–6.

    PubMed  Google Scholar 

  61. Ralston SH, et al. Nitric oxide: a cytokine-induced regulator of bone resorption. J Bone Miner Res. 1995;10(7):1040–9.

    PubMed  CAS  Google Scholar 

  62. Taskiran D, et al. Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Commun. 1994;200(1):142–8.

    PubMed  CAS  Google Scholar 

  63. Jarasch ED, et al. Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell. 1981;25(1):67–82.

    PubMed  CAS  Google Scholar 

  64. Ozer N, et al. Simple, high-yield purification of xanthine oxidase from bovine milk. J Biochem Biophys Methods. 1999;39(3):153–9.

    PubMed  CAS  Google Scholar 

  65. Silanikove N, Shapiro F. Distribution of xanthine oxidase and xanthine dehydrogenase activity in bovine milk: physiological and technological implications. Int Dairy J. 2007;17:1188–94.

    CAS  Google Scholar 

  66. Weinmann A, et al. Tetrahydrobiopterin is present in high quantity in human milk and has a vasorelaxing effect on newborn rat mesenteric arteries. Pediatr Res. 2011;69(4):325–9.

    PubMed  CAS  Google Scholar 

  67. Ufer C, Wang CC. The roles of glutathione peroxidases during embryo development. Front Mol Neurosci. 2011;4:12.

    PubMed  Google Scholar 

  68. Moon HJ, et al. Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochem Biophys Res Commun. 2012;418(2):247–53.

    PubMed  CAS  Google Scholar 

  69. Antonicelli F, et al. Nacystelyn inhibits oxidant-mediated interleukin-8 expression and NF-kappaB nuclear binding in alveolar epithelial cells. Free Radic Biol Med. 2002;32(6):492–502.

    PubMed  CAS  Google Scholar 

  70. Piao S, Cha YN, Kim C. Taurine chloramine protects RAW 264.7 macrophages against hydrogen peroxide-induced apoptosis by increasing antioxidants. J Clin Biochem Nutr. 2011;49(1):50–6.

    PubMed  CAS  Google Scholar 

  71. Botting RM. Cyclooxygenase: past, present and future. A tribute to John R. Vane (1927–2004). J Therm Biol. 2006;31:208–19.

    CAS  Google Scholar 

  72. Simone RE, et al. Lycopene inhibits NF-kB-mediated IL-8 expression and changes redox and PPAR gamma signalling in cigarette smoke-stimulated macrophages. PLoS One. 2011;6(5):e19652.

    PubMed  CAS  Google Scholar 

  73. Kim YJ, Kim YA, Yokozawa T. Protection against oxidative stress, inflammation, and apoptosis of high-glucose-exposed proximal tubular epithelial cells by astaxanthin. J Agric Food Chem. 2009;57(19):8793–7.

    PubMed  CAS  Google Scholar 

  74. Lesnefsky EJ, et al. Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33(6):1065–89.

    PubMed  CAS  Google Scholar 

  75. Lesnefsky EJ, et al. Hydrogen peroxide decreases effective refractory period in the isolated heart. Free Radic Biol Med. 1991;11(6):529–35.

    PubMed  CAS  Google Scholar 

  76. Lenaz G, et al. Mitochondrial respiratory chain super-complex I–III in physiology and pathology. Biochim Biophys Acta. 2010;1797(6–7):633–40.

    PubMed  CAS  Google Scholar 

  77. Gryglewski RJ. Prostacyclin among prostanoids. Pharmacol Rep. 2008;60(1):3–11.

    PubMed  CAS  Google Scholar 

  78. Hemler ME, Cook HW, Lands WE. Prostaglandin biosynthesis can be triggered by lipid peroxides. Arch Biochem Biophys. 1979;193(2):340–5.

    PubMed  CAS  Google Scholar 

  79. Hamberg M, et al. Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc Natl Acad Sci USA. 1974;71(2):345–9.

    PubMed  CAS  Google Scholar 

  80. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed. Oxford, UK: Clarendon; 1989.

    Google Scholar 

  81. Wrona M, et al. Cooperation of antioxidants in protection against photosensitized oxidation. Free Radic Biol Med. 2003;35(10):1319–29.

    PubMed  CAS  Google Scholar 

  82. Wrona M, Rozanowska M, Sarna T. Zeaxanthin in combination with ascorbic acid or alpha-tocopherol protects ARPE-19 cells against photosensitized peroxidation of lipids. Free Radic Biol Med. 2004;36(9):1094–101.

    PubMed  CAS  Google Scholar 

  83. Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155(1):2–18.

    PubMed  CAS  Google Scholar 

  84. Edge R, et al. Studies of carotenoid one-electron reduction radicals. Arch Biochem Biophys. 2007;458(2):104–10.

    PubMed  CAS  Google Scholar 

  85. Mortensen A, Skibsted L, Truscott TG. The interaction of dietary carotenoids with radical species. Arch Biochem Biophys. 2001;385:13–9.

    PubMed  CAS  Google Scholar 

  86. Brash DE, Havre PA. New careers for antioxidants. Proc Natl Acad Sci USA. 2002;99(22):13969–71.

    PubMed  CAS  Google Scholar 

  87. Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta. 2005;1740(2):101–7.

    PubMed  CAS  Google Scholar 

  88. Krinsky NI. Function. In: Isler O, editor. Carotenoids. Basel: Birkhauser; 1971. p. 669–716.

    Google Scholar 

  89. Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med. 2005;26(6):459–516.

    PubMed  CAS  Google Scholar 

  90. Brown L, et al. A prospective study of carotenoids intake and risk of cataract extraction in US men. Am J Clin Nutr. 1999;70:517–24.

    PubMed  CAS  Google Scholar 

  91. Chasan-Taber L, et al. A prospective study of carotenoid and vitamin A intakes and risk of cataract extraction in US women. Am J Clin Nutr. 1999;70:509–16.

    PubMed  CAS  Google Scholar 

  92. Seddon JM, Cote J, Rosner B. Progression of age-related macular degeneration: association with dietary fat, trans unsaturated fat, nuts, and fish intake. Arch Ophthalmol. 2003;121(12):1728–37.

    PubMed  Google Scholar 

  93. Tang XH, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol. 2011;6:345–64.

    PubMed  CAS  Google Scholar 

  94. Aust O, et al. Lycopene oxidation product enhances gap junctional communication. Food Chem Toxicol. 2003;41(10):1399–407.

    PubMed  CAS  Google Scholar 

  95. Bowen P. Lycopene oxidation, uptake, and activity in human prostate cell cultures. In: Landrum JT, editor. Carotenoids: physical, chemical, and biological functions and properties. Boca Raton: CRC; 2010. p. 437–64.

    Google Scholar 

  96. Harrison EH. Mechanisms of intestinal absorption of carotenoids: insights from in vitro systems. In: Landrum JT, editor. Carotenoids: physical chemical and biological functions and properties. Boca Raton: CRC; 2010. p. 367–79.

    Google Scholar 

  97. Sparrow J, Kim SR. The carotenoids of macular pigment and bisretinoid lipfuscin precursors in photoreceptor outer segments. In: Landrum JT, editor. Carotenoids: physical, chemical and biological functions and properties. Boca Raton: CRC; 2010. p. 355–63.

    Google Scholar 

  98. Baroli I, et al. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell. 2003;15(4):992–1008.

    PubMed  CAS  Google Scholar 

  99. Britton G, Liaaen-Jensen S, Pfander H, editors. Handbook of carotenoids. Basel: Birkhauser; 2004. p. 670.

    Google Scholar 

  100. Frank HA, et al. Carotenoids in photosynthesis: structure and photochemistry. Pure Appl Chem. 1991;63:109–14.

    CAS  Google Scholar 

  101. Britton G. The biochemistry of natural pigments. Cambridge: Cambridge University Press; 1983.

    Google Scholar 

  102. McGraw KJ, Blount J. Control and function of carotenoid coloration in birds: selected case studies. In: Landrum JT, editor. carotenoids: physical, chemical, and biological functions and properties. Boca Raton: CRC; 2010. p. 487–510.

    Google Scholar 

  103. Schiedt K. New aspects of carotenoid metabolism in animals. Carotenoids: chemistry and biology. New York: Plenum; 1990. p. 247–68.

    Google Scholar 

  104. Brush AH. Carotenoids in wild and captive birds. In: Bauernfeind JC, editor. Carotenoids as colorants and vitamin A precursors. New York: Academic; 1981. p. 539–62.

    Google Scholar 

  105. Schiedt K. Absorption and metabolism of carotenoids in birds, fish and crustaceans. In: Britton G, Liaaen-Jensen S, Pfander H, editors. Biosynthesis and metabolism. Basel: Birkhauser; 1998. p. 285–358.

    Google Scholar 

  106. Landrum JT, Callejas D, Alvarez-Calderon F. Specific accumulation of lutein within the epidermis of butterfly larvae. In: Landrum JT, editor. Carotenoids: physical, chemical, and biological functions and properties. Boca Raton: CRC; 2010. p. 525–35.

    Google Scholar 

  107. Kotake-Nara E, Nagao A. Absorption and metabolism of xanthophylls. Mar Drugs. 2011;9(6):1024–37.

    PubMed  CAS  Google Scholar 

  108. Chaudiere J, Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol. 1999;37(9–10):949–62.

    PubMed  CAS  Google Scholar 

  109. Mares-Perlman JA, et al. Serum carotenoids and tocopherols and severity of nuclear and cortical opacities. Invest Ophthalmol Vis Sci. 1995;36:276–88.

    PubMed  CAS  Google Scholar 

  110. Burton GW, Joyce A, Ingold KU. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch Biochem Biophys. 1983;221(1):281–90.

    PubMed  CAS  Google Scholar 

  111. Ruban AV, Johnson MP. Xanthophylls as modulators of membrane protein function. Arch Biochem Biophys. 2010;504(1):78–85.

    PubMed  CAS  Google Scholar 

  112. Betterle N, et al. Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Arch Biochem Biophys. 2010;504(1):67–77.

    PubMed  CAS  Google Scholar 

  113. Krinsky NI. Singlet oxygen in biological systems. Trends Biochem Sci. 1977;2:35–8.

    CAS  Google Scholar 

  114. Stahl W, Sies H. Carotenoids in systematic protection against sunburn. In: Krinsky NI, Mayne ST, Sies H, editors. Carotenoids in health and disease. New York: Marcel Dekker; 2004. p. 491–502.

    Google Scholar 

  115. Mathews-Roth M. Techniques for studying photoprotective function of carotenoid pigments. In: Packer L, editor. Methods enzymol. New York: Academic; 1992. p. 479–84.

    Google Scholar 

  116. Mathews-Roth MM. Beta-carotene therapy for erythropoietic protoporphyria and other photosensitivity diseases. Biochimie. 1986;68(6):875–84.

    PubMed  CAS  Google Scholar 

  117. Mathews-Roth MM. Treatment of the cutaneous porphyrias. Clin Dermatol. 1998;16(2):295–8.

    PubMed  CAS  Google Scholar 

  118. Wingerath T, Sies H, Stahl W. Xanthophyll esters in human skin. Arch Biochem Biophys. 1998;355(2):271–4.

    PubMed  CAS  Google Scholar 

  119. Mathews-Roth MM. Photoprotection by carotenoids. J Ethnopharmacol. 1988;22:315.

    Google Scholar 

  120. Roberts RL, Green J, Lewis B. Lutein and zeaxanthin in eye and skin health. Clin Dermatol. 2009;27(2):195–201.

    PubMed  Google Scholar 

  121. Liu A, et al. Absorption and subcellular localization of lycopene in human prostate cancer cells. Mol Cancer Ther. 2006;5(11):2879–85.

    PubMed  CAS  Google Scholar 

  122. Lademann J, et al. Carotenoids in human skin. Exp Dermatol. 2011;20(5):377–82.

    PubMed  CAS  Google Scholar 

  123. Nishino H, et al. Cancer prevention by carotenoids. Arch Biochem Biophys. 2009;483(2):165–8.

    PubMed  CAS  Google Scholar 

  124. Burton GW. Antioxidant action of carotenoids. J Nutr. 1989;119(1):109–11.

    PubMed  CAS  Google Scholar 

  125. Burton GW, Ingold KU. β-Carotene: an unusual type of lipid antioxidant. Science. 1984;224:569–73.

    PubMed  CAS  Google Scholar 

  126. Beutner S, et al. Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavonoids, phenols and indigoid. The role of β-carotene in antioxidant functions. J Sci Food Agric. 2001;81:559–68.

    CAS  Google Scholar 

  127. Lowe GM, Vlismas K, Young AJ. Carotenoids as prooxidants? Mol Aspects Med. 2003;24(6):363–9.

    PubMed  CAS  Google Scholar 

  128. Blumberg J, Block G. The alpha-tocopherol, beta-carotene cancer prevention study in Finland. Nutr Rev. 1994;52(7):242–5.

    PubMed  CAS  Google Scholar 

  129. Albanes D, et al. Alpha-Tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base-line characteristics and study compliance. J Natl Cancer Inst. 1996;88(21):1560–70.

    PubMed  CAS  Google Scholar 

  130. Omenn GS, et al. The carotene and retinol efficacy trial (CARET) to prevent lung cancer in high-risk populations: pilot study with asbestos-exposed workers. Cancer Epidemiol Biomarkers Prev. 1993;2(4):381–7.

    PubMed  CAS  Google Scholar 

  131. Wang XD, et al. Retinoid signaling and activator protein-1 expression in ferrets given beta-carotene supplements and exposed to tobacco smoke. J Natl Cancer Inst. 1999;91(1):60–6.

    PubMed  CAS  Google Scholar 

  132. Linnewiel K, et al. Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radic Biol Med. 2009;47(5):659–67.

    PubMed  CAS  Google Scholar 

  133. Sharoni AM, et al. Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64. Mol Genet Genomics. 2012;287(1):1–19.

    PubMed  CAS  Google Scholar 

  134. Sharoni Y, et al. Carotenoids and apocarotenoids in cellular signaling related to cancer: a review. Mol Nutr Food Res. 2012;56(2):259–69.

    PubMed  CAS  Google Scholar 

  135. Paolini M, et al. Induction of cytochrome P450 enzymes and over-generation of oxygen radicals in beta-carotene supplemented rats. Carcinogenesis. 2001;22(9):1483–95.

    PubMed  CAS  Google Scholar 

  136. Goodwin TW. Carotenoids their comparative biochemistry. New York: Chemical Publishing Co. Inc; 1954. p. 356.

    Google Scholar 

  137. Landrum JT, Bone RA. Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys. 2001;385:28–40.

    PubMed  CAS  Google Scholar 

  138. Krinsky NI, Landrum JT, Bone RA. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr. 2003;23:171–201.

    PubMed  CAS  Google Scholar 

  139. Schalch W, Bone RA, Landrum JT. The functional role of xanthophylls in primate retina. In: Landrum JT, editor. Carotenoids: physical, chemical and biological functions and properties. Boca Raton: CRC; 2010. p. 257–82.

    Google Scholar 

  140. Palozza P, Calviello G, Bartoli GM. Prooxidant activity of beta-carotene under 100 % oxygen pressure in rat liver microsomes. Free Radic Biol Med. 1995;19(6):887–92.

    PubMed  CAS  Google Scholar 

  141. Lobo GP, et al. Mammalian carotenoid-oxygenases: key players for carotenoid function and homeostasis. Biochim Biophys Acta. 2012;1821(1):78–87.

    PubMed  CAS  Google Scholar 

  142. Kiefer C, et al. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J Biol Chem. 2001;276(17):14110–6.

    PubMed  CAS  Google Scholar 

  143. Prakash P, et al. Beta-carotene and beta-apo-14′-carotenoic acid prevent the reduction of retinoic acid receptor beta in benzo[a]pyrene-treated normal human bronchial epithelial cells. J Nutr. 2004;134(3):667–73.

    PubMed  CAS  Google Scholar 

  144. Mik EG, et al. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements. J Appl Physiol. 2004;97(5):1962–9.

    PubMed  Google Scholar 

  145. Meyron-Holtz EG, Ghosh MC, Rouault TA. Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science. 2004;306(5704):2087–90.

    PubMed  CAS  Google Scholar 

  146. Yu DY, Cringle SJ. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res. 2001;20(2):175–208.

    PubMed  CAS  Google Scholar 

  147. Steinbeck MJ, Khan AU, Karnovsky MJ. Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J Biol Chem. 1992;267(19):13425–33.

    PubMed  CAS  Google Scholar 

  148. Min DB. Chemistry and reaction of singlet oxygen in foods. Compr Rev Food Sci Food Saf. 2002;1:58–72.

    CAS  Google Scholar 

  149. Landrum JT, Bone RA. Mechanistic evidence for eye diseases and carotenoids. In: Krinsky NI, Mayne ST, Sies H, editors. Carotenoids in health and disease. New York: Marcel Dekker; 2004. p. 445–72.

    Google Scholar 

  150. Barker II FM, et al. Nutritional manipulation of primate retinas. V: Effects of lutein, zeaxanthin, and n-3 fatty acids on retinal sensitivity to blue-light-induced damage. Invest Ophthalmol Vis Sci. 2011;52(7):3934–42.

    PubMed  CAS  Google Scholar 

  151. Cunningham ML, et al. Superoxide anion is generated from cellular metabolites by solar radiation and its components. J Free Radic Biol Med. 1985;1(5–6):381–5.

    PubMed  CAS  Google Scholar 

  152. Gao Q, Wolin MS. Effects of hypoxia on relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in coronary arterial smooth muscle. Am J Physiol Heart Circ Physiol. 2008;295(3):H978–89.

    PubMed  CAS  Google Scholar 

  153. Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta. 2006;1757(5–6):553–61.

    PubMed  CAS  Google Scholar 

  154. Sawyer DT, Valentine JS. How super is superoxide? Acc Chem Res. 1981;14:393–400.

    CAS  Google Scholar 

  155. Kramer ML, et al. Prion protein binds copper within the physiological concentration range. J Biol Chem. 2001;276(20):16711–9.

    PubMed  CAS  Google Scholar 

  156. Neumann PZ, Sass-Kortsak A. The state of copper in human serum: evidence for an amino acid-bound fraction. J Clin Invest. 1967;46(4):646–58.

    PubMed  CAS  Google Scholar 

  157. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219(1):1–14.

    PubMed  CAS  Google Scholar 

  158. Koster JF, Slee RG. Ferritin, a physiological iron donor for microsomal lipid peroxidation. FEBS Lett. 1986;199(1):85–8.

    PubMed  CAS  Google Scholar 

  159. Eiserich JP, et al. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem. 1996;271(32):19199–208.

    PubMed  CAS  Google Scholar 

  160. Halliwell B, Wasil M, Grootveld M. Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. Implications for antioxidant protection in the inflamed rheumatoid joint. FEBS Lett. 1987;213(1):15–7.

    PubMed  CAS  Google Scholar 

  161. Pierre JL, Fontecave M. Iron and activated oxygen species in biology: the basic chemistry. Biometals. 1999;12(3):195–9.

    PubMed  CAS  Google Scholar 

  162. Wardman P, Candeias LP. Fenton chemistry: an introduction. Radiat Res. 1996;145(5):523–31.

    PubMed  CAS  Google Scholar 

  163. Ho YS, et al. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem. 2004;279(31):32804–12.

    PubMed  CAS  Google Scholar 

  164. Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol. 1996;9(5):836–44.

    PubMed  CAS  Google Scholar 

  165. Koppenol WH. The Haber-Weiss cycle—70 years later. Redox Rep. 2001;6(4):229–34.

    PubMed  CAS  Google Scholar 

  166. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.

    PubMed  CAS  Google Scholar 

  167. Gutteridge JM, Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci. 2000;899:136–47.

    PubMed  CAS  Google Scholar 

  168. Gold V, Hughes ED, Ingold CK. (1950) Kinetics and mechanism of aromatic nitration. Part V. Nitration by acyl nitrates, particularly benzoyl nitrate. J Chem Soc. 1950;2467–73.

    Google Scholar 

  169. Pryor WA, et al. Free radical biology and medicine: it’s a gas, man! Am J Physiol Regul Integr Comp Physiol. 2006;291(3):R491–511.

    PubMed  CAS  Google Scholar 

  170. Tompkins AJ, et al. Mitochondrial dysfunction in cardiac ischemia-reperfusion injury: ROS from complex I, without inhibition. Biochim Biophys Acta. 2006;1762(2):223–31.

    PubMed  CAS  Google Scholar 

  171. Hutchinson F. The distance that a radical formed by ionizing radiation can diffuse in a yeast cell. Radiat Res. 1957;7(5):473–83.

    PubMed  CAS  Google Scholar 

  172. Roots R, Okada S. Estimation of life times and diffusion distances of radicals involved in x-ray-induced DNA strand breaks of killing of mammalian cells. Radiat Res. 1975;64(2):306–20.

    PubMed  CAS  Google Scholar 

  173. Thomas DD, et al. The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci USA. 2001;98(1):355–60.

    PubMed  CAS  Google Scholar 

  174. Ford E, Hughes MN, Wardman P. Kinetics of the reactions of nitrogen dioxide with glutathione, cysteine, and uric acid at physiological pH. Free Radic Biol Med. 2002;32(12):1314–23.

    PubMed  CAS  Google Scholar 

  175. Forni L, Bahnemann D, Hart EJ. Mechanism of the hydroxide ion-initiated decomposition of ozone in aqueous solution. J Phys Chem. 1982;86:255–9.

    CAS  Google Scholar 

  176. Dringen R, Hamprecht B. Involvement of glutathione peroxidase and catalase in the disposal of exogenous hydrogen peroxide by cultured astroglial cells. Brain Res. 1997;759(1):67–75.

    PubMed  CAS  Google Scholar 

  177. Sies H, Krinsky NI. The present status of antioxidant vitamins and beta-carotene. Am J Clin Nutr. 1995;62(6 Suppl):1299S–300.

    PubMed  CAS  Google Scholar 

  178. Svingen BA, Powis G. Pulse radiolysis studies of antitumor quinones: radical lifetimes, reactivity with oxygen, and one-electron reduction potentials. Arch Biochem Biophys. 1981;209(1):119–26.

    PubMed  CAS  Google Scholar 

  179. Pryor WA, et al. The radicals in cigarette tar: their nature and suggested physiological implications. Science. 1983;220(4595):425–7.

    PubMed  CAS  Google Scholar 

  180. Deng Y, et al. Effects of polyene chain length and acceptor substituents on the stability of carotenoid radical cations. J Phys Chem B. 2000;104:5651–6.

    CAS  Google Scholar 

  181. Khaled M, Hadjipetrou A, Kispert L. Electrochemical and electron paramagnetic resonance studies of carotenoid cation radicals and dications: effect of deuteration. J Phys Chem. 1990;94:5164–9.

    CAS  Google Scholar 

  182. Kim SR, et al. Mechanisms involved in A2E oxidation. Exp Eye Res. 2008;86(6):975–82.

    PubMed  CAS  Google Scholar 

  183. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res. 2005;80(5):595–606.

    PubMed  CAS  Google Scholar 

  184. Kim SR, et al. Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp Eye Res. 2006;82(5):828–39.

    PubMed  CAS  Google Scholar 

  185. Redmond RW, Gamlin JN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol. 1999;70(4):391–475.

    PubMed  CAS  Google Scholar 

  186. Harvey JN. Understanding the kinetics of spin-forbidden chemical reactions. Phys Chem Chem Phys. 2007;9(3):331–43.

    PubMed  CAS  Google Scholar 

  187. Khan AU, Kasha M. Singlet molecular oxygen in the Haber-Weiss reaction. Proc Natl Acad Sci USA. 1994;91(26):12365–7.

    PubMed  CAS  Google Scholar 

  188. Di Mascio P, et al. Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide. FEBS Lett. 1994;355(3):287–9.

    PubMed  Google Scholar 

  189. Martinez GR, et al. Peroxynitrite does not decompose to singlet oxygen ((1)Delta (g)O(2)) and nitroxyl (NO(-)). Proc Natl Acad Sci USA. 2000;97(19):10307–12.

    PubMed  CAS  Google Scholar 

  190. Miyamoto S, et al. Direct evidence of singlet molecular oxygen generation from peroxynitrate, a decomposition product of peroxynitrite. Dalton Trans. 2009;29:5720–9.

    PubMed  Google Scholar 

  191. Pfeiffer S, et al. Metabolic fate of peroxynitrite in aqueous solution. Reaction with nitric oxide and pH-dependent decomposition to nitrite and oxygen in a 2:1 stoichiometry. J Biol Chem. 1997;272(6):3465–70.

    PubMed  CAS  Google Scholar 

  192. Gunston FD. Chemical properties. In: Gunston FD, Harwood JL, Padley FB, editors. The lipid handbook. New York: Chapman and Hill; 1986. p. 449–84.

    Google Scholar 

  193. Hayashi S, Yasui H, Sakurai H. Essential role of singlet oxygen species in cytochrome P450-dependent substrate oxygenation by rat liver microsomes. Drug Metab Pharmacokinet. 2005;20(1):14–23.

    PubMed  Google Scholar 

  194. Kerver ED, et al. In situ detection of spontaneous superoxide anion and singlet oxygen production by mitochondria in rat liver and small intestine. Histochem J. 1997;29(3):229–37.

    PubMed  CAS  Google Scholar 

  195. Gaeta LM, et al. Determination of superoxide dismutase and glutathione peroxidase activities in blood of healthy pediatric subjects. Clin Chim Acta. 2002;322(1–2):117–20.

    PubMed  CAS  Google Scholar 

  196. Ono T, et al. Xanthine oxidase is one of the major sources of superoxide anion radicals in blood after reperfusion in rats with forebrain ischemia/reperfusion. Brain Res. 2009;1305:158–67.

    PubMed  CAS  Google Scholar 

  197. Furtmuller PG, et al. Mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride ion. Eur J Biochem. 2000;267(19):5858–64.

    PubMed  CAS  Google Scholar 

  198. Reeves EP, et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. 2002;416(6878):291–7.

    PubMed  CAS  Google Scholar 

  199. Zhao W, et al. Effect of carotenoids on the respiratory burst of rat peritoneal macrophages. Biochim Biophys Acta. 1998;1381(1):77–88.

    PubMed  CAS  Google Scholar 

  200. Fridovich I. Hypoxia and oxygen toxicity. Adv Neurol. 1979;26:255–9.

    PubMed  CAS  Google Scholar 

  201. Fox NE, van Kuijk FJ. Immunohistochemical localization of xanthine oxidase in human retina. Free Radic Biol Med. 1998;24(6):900–5.

    PubMed  CAS  Google Scholar 

  202. Tapner MJ, et al. Toxicity of low dose azathioprine and 6-mercaptopurine in rat hepatocytes. Roles of xanthine oxidase and mitochondrial injury. J Hepatol. 2004;40(3):454–63.

    PubMed  CAS  Google Scholar 

  203. Gladden JD, et al. Novel insights into interactions between mitochondria and xanthine oxidase in acute cardiac volume overload. Free Radic Biol Med. 2011;51(11):1975–84.

    PubMed  CAS  Google Scholar 

  204. Li ZY, et al. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun. 2011;414(1):5–8.

    PubMed  CAS  Google Scholar 

  205. Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA. 1988;85(17):6465–7.

    PubMed  CAS  Google Scholar 

  206. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527–605.

    PubMed  CAS  Google Scholar 

  207. Lesnefsky EJ, et al. Mitochondrial electron transport and aging in the heart. Adv Cell Aging Gerontol. 2002;11:201–32.

    CAS  Google Scholar 

  208. Lo SC, Hannink M. PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp Cell Res. 2008;314(8):1789–803.

    PubMed  CAS  Google Scholar 

  209. Cao X, et al. Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. J Biol Chem. 2008;283(23):16169–77.

    PubMed  CAS  Google Scholar 

  210. Lee HP, et al. Early induction of oxidative stress in mouse model of Alzheimer disease with reduced mitochondrial superoxide dismutase activity. PLoS One. 2012;7(1):e28033.

    PubMed  CAS  Google Scholar 

  211. Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem. 2001;276(42):38388–93.

    PubMed  CAS  Google Scholar 

  212. Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med. 2009;47(4):344–56.

    PubMed  CAS  Google Scholar 

  213. Ardan T, Kovaceva J, Cejkova J. Comparative histochemical and immunohistochemical study on xanthine oxidoreductase/xanthine oxidase in mammalian corneal epithelium. Acta Histochem. 2004;106(1):69–75.

    PubMed  CAS  Google Scholar 

  214. Deliconstantinos G, Villiotou V, Stavrides JC. Alterations of nitric oxide synthase and xanthine oxidase activities of human keratinocytes by ultraviolet B radiation. Potential role for peroxynitrite in skin inflammation. Biochem Pharmacol. 1996;51(12):1727–38.

    PubMed  CAS  Google Scholar 

  215. Lalanne M, Willemot J. Xanthine oxidase from mouse skeletal muscle purification and kinetic studies. Int J Biochem. 1975;6:479–84.

    CAS  Google Scholar 

  216. Khoury W, et al. Mannitol attenuates kidney damage induced by xanthine oxidase-associated pancreas ischemia-reperfusion. J Surg Res. 2010;160(1):163–8.

    PubMed  CAS  Google Scholar 

  217. Heinrich P, Löffler G, Petrides PE. Biochemie und Pathobiochemie. 8th ed. Berlin: Springer-Lehrbuch; 2007.

    Google Scholar 

  218. Mao GD, Poznansky MJ. Electron spin resonance study on the permeability of superoxide radicals in lipid bilayers and biological membranes. FEBS Lett. 1992;305(3):233–6.

    PubMed  CAS  Google Scholar 

  219. De Grey AD. HO2*: the forgotten radical. DNA Cell Biol. 2002;21(4):251–7.

    PubMed  Google Scholar 

  220. Winston GW, et al. Production of reactive oxygen species by hemocytes from the marine mussel, Mytilus edulis: lysosomal localization and effect of xenobiotics. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1996;113(2):221–9.

    PubMed  CAS  Google Scholar 

  221. Kubota C, et al. Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem. 2010;285(1):667–74.

    PubMed  CAS  Google Scholar 

  222. Denamur S, et al. Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic. Free Radic Biol Med. 2011;51(9):1656–65.

    PubMed  CAS  Google Scholar 

  223. Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003;300(5619):650–3.

    PubMed  CAS  Google Scholar 

  224. Taylor L, Menconi MJ, Polgar P. The participation of hydroperoxides and oxygen radicals in the control of prostaglandin synthesis. J Biol Chem. 1983;258(11):6855–7.

    PubMed  CAS  Google Scholar 

  225. Singh AK, et al. Structural evidence for the order of preference of inorganic substrates in mammalian heme peroxidases: crystal structure of the complex of lactoperoxidase with four inorganic substrates, SCN, I, Br and Cl. Int J Biochem Mol Biol. 2011;2(4):328–39.

    PubMed  CAS  Google Scholar 

  226. Toppo S, et al. Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta. 2009;1790(11):1486–500.

    PubMed  CAS  Google Scholar 

  227. Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med. 1999;27(9–10):951–65.

    PubMed  CAS  Google Scholar 

  228. Freinbichler W, et al. The detection of hydroxyl radicals in vivo. J Inorg Biochem. 2008;102(5–6):1329–33.

    PubMed  CAS  Google Scholar 

  229. Gutteridge JM. Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric ­acid-reactive material from deoxy sugars, nucleosides and benzoate. Biochem J. 1984;224(3):761–7.

    PubMed  CAS  Google Scholar 

  230. Chapman AL, et al. Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem. 2002;277(12):9757–62.

    PubMed  CAS  Google Scholar 

  231. Costa D, et al. Hydrogen peroxide scavenging activity by non-steroidal anti-inflammatory drugs. Life Sci. 2005;76(24):2841–8.

    PubMed  CAS  Google Scholar 

  232. Halliwell B. Antioxidants: the basics—What they are and how to evaluate them. In: Sies H, editor. Antioxidants in disease: mechanisms and therapy. San Diego: Academic; 1997. p. 3–17.

    Google Scholar 

  233. Edge R, Truscott TG. Properties of carotenoid radicals and excited states and their potential role in biological systems. In: Landrum JT, editor. Carotenoids: physical, chemical, and biological functions and properties. Boca Raton: CRC; 2010. p. 283–307.

    Google Scholar 

  234. Ouedraogo GD, Redmond RW. Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization. Photochem Photobiol. 2003;77(2):192–203.

    PubMed  CAS  Google Scholar 

  235. Sies H, Stahl W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr. 1995;62(6 Suppl):1315S–21.

    PubMed  CAS  Google Scholar 

  236. El-Agamey A, McGarvey DJ. Evidence for a lack of reactivity of carotenoid addition radicals towards oxygen: a laser flash photolysis study of the reactions of carotenoids with acylperoxyl radicals in polar and non-polar solvents. J Am Chem Soc. 2003;125(11):3330–40.

    PubMed  CAS  Google Scholar 

  237. Halliwell B. Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res. 1999;443(1–2):37–52.

    PubMed  CAS  Google Scholar 

  238. Hollenberg PF, Rand-Meir T, Hager LP. The reaction of chlorite with horseradish peroxidase and chloroperoxidase. Enzymatic chlorination and spectral intermediates. J Biol Chem. 1974;249(18):5816–25.

    PubMed  CAS  Google Scholar 

  239. Hawkins CL, Davies MJ. Hypochlorite-induced damage to proteins: formation of nitrogen-centered radicals from lysine residues and their role in protein fragmentation. Biochem J. 1998;332(Pt 3):617–25.

    PubMed  CAS  Google Scholar 

  240. Martin W, Robert F. Furchgott, Nobel laureate (1916–2009)—a personal reflection. Br J Pharmacol. 2009;158(3):633–7.

    PubMed  CAS  Google Scholar 

  241. Furchgott RF. Nitric oxide: from basic research on isolated blood vessels to clinical relevance in diabetes. An R Acad Nac Med (Madr). 1998;115(2):317–31.

    CAS  Google Scholar 

  242. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6.

    PubMed  CAS  Google Scholar 

  243. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524–6.

    PubMed  CAS  Google Scholar 

  244. Ignarro LJ, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84(24):9265–9.

    PubMed  CAS  Google Scholar 

  245. Xu W, et al. Mapping of the genes encoding human inducible and endothelial nitric oxide synthase (NOS2 and NOS3) to the pericentric region of chromosome 17 and to chromosome 7, respectively. Genomics. 1994;21(2):419–22.

    PubMed  CAS  Google Scholar 

  246. Brennan PA, Moncada S. From pollutant gas to biological messenger: the diverse actions of nitric oxide in cancer. Ann R Coll Surg Engl. 2002;84(2):75–8.

    PubMed  Google Scholar 

  247. Gusarov I, Nudler E. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci USA. 2005;102(39):13855–60.

    PubMed  CAS  Google Scholar 

  248. Gusarov I, et al. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science. 2009;325(5946):1380–4.

    PubMed  CAS  Google Scholar 

  249. Kohanski MA, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797–810.

    PubMed  CAS  Google Scholar 

  250. Liu GY, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med. 2005;202(2):209–15.

    PubMed  CAS  Google Scholar 

  251. Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Heart. 2001;85(3):342–50.

    PubMed  CAS  Google Scholar 

  252. Lai YL, et al. Inhibition of endothelial- and neuronal-type, but not inducible-type, nitric oxide synthase by the oxidized cholesterol metabolite secosterol aldehyde: implications for vascular and neurodegenerative diseases. J Clin Biochem Nutr. 2012;50(1):84–9.

    PubMed  CAS  Google Scholar 

  253. Steinert JR, et al. Nitric oxide is an activity-dependent regulator of target neuron intrinsic excitability. Neuron. 2011;71(2):291–305.

    PubMed  CAS  Google Scholar 

  254. Cotton FA, Wilkinson G. Advanced inorganic chemistry. 5th ed. New York: Wiley. A Wiley-Interscience publication; 1988. p. xvii, 1455.

    Google Scholar 

  255. Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med. 1998;25(4–5):392–403.

    PubMed  CAS  Google Scholar 

  256. Augusto O, et al. Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radic Biol Med. 2002;32(9):841–59.

    PubMed  CAS  Google Scholar 

  257. Wattanapitayakul SK, et al. Endothelial dysfunction and peroxynitrite formation are early events in angiotensin-induced cardiovascular disorders. FASEB J. 2000;14(2):271–8.

    PubMed  CAS  Google Scholar 

  258. Estevez AG, Jordan J. Nitric oxide and superoxide, a deadly cocktail. Ann N Y Acad Sci. 2002;962:207–11.

    PubMed  CAS  Google Scholar 

  259. Santos CX, Bonini MG, Augusto O. Role of the carbonate radical anion in tyrosine nitration and hydroxylation by peroxynitrite. Arch Biochem Biophys. 2000;377(1):146–52.

    PubMed  CAS  Google Scholar 

  260. Shafirovich V, et al. The carbonate radical is a site-selective oxidizing agent of guanine in double-stranded oligonucleotides. J Biol Chem. 2001;276(27):24621–6.

    PubMed  CAS  Google Scholar 

  261. Halliwell B, Zhao K, Whiteman M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic Res. 1999;31(6):651–69.

    PubMed  CAS  Google Scholar 

  262. Miki W. Biological functions and activities of animal carotenoids. Pure Appl Chem. 1991;63:141–6.

    CAS  Google Scholar 

  263. Lee DH, Kim CS, Lee YJ. Astaxanthin protects against MPTP/MPP  +  -induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol. 2011;49(1):271–80.

    PubMed  CAS  Google Scholar 

  264. Cardounel AJ, et al. Direct superoxide anion scavenging by a disodium disuccinate astaxanthin derivative: relative efficacy of individual stereoisomers versus the statistical mixture of stereoisomers by electron paramagnetic resonance imaging. Biochem Biophys Res Commun. 2003;307(3):704–12.

    PubMed  CAS  Google Scholar 

  265. Jackson HL, et al. Synthesis, characterization, and direct aqueous superoxide anion scavenging of a highly water-dispersible astaxanthin-amino acid conjugate. Bioorg Med Chem Lett. 2004;14(15):3985–91.

    PubMed  CAS  Google Scholar 

  266. Otton R, et al. Astaxanthin ameliorates the redox imbalance in lymphocytes of experimental diabetic rats. Chem Biol Interact. 2010;186(3):306–15.

    PubMed  CAS  Google Scholar 

  267. Yonekura L, et al. Keto-carotenoids are the major metabolites of dietary lutein and fucoxanthin in mouse tissues. J Nutr. 2010;140(10):1824–31.

    PubMed  CAS  Google Scholar 

  268. Nadolski G, et al. The synthesis and aqueous superoxide anion scavenging of water-dispersible lutein esters. Bioorg Med Chem Lett. 2006;16(4):775–81.

    PubMed  CAS  Google Scholar 

  269. Pitt GAJ. Vitamin A. In: Isler O, editor. Carotenoids. Basek: Birkhauser; 1971. p. 717–42.

    Google Scholar 

  270. Karrer P, Morf R, Schopp K. Zur Kenntnis des Vitamins-A aus Fischtranen II. Helv Chim Acta. 1931;14:1036.

    CAS  Google Scholar 

  271. Krinsky NI. Carotenoids in medicine. In: Krinsky NI, Mathews-Roth MM, Taylor RF, editors. Carotenoids: chemistry and biology. New York: Plenum; 1987. p. 279–91.

    Google Scholar 

  272. Sies H, Stahl W. Non-nutritive bioactive constituents of plants: lycopene, lutein and zeaxanthin. Int J Vitam Nutr Res. 2003;73(2):95–100.

    PubMed  Google Scholar 

  273. Bertram JS, et al. Diverse carotenoids protect against chemically induced neoplastic transformation. Carcinogenesis. 1991;12(4):671–8.

    PubMed  CAS  Google Scholar 

  274. Bone RA, et al. Macular pigment in donor eyes with and without AMD: a case-control study. Invest Ophthalmol Vis Sci. 2001;42:235–40.

    PubMed  CAS  Google Scholar 

  275. Bone RA, Landrum JT, Tarsis SL. Preliminary identification of the human macular pigment. Vision Res. 1985;25:1531–5.

    PubMed  CAS  Google Scholar 

  276. Handelman GJ, et al. Carotenoids in the human macula and whole retina. Invest Ophthalmol Vis Sci. 1988;29:850–5.

    PubMed  CAS  Google Scholar 

  277. Bone RA, et al. Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest Ophthalmol Vis Sci. 1988;29:843–9.

    PubMed  CAS  Google Scholar 

  278. Kotake-Nara E, et al. Carotenoids affect proliferation of human prostate cancer cells. J Nutr. 2001;131(12):3303–6.

    PubMed  CAS  Google Scholar 

  279. Nishino H, et al. Cancer prevention by natural carotenoids. Biofactors. 2000;13(1–4):89–94.

    PubMed  CAS  Google Scholar 

  280. Sugawara T, et al. Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by Caco-2 human intestinal cells and mice. J Nutr. 2002;132(5):946–51.

    PubMed  CAS  Google Scholar 

  281. Yoshiko S, Hoyoku N. Fucoxanthin, a natural carotenoid, induces G1 arrest and GADD45 gene expression in human cancer cells. In Vivo. 2007;21(2):305–9.

    PubMed  CAS  Google Scholar 

  282. Palozza P, Krinsky NI. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys. 1992;297(2):291–5.

    PubMed  CAS  Google Scholar 

  283. Liu C, et al. beta-Cryptoxanthin supplementation prevents cigarette smoke-induced lung inflammation, oxidative damage, and squamous metaplasia in ferrets. Cancer Prev Res (Phila). 2011;4(8):1255–66.

    CAS  Google Scholar 

  284. Bone RA, et al. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res. 1997;64:211–8.

    PubMed  CAS  Google Scholar 

  285. Landrum JT, Bone RA, Herrero C. Astaxanthin, β-carotene, lutein, and zeaxanthin. In: Meskin MS et al., editors. Phytochemicals in nutrition and health. Boca Raton: CRC; 2002. p. 173–91.

    Google Scholar 

  286. DeRosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coord Chem Rev. 2002;233–234:351–71.

    Google Scholar 

  287. Foote CS, Chang YC, Denny RW. Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J Am Chem Soc. 1970;92:5216–8.

    PubMed  CAS  Google Scholar 

  288. Crank G, Pardijanto MS. Photo-oxidations and photosensitized oxidations of vitamin A and its palmitate ester. J Photochem Photobiol A Chem. 1995;85:93–100.

    CAS  Google Scholar 

  289. Foote CS, Denny RW. Chemistry of singlet oxygen. VII. Quenching by β-carotene. J Am Chem Soc. 1968;90:6233–5.

    CAS  Google Scholar 

  290. Johnson MP, Zia A, Ruban AV. Elevated DpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta. 2012;235(1):193–204.

    PubMed  CAS  Google Scholar 

  291. Alaluf S, et al. Dietary carotenoids contribute to normal human skin color and UV photosensitivity. J Nutr. 2002;132(3):399–403.

    PubMed  CAS  Google Scholar 

  292. Snodderly DM, Auron JD, Delori FC. The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci. 1984;25:674–85.

    PubMed  CAS  Google Scholar 

  293. Landrum JT, et al. A one year study of the macular pigment: the effect of 140 days of a lutein supplement. Exp Eye Res. 1997;65:57–62.

    PubMed  CAS  Google Scholar 

  294. Reboul E, Borel P. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res. 2011;50(4):388–402.

    PubMed  CAS  Google Scholar 

  295. Harrison EH. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim Biophys Acta. 2012;1821(1):70–7.

    PubMed  CAS  Google Scholar 

  296. Clevidence BA, Bieri JG. Association of carotenoids with human plasma carotenoids. In: Packer L, editor. Methods Enzymol. San Diego: Academic; 1993. p. 33–46.

    Google Scholar 

  297. Bhosale P, et al. Identification and characterization of a pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J Biol Chem. 2004;47:49447–54.

    Google Scholar 

  298. Ruban AV. Identification of carotenoid in photosyntheic proteins: xanthophylls of the light harvesting antenna. In: Landrum JT, editor. Carotenoids: physical, chemical and biological functions and properties. Boca Raton: CRC; 2010. p. 113–36.

    Google Scholar 

  299. Yeum K-J, et al. Fat-soluble nutrient concentrations in different layers of human cataractous lens. Curr Eye Res. 1999;19:502–5.

    PubMed  CAS  Google Scholar 

  300. Yeum K-J, et al. Measurement of carotenoids, retinoids, and tocopherols in human lenses. Invest Ophthalmol Vis Sci. 1995;36:2756–61.

    PubMed  CAS  Google Scholar 

  301. Landrum JT, et al. A preliminary study of the stereochemistry of human lens zeaxanthin. Invest Ophthalmol Vis Sci. 1997;38:S1026.

    Google Scholar 

  302. Edge R, Truscott TG. Carotenoid radicals and interaction of carotenoids with active oxygen species. In: Frank HA et al., editors. The photochemistry of carotenoids. Dordrecht: Kluwer; 1999. p. 223–34.

    Google Scholar 

  303. Vetter W, et al. Spectroscopic methods. In: Isler O, editor. Carotenoids. Basel: Birkhause; 1971. p. 190–266.

    Google Scholar 

  304. Krasnovskii AA, Pamonava LJ. Interaction of singlet oxygen with carotenoids: rate constants of physical and chemical quenching. Biophysics. 1983;28:769–74.

    Google Scholar 

  305. Moller M, et al. Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein. J Biol Chem. 2005;280(10):8850–4.

    PubMed  Google Scholar 

  306. Subczynski WK, Widomska J. EPR spin labeling in carotenoid-membrane interactions. In: Landrum JT, editor. Carotenoids: physical, chemical and biochemical functions and properties. Boca Raton: CRC; 2010. p. 189–212.

    Google Scholar 

  307. Gruszecki WI. Carotenoids in lipid membranes. In: Landrum JT, editor. Carotenoids: physical, chemical and biochemical functions and properties. Boca Raton: CRC; 2010. p. 19–30.

    Google Scholar 

  308. Wisniewska A, Subczynski WK. Distribution of macular xanthophylls between domains in a model of photoreceptor outer segment membranes. Free Radic Biol Med. 2006;41(8):1257–65.

    PubMed  CAS  Google Scholar 

  309. Neuringer M, Anderson GJ, Connor WE. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu Rev Nutr. 1988;8:517–41.

    PubMed  CAS  Google Scholar 

  310. Conn PF, et al. Carotene-oxygen radical interactions. Free Radic Res Commun. 1992;16(6):401–8.

    PubMed  CAS  Google Scholar 

  311. Konovalova TA, et al. EPR spin trapping detection of carbon-centered carotenoid and beta-ionone radicals. Free Radic Biol Med. 2000;28(7):1030–8.

    PubMed  CAS  Google Scholar 

  312. Galano A, Vargas R, Martinez A. Carotenoids can act as antioxidants by oxidizing the superoxide radical anion. Phys Chem Chem Phys. 2010;12(1):193–200.

    PubMed  CAS  Google Scholar 

  313. Martinez A, et al. Donator acceptor map for carotenoids, melatonin and vitamins. J Phys Chem A. 2008;112(38):9037–42.

    PubMed  CAS  Google Scholar 

  314. Nohl H, Gille L. Lysosomal ROS formation. Redox Rep. 2005;10(4):199–205.

    PubMed  CAS  Google Scholar 

  315. Klausner RD, Rouault TA, Harford JB. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell. 1993;72(1):19–28.

    PubMed  CAS  Google Scholar 

  316. Carroll GJ, et al. Ferritin concentrations in synovial fluid are higher in osteoarthritis patients with HFE gene mutations (C282Y or H63D). Scand J Rheumatol. 2010;39(5):413–20.

    PubMed  CAS  Google Scholar 

  317. Kaur H, et al. Hydroxyl radical generation by rheumatoid blood and knee joint synovial fluid. Ann Rheum Dis. 1996;55(12):915–20.

    PubMed  CAS  Google Scholar 

  318. Gutteridge JM. Thiobarbituric acid-reactivity following iron-dependent free-radical damage to amino acids and carbohydrates. FEBS Lett. 1981;128(2):343–6.

    PubMed  CAS  Google Scholar 

  319. Gutteridge JM. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts. FEBS Lett. 1982;150(2):454–8.

    PubMed  CAS  Google Scholar 

  320. Gutteridge JM, Rowley DA, Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of ‘free’ iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem J. 1981;199(1):263–5.

    PubMed  CAS  Google Scholar 

  321. Gutteridge JM, Rowley DA, Halliwell B. Superoxide-dependent formation of hydroxyl radicals and lipid peroxidation in the presence of iron salts. Detection of ‘catalytic’ iron and anti-oxidant activity in extracellular fluids. Biochem J. 1982;206(3):605–9.

    PubMed  CAS  Google Scholar 

  322. Lee MC, et al. Evidence of reactive oxygen species generation in synovial fluid from patients with temporomandibular disease by electron spin resonance spectroscopy. Redox Rep. 2004;9(6):331–6.

    PubMed  CAS  Google Scholar 

  323. Park CB, Larsson NG. Mitochondrial DNA mutations in disease and aging. J Cell Biol. 2011;193(5):809–18.

    PubMed  CAS  Google Scholar 

  324. Trifunovic A. Mitochondrial DNA and ageing. Biochim Biophys Acta. 2006;1757(5–6):611–7.

    PubMed  CAS  Google Scholar 

  325. Ruan H, et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA. 2002;99(5):2748–53.

    PubMed  CAS  Google Scholar 

  326. Schriner SE, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308(5730):1909–11.

    PubMed  CAS  Google Scholar 

  327. Sun J, et al. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics. 2002;161(2):661–72.

    PubMed  CAS  Google Scholar 

  328. Lu T, et al. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429(6994):883–91.

    PubMed  CAS  Google Scholar 

  329. Cantrell A, Truscott TG. Carotenoids and radicals; interactions with other nutrients. In: Krinsky NI, Mayne ST, Sies H, editors. Carotenoids in health and disease. New York: Marcel Dekker; 2004. p. 31–52.

    Google Scholar 

  330. Hayakawa T, et al. Reaction of astaxanthin with peroxynitrite. Biosci Biotechnol Biochem. 2008;72(10):2716–22.

    PubMed  CAS  Google Scholar 

  331. Suzuki R, et al. Reaction of retinol with peroxynitrite. Biosci Biotechnol Biochem. 2007;71(10):2596–9.

    PubMed  CAS  Google Scholar 

  332. Tsuboi M, et al. Nitrocapsanthin and nitrofucoxanthin, respective products of capsanthin and fucoxanthin reaction with peroxynitrite. J Agric Food Chem. 2011;59(19):10572–8.

    PubMed  CAS  Google Scholar 

  333. Panasenko OM, et al. Interaction of peroxynitrite with carotenoids in human low density lipoproteins. Arch Biochem Biophys. 2000;373(1):302–5.

    PubMed  CAS  Google Scholar 

  334. Pannala AS, et al. Interaction of peroxynitrite with carotenoids and tocopherols within low density lipoprotein. FEBS Lett. 1998;423(3):297–301.

    PubMed  CAS  Google Scholar 

  335. Henderson LM, Chappell JB. Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur J Biochem. 1993;217(3):973–80.

    PubMed  CAS  Google Scholar 

  336. Arteel GE, Briviba K, Sies H. Protection against peroxynitrite. FEBS Lett. 1999;445(2–3):226–30.

    PubMed  CAS  Google Scholar 

  337. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–79.

    PubMed  CAS  Google Scholar 

  338. Liao F, et al. Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest. 1993;91(6):2572–9.

    PubMed  CAS  Google Scholar 

  339. Matthews JR, et al. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 1992;20(15):3821–30.

    PubMed  CAS  Google Scholar 

  340. Wei SJ, et al. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res. 2000;60(23):6688–95.

    PubMed  CAS  Google Scholar 

  341. Kaarniranta K, Salminen A. NF-kappa B signaling as a putative target for omega-3 metabolites in the prevention of age-related macular degeneration (AMD). Exp Gerontol. 2009;44(11):685–8.

    PubMed  CAS  Google Scholar 

  342. Hwang JR, et al. Upregulation of CD9 in ovarian cancer is related to the induction of TNF-alpha gene expression and constitutive NF-kappa B activation. Carcinogenesis. 2012;33(1):77–83.

    PubMed  CAS  Google Scholar 

  343. Ruparel SB, et al. Role of NF-kB in prostate cancer progression. Proc Am Assoc Cancer Res. 2006;47:Abstract #5337.

    Google Scholar 

  344. Palozza P, et al. Induction of cell cycle arrest and apoptosis in human colon adenocarcinoma cell lines by beta-carotene through down-regulation of cyclin A and Bcl-2 family proteins. Carcinogenesis. 2002;23(1):11–8.

    PubMed  CAS  Google Scholar 

  345. Palozza P, et al. Regulation of cell cycle progression and apoptosis by beta-carotene in undifferentiated and differentiated HL-60 leukemia cells: possible involvement of a redox mechanism. Int J Cancer. 2002;97(5):593–600.

    PubMed  CAS  Google Scholar 

  346. Palozza P, et al. Beta-carotene regulates NF-kappa B DNA-binding activity by a redox mechanism in human leukemia and colon adenocarcinoma cells. J Nutr. 2003;133(2):381–8.

    PubMed  CAS  Google Scholar 

  347. Huang CS, et al. Lycopene inhibits matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1. J Nutr Biochem. 2007;18(7):449–56.

    PubMed  CAS  Google Scholar 

  348. Cui Y, et al. beta-Carotene induces apoptosis and upregulates peroxisome proliferator-activated receptor gamma expression and reactive oxygen species production in MCF-7 cancer cells. Eur J Cancer. 2007;43(17):2590–601.

    PubMed  CAS  Google Scholar 

  349. Bai SK, et al. beta-Carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-kB activation. Exp Mol Med. 2005;37(4):323–34.

    PubMed  CAS  Google Scholar 

  350. Lee SJ, et al. Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I(kappa)B kinase-dependent NF-kB activation. Mol Cells. 2003;16(1):97–105.

    PubMed  CAS  Google Scholar 

  351. Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev. 2011;111(10):5821–65.

    PubMed  CAS  Google Scholar 

  352. Moncada S, et al. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263(5579):663–5.

    PubMed  CAS  Google Scholar 

  353. Ameyar M, Wisniewska M, Weitzman JB. A role for AP-1 in apoptosis: the case for and against. Biochimie. 2003;85(8):747–52.

    PubMed  CAS  Google Scholar 

  354. Ozolins TR, Hales BF. Post-translational regulation of AP-1 transcription factor DNA-binding activity in the rat conceptus. Mol Pharmacol. 1999;56(3):537–44.

    PubMed  CAS  Google Scholar 

  355. Liu C, Russell RM, Wang XD. Exposing ferrets to cigarette smoke and a pharmacological dose of beta-carotene supplementation enhance in vitro retinoic acid catabolism in lungs via induction of cytochrome P450 enzymes. J Nutr. 2003;133(1):173–9.

    PubMed  CAS  Google Scholar 

  356. Omenn GS, et al. The beta-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer in high risk populations: smokers and asbestos-exposed workers. Cancer Res. 1994;54(7 Suppl):2038s–43.

    PubMed  CAS  Google Scholar 

  357. Nara E, et al. Acyclic carotenoids and their oxidation mixtures inhibit the growth of HL-60 human promyelocytic leukemia cells. Nutr Cancer. 2001;39(2):273–83.

    PubMed  CAS  Google Scholar 

  358. Ben-Dor A, et al. Effects of acyclo-retinoic acid and lycopene on activation of the retinoic acid receptor and proliferation of mammary cancer cells. Arch Biochem Biophys. 2001;391(2):295–302.

    PubMed  CAS  Google Scholar 

  359. Hu KQ, et al. The biochemical characterization of ferret carotene-9′,10′-monooxygenase catalyzing cleavage of carotenoids in vitro and in vivo. J Biol Chem. 2006;281(28):19327–38.

    PubMed  CAS  Google Scholar 

  360. Gajic M, et al. Apo-8′-lycopenal and apo-12′-lycopenal are metabolic products of lycopene in rat liver. J Nutr. 2006;136(6):1552–7.

    PubMed  CAS  Google Scholar 

  361. Lobo GP, et al. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta, beta-carotene absorption and vitamin A production. FASEB J. 2010;24(6):1656–66.

    PubMed  CAS  Google Scholar 

  362. Amengual J, et al. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J. 2011;25(3):948–59.

    PubMed  CAS  Google Scholar 

  363. Kim J, Cha YN, Surh YJ. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res. 2010;690(1–2):12–23.

    PubMed  CAS  Google Scholar 

  364. Kobayashi A, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24(16):7130–9.

    PubMed  CAS  Google Scholar 

  365. Motohashi H, et al. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc Natl Acad Sci USA. 2004;101(17):6379–84.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Landrum Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Landrum, J.T. (2013). Reactive Oxygen and Nitrogen Species in Biological Systems: Reactions and Regulation by Carotenoids. In: Tanumihardjo, S. (eds) Carotenoids and Human Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-203-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-203-2_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-202-5

  • Online ISBN: 978-1-62703-203-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics