Skip to main content

Lutein and Zeaxanthin and Eye Disease

  • Chapter
  • First Online:
Book cover Carotenoids and Human Health

Part of the book series: Nutrition and Health ((NH))

Abstract

The xanthophylls lutein and zeaxanthin are oxygenated carotenoids that preferentially accumulate in the macular region of the retina. Lutein, zeaxanthin, and meso-zeaxanthin (a conversion product of lutein formed in the macula) are referred to as macular pigment. Lutein and zeaxanthin are also present in all other ocular structures except the vitreous, cornea, and sclera; although, their concentrations are much lower than in the macular region. Lutein and zeaxanthin protect the ocular tissues by their ability to filter damaging blue light and their antioxidant potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Britton G. Structure and properties of carotenoids in relation to function. FASEB J. 1995;9(15):1551–8.

    PubMed  CAS  Google Scholar 

  2. Krinsky NI, Landrum JT, Bone RA. Biologic mechanism of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr. 2003;23:171–201.

    Article  PubMed  CAS  Google Scholar 

  3. Li B, Vachali P, Bernstein PS. Human ocular carotenoid-binding proteins. Photochem Photobiol Sci. 2010;9(11):1418–25.

    Article  PubMed  CAS  Google Scholar 

  4. Frederick K. Distribution and metabolism of dietary carotenoids in humans as a criterion for development of nutritional supplements. Pure Appl Chem. 2006;78(8):7.

    Google Scholar 

  5. Ahmed SS, Lott MN, Marcus DM. The macular xanthophylls. Surv Ophthalmol. 2005;50(2):183–93.

    Article  PubMed  Google Scholar 

  6. Johnson EJ, Neuringer M, Russell RM, Schalch W, Snodderly DM. Nutritional manipulation of primate retinas. III: Effects of lutein or zeaxanthin supplementation on adipose tissue and retina of xanthophyll-free monkeys. Invest Ophthalmol Vis Sci. 2005;46(2):692–702.

    Article  PubMed  Google Scholar 

  7. Bone RA, Landrum JT, Friedes LM, et al. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res. 1997;64(2):211–8.

    Article  PubMed  CAS  Google Scholar 

  8. Landrum JT, Bone RA, Sprague K, Moore L. A one-year study of supplementation with lutein on the macular pigment. Exp Eye Res. 1997;65:57–62.

    Article  PubMed  CAS  Google Scholar 

  9. Bone RA, Landrum JT, Fernandez L, Tarsis SL. Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest Ophthalmol Vis Sci. 1988;29:843–9.

    PubMed  CAS  Google Scholar 

  10. Handelman GJ, Dratz EA, Reay CC, van Kuijk JG. Carotenoids in the human macula and whole retina. Invest Ophthalmol Vis Sci. 1988;29(6):850–5.

    PubMed  CAS  Google Scholar 

  11. Algvere PV, Marshall J, Seregard S. Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmol Scand. 2006;84(1):4–15.

    Article  PubMed  CAS  Google Scholar 

  12. Snodderly DM, Auran JD, Delori FC. The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci. 1984;25:12.

    Google Scholar 

  13. Landrum JT, Bone RA. Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys. 2001;385(1):28–40.

    Article  PubMed  CAS  Google Scholar 

  14. Bone RA, Landrum JT. Macular pigment in henle fiber membranes: a model for Haidinger’s brushes. Vision Res. 1984;24(2):103–8.

    Article  PubMed  CAS  Google Scholar 

  15. Rapp LM, Maple SS, Choi JH. Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci. 2000;41(5):1200–9.

    PubMed  CAS  Google Scholar 

  16. Sommerburg LG, Siems WG, Hurst JS, Lewis JW, van Kuijk FJGM. Lutein and zeaxanthin are associated with photoreceptors in the human retina. Curr Eye Res. 1999;19:491–5.

    Article  PubMed  CAS  Google Scholar 

  17. Li B, Vachali P, Frederick JM, Bernstein PS. Identification of StARD3 as a lutein-binding protein in the macula of the primate retina. Biochemistry. 2011;50(13):2541–9.

    Article  PubMed  CAS  Google Scholar 

  18. Bhosale P, Zhao DY, Bernstein PS. HPLC measurement of ocular carotenoid levels in human donor eyes in the lutein supplementation era. Invest Ophthalmol Vis Sci. 2007;48(2):543–9.

    Article  PubMed  Google Scholar 

  19. Yeum K-J, Shang F, Schalch W, Russell RM, Taylor A. Fat-soluble nutrient concentrations in different layers of human cataractous lens. Curr Eye Res. 1999;19(6):502–5.

    Article  PubMed  CAS  Google Scholar 

  20. Yeum KJ, Ahn SH, Rupp de Paiva SA, Lee Kim YC, Krinsky NI, Russell RM. Correlation between carotenoid concentrations in serum and normal breast adipose tissue of women with benign breast tumor or cancer. J Nutr. 1998;128:1920–6.

    PubMed  CAS  Google Scholar 

  21. Khachik F, Spangler CJ, Smith Jr JC, Canfield LM, Steck A, Pfander H. Identification, quantificantion, and relative concentrations of carotenoids and their metabolites in human milk and serum. Anal Chem. 1997;69(10):7.

    Article  Google Scholar 

  22. Leo MA, Ahmed S, Aleynik SI, Siegel JH, Kasmin F, Lieber CS. Carotenoids and tocopherols in various hepatobiliary conditions. J Hepatol. 1995;23(5):550–6.

    Article  PubMed  CAS  Google Scholar 

  23. Peng YM, Peng YS, Lin Y. A nonsaponification method for the determination of carotenoids, retinoids, and tocopherols in solid human tissues. Cancer Epidemiol Biomarkers Prev. 1993;2(2):6.

    Google Scholar 

  24. Furr HC, Clark RM. Intestinal absorption and tissue distribution of carotenoids. J Nutr Biochem. 1997;8(7):364–77.

    Article  CAS  Google Scholar 

  25. Craft NE, Haitema TB, Garnett KM, Fitch KA, Dorey CK. Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J Nutr Health Aging. 2004;8:156–62.

    PubMed  CAS  Google Scholar 

  26. Demmig-Adams B, Adams WW. Antioxidants in photosynthesis and human nutrition. Science. 2002;298(5601):2149–53.

    Article  PubMed  CAS  Google Scholar 

  27. Kim Y-S, Oh D-K. Biotransformation of carotenoids to retinal by carotenoid 15,15′-oxygenase. Appl Microbiol Biotechnol. 2010;88(4):807–16.

    Article  PubMed  CAS  Google Scholar 

  28. Junghans A, Sies H, Stahl W. Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Arch Biochem Biophys. 2001;391:160–4.

    Article  PubMed  CAS  Google Scholar 

  29. Snodderly DM, Auran JD, Delori FC. The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci. 1984;25(6):674–85.

    PubMed  CAS  Google Scholar 

  30. Sujak A, Gabrielska J, Grudzinski W, Borc R, Mazurek P, Gruszecki WI. Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structual evidence. Arch Biochem Biophys. 1999;371(2):301–7.

    Article  PubMed  CAS  Google Scholar 

  31. Khachik F, Bernstein PS, Garland DL. Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci. 1997;38(9):1802–11.

    PubMed  CAS  Google Scholar 

  32. Haegerstrom-Portney G. Short-wavelength-sensitive-cone sensitivity loss with aging: a protective role for macular pigment? J Opt Soc Am A. 1988;5:2140–4.

    Article  Google Scholar 

  33. Ojima F, Sakamoto H, Ishiguro Y, Terao J. Consumption of carotenoids in photosensitized oxidation of human plasma and plasma low-density lipoprotein. Free Radic Biol Med. 1993;15(4):377–84.

    Article  PubMed  CAS  Google Scholar 

  34. Nolan J, O’Donovan O, Beatty S. The role of macular pigment in the defence against AMD. AMD. 2003;39–41.

    Google Scholar 

  35. Bernstein PS, Khachik F, Carvalho LS, et al. Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye. Exp Eye Res. 2001;72:215–23.

    Article  PubMed  CAS  Google Scholar 

  36. Congdon N, O’Colmain B, Klaver CCW, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122(4):477–85.

    Article  PubMed  Google Scholar 

  37. Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med. 2008;358(24):2606–17.

    Article  PubMed  CAS  Google Scholar 

  38. Abdelsalam A, Del Priore L, Zarbin MA. Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. Surv Ophthalmol. 1999;44(1):1–29.

    Article  PubMed  CAS  Google Scholar 

  39. Age-related Eye Disease Study Research Group. A simplified severity scale for age-related macular degeneration. AREDS report No. 18. Arch Ophthalmol. 2005;123(11):5.

    Google Scholar 

  40. Snodderly DM. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr. 1995;62(6 Suppl):1448S–61.

    PubMed  CAS  Google Scholar 

  41. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol. 2003;48(3):257–93.

    Article  PubMed  Google Scholar 

  42. Tan JSL, Wang JJ, Flood V, Rochtchina E, Smith W, Mitchell P. Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology. 2008;115(2):334–41.

    Article  PubMed  Google Scholar 

  43. Bone RA, Landrum JT, Mayne ST, Gomez CM, Tibor SE, Twaroska EE. Macular pigment in donor eyes with and without AMD: a case-control study. Invest Ophthalmol Vis Sci. 2001;42(1):235–40 [Erratum appears in Invest Ophthalmol Vis Sci 2001 Mar;42(3):548].

    PubMed  CAS  Google Scholar 

  44. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME. Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci. 2001;42(2):439–46.

    PubMed  CAS  Google Scholar 

  45. Bernstein PS, Shao D-Y, Wintch SW. Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology. 2002;109:1780–7.

    Article  PubMed  Google Scholar 

  46. LaRowe TL, Mares JA, Snodderly DM, et al. Macular pigment density and age-related maculopathy in the Carotenoids in Age-Related Eye Disease Study. An ancillary study of the women’s health initiative. Ophthalmology. 2008;115(5):876–83. e871.

    Article  PubMed  Google Scholar 

  47. Berendschot TTJM, Willemse-Assink JJM, Bastiaanse M, de Jong PTVM, van Norren D. Macular pigment and melanin in age-related maculopathy in a general population. Invest Ophthalmol Vis Sci. 2002;43(6):1928–32.

    PubMed  Google Scholar 

  48. Schweitzer D, Lang GE, Remsch H, et al. Age-related maculopathy. Comparative studies of patients, their children and healthy controls. (German). Ophthalmologe. 2000;97:84–90.

    Article  PubMed  CAS  Google Scholar 

  49. Eye Disease Case-Control Study Group (EDCCSG). Antioxidant status and neovascular age-related macular degeneration. Arch Ophthalmol. 1993;111:104–9.

    Article  Google Scholar 

  50. Seddon JM, Ajani UA, Sperduto RD, et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA. 1994;272(18):1413–20.

    Article  PubMed  CAS  Google Scholar 

  51. Snellen EL, Verbeek AL, Van Den Hoogen GW, Cruysberg JR, Hoyng CB. Neovascular age-related macular degeneration and its relationship to antioxidant intake. Acta Ophthalmol Scand. 2002;80(4):368–71.

    Article  PubMed  CAS  Google Scholar 

  52. Moeller SM, Parekh N, Tinker L, et al. Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-related Eye Disease Study (CAREDS): ancillary study of the Women’s Health Initiative. Arch Ophthalmol. 2006;124(8):1151–62.

    Article  PubMed  CAS  Google Scholar 

  53. Robman L, Vu H, Hodge A, et al. Dietary lutein, zeaxanthin, and fats and the progression of age-related macular degeneration. Can J Ophthalmol. 2007;42(5):7.

    Article  Google Scholar 

  54. Zhou H, Zhao X, Johnson EJ, et al. Serum carotenoids and risk of age-related macular degeneration in a Chinese population sample. Invest Ophthalmol Vis Sci. 2011;52:4338–44.

    Article  PubMed  CAS  Google Scholar 

  55. Gale CR, Hall NF, Phillips DIK, Martyn CN. Lutein and zeaxanthin status and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2003;44:2461–5.

    Article  PubMed  Google Scholar 

  56. Delcourt C, Carrière I, Delage M, Barberger-Gateau P, Schalch W, POLA Study Group. Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: the POLA study. Invest Ophthalmol Vis Sci. 2006;47(6):2329–35.

    Article  PubMed  Google Scholar 

  57. Mares-Perlman JA, Brady WE, Klein R, et al. Serum antioxidants and age-related macular degeneration in a population-based case-control study. Arch Ophthalmol. 1995;113(12):1518–23.

    Article  PubMed  CAS  Google Scholar 

  58. Hammond Jr BR, Johnson EJ, Russell RM, et al. Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci. 1997;38:1795–801.

    PubMed  Google Scholar 

  59. Wenzel AJ, Gerweck C, Barbato D, Nicolosi RJ, Handelman GJ, Curran-Celentano J. A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. J Nutr. 2006;136(10):2568–73.

    PubMed  CAS  Google Scholar 

  60. Vishwanathan R, Goodrow-Kotyla EF, Wooten BR, Wilson TA, Nicolosi RJ. Consumption of 2 and 4 egg yolks/d for 5 wk increases macular pigment concentrations in older adults with low macular pigment taking cholesterol-lowering statins. Am J Clin Nutr. 2009;90(5):1272–9.

    Article  PubMed  CAS  Google Scholar 

  61. Moeller SM, Voland R, Sarto GE, Gobel VL, Streicher SL, Mares JA. Women’s health initiative diet intervention did not increase macular pigment optical density in an ancillary study of a subsample of the women’s health initiative. J Nutr. 2009;139(9):1692–9.

    Article  PubMed  CAS  Google Scholar 

  62. Bone RA, Landrum JT. Dose-dependent response of serum lutein and macular pigment optical density to supplementation with lutein esters. Arch Biochem Biophys. 2010;504(1):50–5.

    Article  PubMed  CAS  Google Scholar 

  63. Zeimer M, Hense HW, Heimes B, Austermann U, Fobker M, Pauleikhoff D. The macular pigment: short- and intermediate-term changes of macular pigment optical density following supplementation with lutein and zeaxanthin and co-antioxidants. The LUNA Study. Ophthalmologe. 2009;106(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  64. Johnson EJ, Chung H-Y, Caldarella SM, Snodderly DM. The influence of supplemental lutein and docosahexaenoic acid on serum, lipoproteins, and macular pigmentation. Am J Clin Nutr. 2008;87(5):1521–9.

    PubMed  CAS  Google Scholar 

  65. Wenzel AJ, Sheehan JP, Gerweck C, Stringham JM, Fuld K, Curran-Celentano J. Macular pigment optical density at four retinal loci during 120 days of lutein supplementation. Ophthalmic Physiol Opt. 2007;27(4):329–35.

    Article  PubMed  Google Scholar 

  66. Richer S, Stiles W, Statkute L, et al. Double masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veteran’s LAST study (Lutein Antioxidant Supplementation Trial). Optometry. 2004;75:216–30.

    Article  PubMed  Google Scholar 

  67. Schalch W, Cohn W, Barker FM, et al. Xanthophyll accumulation in the human retina during supplementation with lutein or zeaxanthin—the LUXEA (LUtein Xanthophyll Eye Accumulation) study. Arch Biochem Biophys. 2007;458:128–35.

    Article  PubMed  CAS  Google Scholar 

  68. Koh H-H, Murray IJ, Nolan D, Carden D, Feather J, Beatty S. Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: a pilot study. Exp Eye Res. 2004;79(1):21–7.

    Article  PubMed  CAS  Google Scholar 

  69. Bone RA, Landrum JT, Guerra LH, Ruiz CA. Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J Nutr. 2003;133:992–8.

    PubMed  CAS  Google Scholar 

  70. Bone RA, Landrum JT, Cao Y, Howard AN, Alvarez-Calderon F. Macular pigment response to a supplement containing meso-zeaxanthin, lutein and zeaxanthin. Nutr Metab (Lond). 2007;4:12.

    Article  CAS  Google Scholar 

  71. Connolly EE, Beatty S, Thurnham DI, et al. Augmentation of macular pigment following supplementation with all three macular carotenoids: an exploratory study. Curr Eye Res. 2010;35(4):335–51.

    Article  PubMed  CAS  Google Scholar 

  72. Richer S, Devenport J, Lang JC. LAST II: differential temporal responses of macular pigment optical density in patients with atrophic age-related macular degeneration to dietary supplementation with xanthophylls. Optometry. 2007;78(5):213–9.

    Article  PubMed  Google Scholar 

  73. Parisi V, Tedeschi M, Gallinaro G, Varano M, Saviano S, Piermarocchi S. Carotenoids and antioxidants in age-related maculopathy Italian study: multifocal electroretinogram modifications after 1 year. Ophthalmology. 2008;115(2):324–33. e322.

    Article  PubMed  Google Scholar 

  74. Bartlett HE, Eperjesi F. Effect of lutein and antioxidant dietary supplementation on contrast sensitivity in age-related macular disease: a randomized controlled trial. Eur J Clin Nutr. 2007;61(9):1121–7.

    Article  PubMed  CAS  Google Scholar 

  75. Chung H-Y, Rasmussen HM, Johnson EJ. Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. J Nutr. 2004;134(8):1887–93.

    PubMed  CAS  Google Scholar 

  76. Trieschmann M, Beatty S, Nolan JM, et al. Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: The LUNA study. Exp Eye Res. 2007;84(4):718–28.

    Article  PubMed  CAS  Google Scholar 

  77. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119(10):1417–36 [Erratum appears in Arch Ophthalmol. 2008;126(9):1251].

    Article  Google Scholar 

  78. Age-related Eye Disease Study. AREDS 2. www.areds2.org. Accessed 10 June 2011.

  79. Cugati S, Mitchell P, Rochtchina E, Tan AG, Smith W, Wang JJ. Cataract surgery and the 10-year incidence of age-related maculopathy: the Blue Mountains Eye study. Ophthalmology. 2006;113(11):2020–5.

    Article  PubMed  Google Scholar 

  80. Wang JJ, Klein R, Smith W, Klein BEK, Tomany S, Mitchell P. Cataract surgery and the 5-year incidence of late-stage age-related maculopathy: pooled findings from the Beaver Dam and Blue Mountains Eye Studies. Ophthalmology. 2003;110(10):1960–7.

    Article  PubMed  Google Scholar 

  81. Brockmann C, Schulz M, Laube T. Transmittance characteristics of ultraviolet and blue-light-filtering intraocular lenses. J Cataract Refract Surg. 2008;34(7):1161–6.

    Article  PubMed  Google Scholar 

  82. Gaillard ER, Zheng L, Merriam JC, Dillon J. Age-related changes in the absorption characteristics of the primate lens. Invest Ophthalmol Vis Sci. 2000;41(6):1454–9.

    PubMed  CAS  Google Scholar 

  83. Nolan JM, O’Reilly P, Loughman J, et al. Augmentation of macular pigment following implantation of blue light-filtering intraocular lenses at the time of cataract surgery. Invest Ophthalmol Vis Sci. 2009;50(10):4777–85.

    Article  PubMed  Google Scholar 

  84. World Health Organization. Use of intraocular lenses in cataract surgery in developing countries. Bull World Health Organ. 1991;69:657–66.

    Google Scholar 

  85. Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY. Global data on blindness. Bull World Health Organ. 1995;69:115–21.

    Google Scholar 

  86. Javitt JC. Who does cataract surgery in the United States? Arch Ophthalmol. 1993;111:1329.

    Article  PubMed  CAS  Google Scholar 

  87. Steinberg EP, Javitt JC, Sharkey PD, et al. The content and cost of cataract surgery. Arch Ophthalmol. 1993;111:1041–9.

    Article  PubMed  CAS  Google Scholar 

  88. Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S. Age-related cataract. Lancet. 2005;365(9459):599–609.

    PubMed  Google Scholar 

  89. Bunce GE, Kinoshita J, Horwitz J. Nutritional factors in cataract. Annu Rev Nutr. 1990;10(1):233–54.

    Article  PubMed  CAS  Google Scholar 

  90. Hankinson SE, Stampfer MJ, Seddon JM, et al. Nutrient intake and cataract extraction in women: a prospective study. BMJ. 1992;305:244–51.

    Article  Google Scholar 

  91. Brown L, Rimm EB, Seddon JM, et al. A prospective study of carotenoid intake and risk of cataract extraction in US men. Am J Clin Nutr. 1999;70:517–24.

    PubMed  CAS  Google Scholar 

  92. Tavani A, Negri E, LaVeccia C. Food and nutrient intake and risk of cataract. Ann Epidemiol. 1996;6:41–6.

    Article  PubMed  CAS  Google Scholar 

  93. Lyle B, Mares-Perlman JA, Klein BEK, Klein R, Gregor JL. Antioxidant intake and risk of incident of age-related nuclear cataracts in the Beaver Dam Eye Study. Am J Epidemiol. 1999;149:801–9.

    Article  PubMed  CAS  Google Scholar 

  94. Christen WG, Liu S, Glynn RJ, Gaziano JM, Buring JE. Dietary carotenoids, vitamins C and E, and risk of cataract in women: a prospective study. Arch Ophthalmol. 2008;126(1):102–9.

    Article  PubMed  Google Scholar 

  95. Vu HTV, Robman L, Hodge A, McCarty CA, Taylor HR. Lutein and zeaxanthin and the risk of cataract: the Melbourne visual impairment project. Invest Ophthalmol Vis Sci. 2006;47(9):3783–6.

    Article  PubMed  Google Scholar 

  96. Moeller SM, Voland R, Tinker L, et al. Associations between age-related nuclear cataract and lutein and zeaxanthin in the diet and serum in the carotenoids in the age-related eye disease study (CAREDS), an ancillary study of the women’s health initiative. Arch Ophthalmol. 2008;126(3):354–64.

    Article  PubMed  Google Scholar 

  97. Rodriguez RE, Ortega RM, Lopez-Sobaler AM, Aparicio A, Bermejo LM, Marin-Arias LI. The relationship between antioxidant nutrient intake and cataracts in older people. Int J Vitam Nutr Res. 2006;76(6):8.

    Article  CAS  Google Scholar 

  98. Taylor A, Jacques PF, Chylack Jr LT, et al. Long-term intake of vitamins and carotenoids and odds of early age-related cortical and posterior subcapsular lens opacities. Am J Clin Nutr. 2002;75(3):540–9.

    PubMed  CAS  Google Scholar 

  99. Gale CR, Hall NF, Phillips DIK, Martyn CN. Plasma antioxidant vitamins and carotenoids and age-related cataract. Ophthalmology. 2001;108:1992–8.

    Article  PubMed  CAS  Google Scholar 

  100. Vitale S, West S, Hallfrisch J, et al. Plasma antioxidants and risk of cortical and nuclear cataract. Epidemiology. 1993;4:195–203.

    Article  PubMed  CAS  Google Scholar 

  101. Chasen-Taber L, Willett WC, Seddon JM, et al. A prospective study of carotenoid and vitamin A intakes and risk of cataract extraction in US women. Am J Clin Nutr. 1999;70:517–24.

    Google Scholar 

  102. Mares-Perlman JA, Brady WE, Klein BE, et al. Serum carotenoids and tocopherols and severity of nuclear and cortical opacities. Invest Ophthalmol Vis Sci. 1995;36:276–88.

    PubMed  CAS  Google Scholar 

  103. Moeller SM, Jacques PF, Blumberg JB. The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr. 2000;19(5 Suppl):522S–7.

    PubMed  CAS  Google Scholar 

  104. USDA, ARS. National Nutrient Database for Standard Reference, Release 19. Nutrient Data Laboratory Home Page. 2006.

    Google Scholar 

  105. Olmedilla B, Granado F, Blanco I, Vaquero M. Lutein, but not alpha-tocopherol, supplementation improves visual function in patients with age-related cataracts: a 2-y double-blind, placebo-controlled pilot study. Nutrition. 2003;19(1):21–4.

    Article  PubMed  CAS  Google Scholar 

  106. Olmedilla B, Granado F, Blanco I, Vaquero M, Cajigal C. Lutein in patients with cataracts and age-related macular degeneration: a long-term supplementation study. J Sci Food Agric. 2001;81:904–9.

    Article  CAS  Google Scholar 

  107. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol. 2001;119(10):1439–52 [Erratum appears in Arch Ophthalmol. 2008 Sep;126(9):1251].

    Article  Google Scholar 

  108. Gritz DC, Srinivasan M, Smith SD, et al. The antioxidants in prevention of cataracts study: effects of antioxidant supplements on cataract progression in south India. Br J Ophthalmol. 2006;90(7):847–51.

    Article  PubMed  CAS  Google Scholar 

  109. Chylack LTJ, Brown NB, Bron A, et al. The Roche European American Cataract Trial (REACT): a randomized clinical trial to investigate the efficiency of a antioxidant micronutrient mixture to slow progression of age-related cataract. Ophthalmic Epidemiol. 2002;9:49–80.

    Article  PubMed  Google Scholar 

  110. Teikari JM, Virtamo J, Rautalahti M, Palmgren J, Liesto K, Heinonen OP. Long-term supplementation with alpha-tocopherol and beta-carotene and age-related cataract. Acta Ophthalmol Scand. 1997;75(6):634–40.

    Article  PubMed  CAS  Google Scholar 

  111. Sperduto RD, Hu TS, Milton RC, et al. The Linxian cataract studies. Two nutrition intervention trials. Arch Ophthalmol. 1993;111(9):1246–53.

    Article  PubMed  CAS  Google Scholar 

  112. Clinical Trial of Nutritional Supplements and Age-Related Cataract Study Group, Maraini G, Sperduto RD, et al. A randomized, double-masked, placebo-controlled clinical trial of multivitamin supplementation for age-related lens opacities. Clinical trial of nutritional supplements and age-related cataract report no. 3. Ophthalmology. 2008;115(4):599–607. e591.

    Article  PubMed  Google Scholar 

  113. Delyfer M-N, Léveillard T, Mohand-Saïd S, Hicks D, Picaud S, Sahel J-A. Inherited retinal degenerations: therapeutic prospects. Biol Cell. 2004;96(4):261–9.

    PubMed  CAS  Google Scholar 

  114. Berson EL. Nutrition and retinal degenerations. Int Ophthalmol Clin. 2000;40(4):93–111.

    Article  PubMed  CAS  Google Scholar 

  115. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–809.

    Article  PubMed  CAS  Google Scholar 

  116. Liu X, Bulgakov OV, Darrow KN, et al. Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A. 2007;104(11):4413–8.

    Article  PubMed  CAS  Google Scholar 

  117. Dryja TP, Hahn LB, Reboul T, Arnaud B. Missense mutation in the gene encoding the alpha subunit of rod transducin in the Nougaret form of congenital stationary night blindness. Nat Genet. 1996;13(3):358–60.

    Article  PubMed  CAS  Google Scholar 

  118. Perrault I, Rozet JM, Calvas P, et al. Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet. 1996;14(4):461–4.

    Article  PubMed  CAS  Google Scholar 

  119. McLaughlin ME, Sandberg MA, Berson EL, Dryja TP. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat Genet. 1993;4(2):130–4.

    Article  PubMed  CAS  Google Scholar 

  120. Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A. A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet. 1995;10(3):360–2.

    Article  PubMed  CAS  Google Scholar 

  121. Dryja TP, Hahn LB, Kajiwara K, Berson EL. Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1997;38(10):1972–82.

    PubMed  CAS  Google Scholar 

  122. Allikmets R. Simple and complex ABCR: Genetic predisposition to retinal disease. Am J Hum Genet. 2000;67(4):793–9.

    Article  PubMed  CAS  Google Scholar 

  123. Maw MA, Kennedy B, Knight A, et al. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet. 1997;17(2):198–200.

    Article  PubMed  CAS  Google Scholar 

  124. Marlhens F, Bareil C, Griffoin JM, et al. Mutations in RPE65 cause Leber’s congenital amaurosis. Nat Genet. 1997;17(2):139–41.

    Article  PubMed  CAS  Google Scholar 

  125. D’Cruz PM, Yasumura D, Weir J, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet. 2000;9(4):645–51.

    Article  PubMed  Google Scholar 

  126. Dagnelie G, Zorge IS, McDonald TM. Lutein improves visual function in some patients with retinal regeneration: a pilot study via the internet. Optom Vis Sci. 2000;71:147–64.

    CAS  Google Scholar 

  127. Bahrami H, Melia M, Dagnelie G. Lutein supplementation in retinitis pigmentosa: PC-based vision assessment in a randomized double-masked placebo-controlled clinical trial [NCT00029289]. BMC Ophthalmol. 2006;6(1):23.

    Article  PubMed  CAS  Google Scholar 

  128. Berson EL, Rosner B, Sandberg MA, et al. Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol. 2010;128(4):403–11.

    Article  PubMed  CAS  Google Scholar 

  129. Aleman TS, Duncan JL, Bieber ML, et al. Macular pigment and lutein supplementation in retinitis pigmentosa and usher syndrome. Invest Ophthalmol Vis Sci. 2001;42(8):1873–81.

    PubMed  CAS  Google Scholar 

  130. Sandberg MA, Johnson EJ, Berson EL. The relationship of macular pigment optical density to serum lutein in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2010;51(2):1086–91.

    Article  PubMed  Google Scholar 

  131. Berson EL, Rosner B, Sandberg MA, et al. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993;111(6):761–72.

    Article  PubMed  CAS  Google Scholar 

  132. Berson EL, Rosner B, Sandberg MA, et al. Vitamin A supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993;111(11):1456–9.

    Article  PubMed  CAS  Google Scholar 

  133. Bishara S, Merin S, Cooper M, Azizi E, Delpre G, Deckelbaum RJ. Combined vitamin A and E therapy prevents retinal electrophysiological deterioration in abetalipoproteinaemia. Br J Ophthalmol. 1982;66(12):767–70.

    Article  PubMed  CAS  Google Scholar 

  134. Yokota T, Shiojiri T, Gotoda T, Arai H. Retinitis pigmentosa and ataxia caused by a mutation in the gene for the α-tocopherol-transfer protein. N Engl J Med. 1996;335(23):1770–1.

    Article  PubMed  CAS  Google Scholar 

  135. Berson EL, Rosner B, Sandberg MA, et al. Clinical trial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol. 2004;122(9):1297–305.

    Article  PubMed  CAS  Google Scholar 

  136. Berson EL, Rosner B, Sandberg MA, et al. Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol. 2004;122(9):1306–14.

    Article  PubMed  CAS  Google Scholar 

  137. Wooten BR, Hammond BR. Macular pigment: influences on visual acuity and visibility. Prog Retin Eye Res. 2002;21(2):225–40.

    Article  PubMed  CAS  Google Scholar 

  138. Stringham JM, Hammond BR. The glare hypothesis for macular pigment function. Optom Vis Sci. 2007;84(9):859–64.

    Article  PubMed  Google Scholar 

  139. Stringham JM, Hammond Jr BR. Dietary lutein and zeaxanthin: possible effects on visual function. Nutr Rev. 2005;63(2):59–64.

    Article  PubMed  Google Scholar 

  140. Kvansakul J, Rodriguex-Carmona M, Edgar D, Barker FM, Kopcke W, Barbur JL. Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance. Ophthalmic Physiol Opt. 2006;26:362–71.

    Article  PubMed  Google Scholar 

  141. Stringham JM, Hammond BR. Macular pigment and visual performance under glare conditions. Optom Vis Sci. 2008;85:82–8.

    Article  PubMed  Google Scholar 

  142. Ma L, Lin X-M, Zou Z-Y, Xu X-R, Li Y, Xu R. A 12-week lutein supplementation improves visual function in Chinese people with long-term computer display light exposure. Br J Nutr. 2009;102(2):186–90.

    Article  PubMed  CAS  Google Scholar 

  143. Yagi A, Fujimoto K, Michihiro K, Goh B, Tsi D, Nagai H. The effect of lutein supplementation on visual fatigue: a psychophysiological analysis. Appl Ergon. 2009;40:1047–54.

    Article  PubMed  Google Scholar 

  144. Falsini B, Piccardi M, Iarossi G, Fadda A, Merendino E, Valentini P. Influence of short-term antioxidant supplementation on macular function in age-related maculopathy: a pilot study including electrophysiologic assessment. Ophthalmology. 2003;110(1):51–60. discussion 61.

    Article  PubMed  Google Scholar 

  145. Cangemi FE. TOZAL study: an open case-control study of an oral antioxidant and omega-3 supplement for dry AMD. BMC Ophthalmol. 2007;7:3.

    Article  PubMed  CAS  Google Scholar 

  146. Trumbo PR, Ellwood KC. Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: an evaluation using the Food and Drug Administration’s evidence-based review system for health claims. Am J Clin Nutr. 2006;84(5):971–4.

    PubMed  CAS  Google Scholar 

  147. Leung IYF. Macular pigment: new clinical methods of detection and the role of carotenoids in age-related macular degeneration. Optometry. 2008;79(5):266–72.

    Article  PubMed  Google Scholar 

  148. Stahl W, Seis H. Effects of carotenoids and retinoids on gap junctional communication. Biofactors. 2001;15:95–8.

    Article  PubMed  CAS  Google Scholar 

  149. Hammond BR, Wooten BR. CFF thresholds: relation to macular pigment optical density. Ophthalmic Physiol Opt. 2005;25(4):315–9.

    Article  PubMed  Google Scholar 

  150. Renzi LM, Hammond BR. The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthalmic Physiol Opt. 2010;30(4):351–7.

    Article  PubMed  Google Scholar 

  151. Zimmer JP, Hammond BR. Possible influences of lutein and zeaxanthin on the developing retina. Clin Ophthalmol. 2007;1(1):11.

    Google Scholar 

  152. Gutherie AH, Hammond BR. Macular pigment and scotopic noise. ARVO Abstracts [abstract]. Invest Ophthalmol Vis Sci. 2005;E1784.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Johnson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vishwanathan, R., Johnson, E.J. (2013). Lutein and Zeaxanthin and Eye Disease. In: Tanumihardjo, S. (eds) Carotenoids and Human Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-203-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-203-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-202-5

  • Online ISBN: 978-1-62703-203-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics