Skip to main content

Mesenchymal Stem Cell Exosomes: The Future MSC-Based Therapy?

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The ease of isolation from adult tissues, large ex vivo expansion capacity, and apparent therapeutic efficacy in a wide range of disease indications have made mesenchymal stem cells (MSCs) the stem cell of choice for regenerative medicine. Clinical and animal studies have demonstrated that secreted trophic factors, and not stem cell differentiation, likely mediated much of the therapeutic efficacy of MSCs. This paradigm shift in the therapeutic mechanism of MSCs has started to transform MSC therapy from a cell- to biologic-based therapy. Our group has identified the exosome, a secreted membrane vesicle, as an active therapeutic factor in MSC secretion. An exosome is thought to mediate cell to cell communication. It carries a large and varied protein cargo that could regulate a wide array of biochemical and cellular processes. These include enhancing glycolysis which increases not only cellular ATP production but also glycolytic intermediates for anabolic activities, inducing adenosine-mediated activation of survival kinases (e.g., ERK and AKT via CD73) and reducing complement activation through CD59. As these ­processes are fundamental, non-tissue specific processes in ameliorating tissue injury and promoting tissue repair, MSC exosomes could potentially underpin the therapeutic efficacy of MSC in diverse disease indications. This could transform present MSC-based therapies into MSC exosome-based therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow: analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247

    PubMed  CAS  Google Scholar 

  2. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301. doi:2005-0342 [pii] 10.1634/stemcells.2005-0342

    PubMed  CAS  Google Scholar 

  3. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, Ochiya T (2007) Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46(1):219–228

    PubMed  CAS  Google Scholar 

  4. In‘t Anker PS, Noort WA, Scherjon SA, Kleijburg-Van der Keur C, Kruisselbrink AB, Van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HHH, Fibbe WE (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar ­immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88(8):845–852

    Google Scholar 

  5. Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, Thomas K, Austin T, Edwards C, Cuzzourt J, Duenzl M, Lucas PA, Black AC Jr (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264(1):51–62. doi:10.1002/ar.1128 [pii]

    PubMed  CAS  Google Scholar 

  6. Roubelakis MG, Pappa KI, Bitsika V, Zagoura D, Vlahou A, Papadaki HA, Antsaklis A, Anagnou NP (2007) Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 16(6):931–952. doi:10.1089/scd.2007.0036

    PubMed  CAS  Google Scholar 

  7. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K (2004) Human ­placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22(5):649–658

    PubMed  CAS  Google Scholar 

  8. Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Qian H, Zhang X (2006) Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 30(9):681–687

    PubMed  CAS  Google Scholar 

  9. Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, Choung YH, Kim ES, Yang HC, Choung PH (2007) Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 13(4):767–773

    PubMed  CAS  Google Scholar 

  10. Huang GTJ, Gronthos S, Shi S (2009) Critical reviews in oral biology & medicine: mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dental Res 88(9):792–806

    CAS  Google Scholar 

  11. Lai RC, Arslan F, Tan SS, Tan B, Choo A, Lee MM, Chen TS, Teh BJ, Eng JK, Sidik H, Tanavde V, Hwang WS, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Tan KH, Lim SK (2010) Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles. J Mol Cell Cardiol 48(6):1215–1224. doi:S0022-2828(09)00568-9 [pii]10.1016/j.yjmcc.2009.12.021

    PubMed  CAS  Google Scholar 

  12. Brooke G, Cook M, Blair C, Han R, Heazlewood C, Jones B, Kambouris M, Kollar K, McTaggart S, Pelekanos R, Rice A, Rossetti T, Atkinson K (2007) Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol 18(6):846–858

    PubMed  CAS  Google Scholar 

  13. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    PubMed  CAS  Google Scholar 

  14. Bernardo ME, Pagliara D, Locatelli F (2011) Mesenchymal stromal cell therapy: a revolution in regenerative medicine? Bone Marrow Transplant. doi:bmt201181 [pii] 10.1038/bmt.2011.81

    Google Scholar 

  15. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596. doi:10.1002/stem.269

    PubMed  CAS  Google Scholar 

  16. Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16(5):203–209. doi:S1471-4914(10)00024-9 [pii] 10.1016/j.molmed.2010.02.005

    PubMed  Google Scholar 

  17. Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211(1):27–35. doi:10.1002/jcp. 20959

    PubMed  CAS  Google Scholar 

  18. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25(11):2896–2902. doi:2007-0637 [pii] 10.1634/stemcells.2007-0637

    PubMed  Google Scholar 

  19. Ferrand J, Noel D, Lehours P, Prochazkova-Carlotti M, Chambonnier L, Menard A, Megraud F, Varon C (2011) Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One 6(5):e19569. doi:10.1371/journal.pone.0019569 PONE-D-10-05611 [pii]

    PubMed  CAS  Google Scholar 

  20. Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A, Peister A, Wang MY, Prockop DJ (2003) Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 100(5):2397–2402. doi:10.1073/pnas.0437997100 0437997100 [pii]

    PubMed  CAS  Google Scholar 

  21. Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422(6934):901–904

    PubMed  CAS  Google Scholar 

  22. Prockop DJ (2007) “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 82(3):241–243

    PubMed  CAS  Google Scholar 

  23. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299. doi:2007-1122 [pii] 10.1634/stemcells.2007-1122

    PubMed  Google Scholar 

  24. Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE, Kloner RA (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112(2):214–223. doi:CIRCULATIONAHA.104.527937 [pii] 10.1161/CIRCULATIONAHA.104.527937

    PubMed  Google Scholar 

  25. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14(6):840–850. doi:S1525-0016(06)00214-0 [pii] 10.1016/j.ymthe.2006.05.016

    PubMed  CAS  Google Scholar 

  26. Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, Sobel BE, Delafontaine P, Prockop DJ (2007) Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 354(3):700–706. doi:S0006-291X(07)00068-X [pii] 10.1016/j.bbrc.2007.01.045

    PubMed  CAS  Google Scholar 

  27. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    PubMed  CAS  Google Scholar 

  28. da Silva Meirelles S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5–6):419–427. doi:S1359-6101(09)00077-X [pii] 10.1016/j.cytogfr.2009.10.002

    Google Scholar 

  29. Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886. doi:10.1371/journal.pone.0001886

    PubMed  Google Scholar 

  30. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25(9):2363–2370. doi:2006-0686 [pii] 10.1634/stemcells.2006-0686

    PubMed  CAS  Google Scholar 

  31. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12):1543–1549

    PubMed  CAS  Google Scholar 

  32. Li L, Zhang S, Zhang Y, Yu B, Xu Y, Guan Z (2009) Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep 36(4):725–731. doi:10.1007/s11033-008-9235-2

    PubMed  CAS  Google Scholar 

  33. Lin YC, Ko TL, Shih YH, Lin MY, Fu TW, Hsiao HS, Hsu JY, Fu YS (2011) Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 42(7):2045–2053. doi:STROKEAHA.110.603621 [pii] 10.1161/STROKEAHA.110.603621

    PubMed  Google Scholar 

  34. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292(5):F1626–1635. doi:00339.2006 [pii] 10.1152/ajprenal.00339.2006

    PubMed  CAS  Google Scholar 

  35. van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, Tilles AW, Yarmush ML (2008) Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 47(5):1634–1643. doi:10.1002/hep. 22236

    PubMed  Google Scholar 

  36. Furlani D, Ugurlucan M, Ong L, Bieback K, Pittermann E, Westien I, Wang W, Yerebakan C, Li W, Gaebel R, Li RK, Vollmar B, Steinhoff G, Ma N (2009) Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res 77(3):370–376. doi:S0026-2862(09)00069-7 [pii] 10.1016/j.mvr.2009.02.001

    PubMed  CAS  Google Scholar 

  37. Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, Marban E, Abraham MR (2006) Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 113(15):1832–1841. doi:CIRCULATIONAHA.105.593038 [pii] 10.1161/CIRCULATIONAHA.105.593038

    PubMed  Google Scholar 

  38. Pak HN, Qayyum M, Kim DT, Hamabe A, Miyauchi Y, Lill MC, Frantzen M, Takizawa K, Chen LS, Fishbein MC, Sharifi BG, Chen PS, Makkar R (2003) Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a swine model of myocardial infarction. J Cardiovasc Electrophysiol 14(8):841–848. doi:03124 [pii]

    PubMed  Google Scholar 

  39. Price MJ, Chou CC, Frantzen M, Miyamoto T, Kar S, Lee S, Shah PK, Martin BJ, Lill M, Forrester JS, Chen PS, Makkar RR (2006) Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol 111(2):231–239. doi:S0167-5273(05)01042-9 [pii] 10.1016/j.ijcard.2005.07.036

    PubMed  Google Scholar 

  40. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110(4):1362–1369. doi:blood-2006-12-063412 [pii] 10.1182/blood-2006-12-063412

    PubMed  CAS  Google Scholar 

  41. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067. doi:ASN.2008070798 [pii] 10.1681/ASN.2008070798

    PubMed  CAS  Google Scholar 

  42. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, Camussi G (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26(5):1474–1483. doi:gfr015 [pii] 10.1093/ndt/gfr015

    PubMed  CAS  Google Scholar 

  43. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222. doi:S1873-5061(09)00141-X [pii] 10.1016/j.scr.2009.12.003

    PubMed  CAS  Google Scholar 

  44. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593

    PubMed  CAS  Google Scholar 

  45. Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W (2003) Proteomic and biochemical analyses of human B cell-derived exosomes: potential implications for their function and multivesicular body formation. J Biol Chem 278(13):10963–10972. doi:10.1074/jbc.M207550200 M207550200 [pii]

    PubMed  CAS  Google Scholar 

  46. de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M (2003) Lipid raft-associated protein sorting in exosomes. Blood 102(13):4336–4344. doi:10.1182/blood-2003-03-0871 2003-03-0871 [pii]

    PubMed  Google Scholar 

  47. Zakharova L, Svetlova M, Fomina AF (2007) T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol 212(1):174–181. doi:10.1002/jcp. 21013

    PubMed  CAS  Google Scholar 

  48. Keller S, Konig AK, Marme F, Runz S, Wolterink S, Koensgen D, Mustea A, Sehouli J, Altevogt P (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278(1):73–81. doi:S0304-3835(08)00980-4 [pii] 10.1016/j.canlet.2008.12.028

    PubMed  CAS  Google Scholar 

  49. Carmo A, Pedro M, Silva E, Knobel E, Laurindo F, Janiszewski M (2003) Platelet-derived exosomes: a new vascular redox signaling pathway. Crit Care 7(Suppl 3):P117

    Google Scholar 

  50. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799

    PubMed  CAS  Google Scholar 

  51. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8(19):4083–4099. doi:10.1002/pmic.200800109

    PubMed  CAS  Google Scholar 

  52. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978

    PubMed  CAS  Google Scholar 

  53. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420

    PubMed  CAS  Google Scholar 

  54. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and ­recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97(2):329–339

    PubMed  CAS  Google Scholar 

  55. Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948

    PubMed  CAS  Google Scholar 

  56. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172

    PubMed  CAS  Google Scholar 

  57. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4(5):594–600

    PubMed  CAS  Google Scholar 

  58. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476

    PubMed  CAS  Google Scholar 

  59. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol v110(1):13–21. doi:DOI: 10.1016/j.ygyno.2008.04.033

    PubMed  CAS  Google Scholar 

  60. Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46

    PubMed  CAS  Google Scholar 

  61. Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8(12):2631–2645

    PubMed  CAS  Google Scholar 

  62. Peters PJ, Geuze HJ, Van Der Donk HA, Slot JW, Griffith JM, Stam NJ, Clevers HC, Borst J (1989) Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol 19(8):1469–1475

    PubMed  CAS  Google Scholar 

  63. Heijnen HFG, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and granules. Blood 94(11):3791–3799

    PubMed  CAS  Google Scholar 

  64. Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci USA 101(26):9683–9688

    PubMed  CAS  Google Scholar 

  65. Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7(3):297–303

    PubMed  CAS  Google Scholar 

  66. Sokolova V, Ludwig A-K, Hornung S, Rotan O, Horn PA, Epple M, Giebel B (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B: Biointerfaces 87(1):146–150. doi:10.1016/j.colsurfb.2011.05.013

    CAS  Google Scholar 

  67. Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z (2011) Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 187(2):676–683. doi:10.4049/jimmunol.1003884

    PubMed  CAS  Google Scholar 

  68. Sullivan R, Saez F, Girouard J, Frenette G (2005) Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis 35(1):1–10

    PubMed  CAS  Google Scholar 

  69. Admyre C, Grunewald J, Thyberg J, Gripenbäck S, Tornling G, Eklund A, Scheynius A, Gabrielsson S (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22(4):578–583

    PubMed  CAS  Google Scholar 

  70. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101(36):13368–13373

    PubMed  CAS  Google Scholar 

  71. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887

    PubMed  CAS  Google Scholar 

  72. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73(10):1907–1920. doi:S1874-3919(10)00184-3 [pii] 10.1016/j.jprot.2010.06.006

    PubMed  CAS  Google Scholar 

  73. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579. doi:10.1038/nri855 nri855 [pii]

    PubMed  CAS  Google Scholar 

  74. Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3(5):321–330. doi:tra030502 [pii]

    PubMed  CAS  Google Scholar 

  75. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360(9329):295–305. doi:S0140-6736(02)09552-1 [pii] 10.1016/S0140-6736(02)09552-1

    PubMed  CAS  Google Scholar 

  76. Dai S, Wan T, Wang B, Zhou X, Xiu F, Chen T, Wu Y, Cao X (2005) More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clin Cancer Res 11(20):7554–7563. doi:11/20/7554 [pii] 10.1158/1078-0432.CCR-05-0810

    PubMed  CAS  Google Scholar 

  77. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z (2007) Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res 67(15):7458–7466. doi:67/15/7458 [pii] 10.1158/0008-5472.CAN-06-3456

    PubMed  CAS  Google Scholar 

  78. Théry C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3(15)

    Google Scholar 

  79. Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9(21):4997–5000. doi:10.1002/pmic.200900351

    PubMed  CAS  Google Scholar 

  80. Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581. doi:S0955-0674(09)00077-5 [pii] 10.1016/j.ceb.2009.03.007

    PubMed  CAS  Google Scholar 

  81. Raiborg C, Rusten TE, Stenmark H (2003) Protein sorting into multivesicular endosomes. Curr Opin Cell Biol 15(4):446–455. doi:10.1016/s0955-0674(03)00080-2

    PubMed  CAS  Google Scholar 

  82. Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5(6):e158. doi:06-PLBI-RA-2411R2 [pii] 10.1371/journal.pbio.0050158

    PubMed  Google Scholar 

  83. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247

    PubMed  CAS  Google Scholar 

  84. Fevrier B, Vilette D, Laude H, Raposo G (2005) Exosomes: a bubble ride for prions? Traffic 6(1):10–17. doi:TRA247 [pii] 10.1111/j.1600-0854.2004.00247.x

    PubMed  CAS  Google Scholar 

  85. Lenassi M, Cagney G, Liao M, Vaupotič T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitaš A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11(1):110–122. doi:10.1111/j.1600-0854.2009.01006.x

    PubMed  CAS  Google Scholar 

  86. Porto-Carreiro I, Fevrier B, Paquet S, Vilette D, Raposo G (2005) Prions and exosomes: from PrPc trafficking to PrPsc propagation. Blood Cells Mol Dis 35(2):143–148. doi:S1079-9796(05)00101-4 [pii] 10.1016/j.bcmd.2005.06.013

    PubMed  CAS  Google Scholar 

  87. Vidal MJ, Stahl PD (1993) The small GTP-binding proteins Rab4 and ARF are associated with released exosomes during reticulocyte maturation. Eur J Cell Biol 60(2):261–267

    PubMed  CAS  Google Scholar 

  88. Rieu S, Geminard C, Rabesandratana H, Sainte-Marie J, Vidal M (2000) Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha4beta1. Eur J Biochem 267(2):583–590. doi:ejb1036 [pii]

    PubMed  CAS  Google Scholar 

  89. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127

    PubMed  CAS  Google Scholar 

  90. Halestrap AP, Kerr PM, Javadov S, Woodfield KY (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1366(1–2):79–94

    PubMed  CAS  Google Scholar 

  91. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Wurdinger T, Middeldorp JM (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 107(14):6328–6333. doi:0914843107 [pii] 10.1073/pnas.0914843107

    PubMed  CAS  Google Scholar 

  92. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4):642–648. doi:S1044-7431(05)00302-7 [pii] 10.1016/j.mcn.2005.12.003

    PubMed  CAS  Google Scholar 

  93. Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, Blot B, Haase G, Goldberg Y, Sadoul R (2011) Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci 46(2):409–418. doi:S1044-7431(10)00255-1 [pii] 10.1016/j.mcn.2010.11.004

    PubMed  CAS  Google Scholar 

  94. Bakhti M, Winter C, Simons M (2011) Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem 286(1):787–796. doi:M110.190009 [pii] 10.1074/jbc.M110.190009

    PubMed  CAS  Google Scholar 

  95. Vrijsen KR, Sluijter JPG, Schuchardt MWL, van Balkom BWM, Noort WA, Chamuleau SAJ, Doevendans PAFM (2010) Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. J Cell Mol Med 14(5):1064–1070

    PubMed  CAS  Google Scholar 

  96. Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M, Wang X, Miyamoto K, Akutsu H, Kondo T, Takahashi Y, Ban T, Ito C, Toshimori K, Nakamura A, Ito M, Miyado M, Mekada E, Umezawa A (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA 105(35):12921–12926. doi:0710608105 [pii] 10.1073/pnas.0710608105

    PubMed  CAS  Google Scholar 

  97. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067

    PubMed  CAS  Google Scholar 

  98. Vallhov H, Gutzeit C, Johansson SM, Nagy N, Paul M, Li Q, Friend S, George TC, Klein E, Scheynius A, Gabrielsson S (2011) Exosomes containing glycoprotein 350 released by EBV-transformed B cells selectively target B cells through CD21 and block EBV infection in vitro. J Immunol 186(1):73–82. doi:jimmunol.1001145 [pii] 10.4049/jimmunol.1001145

    PubMed  CAS  Google Scholar 

  99. Bhatnagar S, Schorey JS (2007) Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J Biol Chem 282(35):25779–25789. doi:M702277200 [pii] 10.1074/jbc.M702277200

    PubMed  CAS  Google Scholar 

  100. Hao S, Ye Z, Li F, Meng Q, Qureshi M, Yang J, Xiang J (2006) Epigenetic transfer of metastatic activity by uptake of highly metastatic B16 melanoma cell-released exosomes. Exp Oncol 28(2):126–131

    PubMed  CAS  Google Scholar 

  101. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Res 66(18):9290–9298

    PubMed  CAS  Google Scholar 

  102. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. doi:http://www.nature.com/ncb/journal/v9/n6/suppinfo/ncb1596_S1.html

    PubMed  CAS  Google Scholar 

  103. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA 103(30):11172–11177. doi:0603838103 [pii] 10.1073/pnas.0603838103

    PubMed  CAS  Google Scholar 

  104. Diederick D, Theo L, Chris HB, Guido J (2010) Exosomes as biomarker treasure chests for prostate cancer. Eur Urol 59(5):823–831

    Google Scholar 

  105. Timmers L, Lim S-K, Arslan F, Armstrong JS, Hoefler IE, Doevendans PA, Piek JJ, El Oakley RM, Choo A, Lee CN, Pasterkamp G, de Kleijn DPV (2008) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1:129–137

    Google Scholar 

  106. Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224. doi:gkp857 [pii] 10.1093/nar/gkp857

    PubMed  CAS  Google Scholar 

  107. Chen TS, Arslan F, Yin Y, Tan SS, Lai RC, Choo AB, Padmanabhan J, Lee CN, de Kleijn DP, Lim SK (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:47. doi:10.1186/1479-5876-9-47

    PubMed  CAS  Google Scholar 

  108. Pilkis SJ, El-Maghrabi MR, Pilkis J, Claus T (1981) Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate. J Biol Chem 256(8):3619–3622

    PubMed  CAS  Google Scholar 

  109. Bando H, Atsumi T, Nishio T, Niwa H, Mishima S, Shimizu C, Yoshioka N, Bucala R, Koike T (2005) Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res 11(16):5784–5792. doi:11/16/5784 [pii] 10.1158/1078-0432.CCR-05-0149 [doi]

    PubMed  CAS  Google Scholar 

  110. Penefsky HS (1985) Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. Proc Natl Acad Sci USA 82(6):1589–1593

    PubMed  CAS  Google Scholar 

  111. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. doi:10.1146/annurev-cellbio-092910-154237

    PubMed  CAS  Google Scholar 

  112. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F, Mazzarino MC, Donia M, Fagone P, Malaponte G, Nicoletti F, Libra M, Milella M, Tafuri A, Bonati A, Basecke J, Cocco L, Evangelisti C, Martelli AM, Montalto G, Cervello M, McCubrey JA (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 3(3):192–222. doi:100296 [pii]

    CAS  Google Scholar 

  113. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61(3):448–460. doi:10.1016/j.cardiores.2003.09.024 S0008636303006540 [pii]

    PubMed  CAS  Google Scholar 

  114. McDunn JE, Muenzer JT, Rachdi L, Chang KC, Davis CG, Dunne WM, Piwnica-Worms D, Bernal-Mizrachi E, Hotchkiss RS (2008) Peptide-mediated activation of Akt and extracellular regulated kinase signaling prevents lymphocyte apoptosis. FASEB J 22(2):561–568. doi:fj.07-8283com [pii] 10.1096/fj.07-8283com

    PubMed  CAS  Google Scholar 

  115. Yin J, Xu K, Zhang J, Kumar A, Yu FS (2007) Wound-induced ATP release and EGF receptor activation in epithelial cells. J Cell Sci 120(Pt 5):815–825. doi:jcs.03389 [pii] 10.1242/jcs.03389

    PubMed  CAS  Google Scholar 

  116. Forman MB, Stone GW, Jackson EK (2006) Role of adenosine as adjunctive therapy in acute myocardial infarction. Cardiovasc Drug Rev 24(2):116–147. doi:10.1111/j.1527-3466.2006.00116.x

    PubMed  CAS  Google Scholar 

  117. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694. doi:S0167-4889(08)9-6 [pii] 10.1016/j.bbamcr.2008.01.024

    PubMed  CAS  Google Scholar 

  118. Luthje J (1989) Origin, metabolism and function of extracellular adenine nucleotides in the blood. Klin Wochenschr 67(6):317–327

    PubMed  CAS  Google Scholar 

  119. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate /`find-me/’ signal release and membrane permeability during apoptosis. Nature 467(7317):863–867. doi:http://www.nature.com/nature/journal/v467/n7317/abs/nature09413.html#supplementary-information

    PubMed  CAS  Google Scholar 

  120. Luthje J, Ogilvie A (1988) Catabolism of Ap4A and Ap3A in whole blood: the dinucleotides are long-lived signal molecules in the blood ending up as intracellular ATP in the erythrocytes. Eur J Biochem 173(1):241–245

    PubMed  CAS  Google Scholar 

  121. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2(2):351–360. doi:10.1007/s11302-005-5302-5

    PubMed  CAS  Google Scholar 

  122. Jacobson KA (2009) Introduction to adenosine receptors as therapeutic targets. Handb Exp Pharmacol 193:1–24. doi:10.1007/978-3-540-89615-9_1

    PubMed  CAS  Google Scholar 

  123. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9(10):729–740. doi:nri2620 [pii] 10.1038/nri2620

    PubMed  CAS  Google Scholar 

  124. Unsworth DJ (2008) Complement deficiency and disease. J Clin Pathol 61(9):1013–1017. doi:jcp. 2008.056317 [pii] 10.1136/jcp.2008.056317

    PubMed  CAS  Google Scholar 

  125. Davies A, Simmons DL, Hale G, Harrison RA, Tighe H, Lachmann PJ, Waldmann H (1989) CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med 170(3):637–654

    PubMed  CAS  Google Scholar 

  126. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736. doi:10.1038/nri2395

    PubMed  CAS  Google Scholar 

  127. Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A (2009) Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets 8(2):110–123

    PubMed  CAS  Google Scholar 

  128. Li LM, Li JB, Zhu Y, Fan GY (2010) Soluble complement receptor type 1 inhibits complement system activation and improves motor function in acute spinal cord injury. Spinal Cord 48(2):105–111

    PubMed  CAS  Google Scholar 

  129. Gandhi J, Cashman SM, Kumar-Singh R (2011) Soluble CD59 expressed from an adenovirus in vivo is a potent inhibitor of complement deposition on murine liver vascular endothelium. PLoS One 6(6)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Kelvyn TEH Bao Ju (A*STAR Institute of Medical Biology), and Cheryl LIEW, Qian Yu NGEOW, and Jia Hui FOO (National Junior College, Singapore) for their help in analyzing the glycolytic activity of MSC exosomes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Kiang Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lai, R.C. et al. (2013). Mesenchymal Stem Cell Exosomes: The Future MSC-Based Therapy?. In: Chase, L., Vemuri, M. (eds) Mesenchymal Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-200-1_3

Download citation

Publish with us

Policies and ethics