Skip to main content

Scaling-up Ex Vivo Expansion of Mesenchymal Stem/Stromal Cells for Cellular Therapies

  • Chapter
  • First Online:
Mesenchymal Stem Cell Therapy

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The significantly large cell doses required in clinical trials with mesenchymal stem/stromal cells (MSC) demand for an efficient production of clinical-scale cell numbers. However, traditional cell culture techniques present several limitations making them unsuitable for the production of large numbers of MSC. Moreover, monitoring and control of MSC expansion are critical to provide a safe and reliable cell product for clinical settings. Bioprocess engineering, in particular ­bioreactors, offers the adequate tools to develop and optimize an efficient, cost-effective, and easily scalable culture system for the large-scale expansion of human MSC for cellular therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16(5):203–209

    Article  PubMed  Google Scholar 

  2. Le Blanc K et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586

    Article  PubMed  Google Scholar 

  3. Wolfe M et al (2008) Isolation and culture of bone marrow-derived human multipotent stromal cells (hMSCs). Methods Mol Biol 449:3–25

    PubMed  Google Scholar 

  4. Tarte K et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115(8):1549–1553

    Article  PubMed  CAS  Google Scholar 

  5. Majd H et al (2009) A novel method of dynamic culture surface expansion improves mesenchymal stem cell proliferation and phenotype. Stem Cells 27(1):200–209

    Article  PubMed  CAS  Google Scholar 

  6. Bartosh TJ et al (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci USA 107(31):13724–13729

    Article  PubMed  CAS  Google Scholar 

  7. Wang W et al (2009) 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 30(14):2705–2715

    Article  PubMed  CAS  Google Scholar 

  8. van Wezel AL (1967) Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 216(5110):64–65

    Article  PubMed  Google Scholar 

  9. dos Santos F et al (2011) Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng C: Methods 17(12):1201–1210

    Google Scholar 

  10. Fernandes AM et al (2007) Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol 132(2):227–236

    Article  PubMed  CAS  Google Scholar 

  11. Fernandes AM et al (2009) Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz J Med Biol Res 42(6):515–522

    Article  PubMed  CAS  Google Scholar 

  12. Park Y et al (2010) Expansion and hepatic differentiation of rat multipotent adult progenitor cells in microcarrier suspension culture. J Biotechnol 150(1):131–139

    Article  PubMed  CAS  Google Scholar 

  13. Tharmalingam T et al (2011) Enhanced production of human recombinant proteins from CHO cells grown to high densities in macroporous microcarriers. Mol Biotechnol (DOI: 10.1007/s12033-011-9401-y)

    Google Scholar 

  14. Lindskog U et al (1987) Alternatives for harvesting cells grown on microcarriers: effects on subsequent attachment and growth. Dev Biol Stand 66:307–313

    PubMed  CAS  Google Scholar 

  15. Yang HS et al (2010) Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment. Cell Transplant 19(9):1123–1132

    Article  PubMed  Google Scholar 

  16. Eibes G et al (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J Biotechnol 146(4):194–197

    Article  PubMed  CAS  Google Scholar 

  17. Schop D et al (2009) Expansion of human mesenchymal stromal cells on microcarriers: growth and metabolism. J Tissue Eng Regen Med 4(2):131–140

    Article  Google Scholar 

  18. Frauenschuh S et al (2007) A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Biotechnol Prog 23(1):187–193

    Article  PubMed  CAS  Google Scholar 

  19. Schop D et al (2008) Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: growth and metabolism. J Tissue Eng Regen Med 2(2–3):126–135

    Article  PubMed  CAS  Google Scholar 

  20. Sart S, Schneider YJ, Agathos SN (2009) Ear mesenchymal stem cells: an efficient adult multipotent cell population fit for rapid and scalable expansion. J Biotechnol 139(4):291–299

    Article  PubMed  CAS  Google Scholar 

  21. Yang Y, Rossi FM, Putnins EE (2007) Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials 28(20):3110–3120

    Article  PubMed  CAS  Google Scholar 

  22. Martinez-Lorenzo MJ et al (2009) Phenotype and chondrogenic differentiation of mesenchymal cells from adipose tissue of different species. J Orthop Res 27(11):1499–1507

    Article  PubMed  Google Scholar 

  23. Zhu Y et al (2009) Ex vivo expansion of adipose tissue-derived stem cells in spinner flasks. Biotechnol J 4(8):1198–1209

    Article  PubMed  CAS  Google Scholar 

  24. dos Santos F (2011) Isolation and ex-vivo expansion of mesenchymal stem cells for supplementation during hematopoietic stem cell transplantation. PhD thesis, Instituto Superior Técnico, Lisboa

    Google Scholar 

  25. Sheyn D et al (2010) The effect of simulated microgravity on human mesenchymal stem cells cultured in an osteogenic differentiation system: a bioinformatics study. Tissue Eng A 16(11):3403–3412

    Article  Google Scholar 

  26. Frith JE, Thomson B, Genever PG (2010) Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng C: Methods 16(4):735–749

    Article  CAS  Google Scholar 

  27. Chen X et al (2006) Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 24(9):2052–2059

    Article  PubMed  CAS  Google Scholar 

  28. Kedong S et al (2010) Simultaneous expansion and harvest of hematopoietic stem cells and mesenchymal stem cells derived from umbilical cord blood. J Mater Sci Mater Med 21(12):3183–3193

    Article  PubMed  Google Scholar 

  29. Sadeghi A et al (2011) Large-scale bioreactor expansion of tumor-infiltrating lymphocytes. J Immunol Methods 364(1–2):94–100

    Article  PubMed  CAS  Google Scholar 

  30. Hundt B et al (2007) Establishment of a mink enteritis vaccine production process in stirred-tank reactor and wave bioreactor microcarrier culture in 1–10 L scale. Vaccine 25(20):3987–3995

    Article  PubMed  CAS  Google Scholar 

  31. Zhao F, Ma T (2005) Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol Bioeng 91(4):482–493

    Article  PubMed  CAS  Google Scholar 

  32. Koller MR et al (1993) Expansion of primitive human hematopoietic progenitors in a perfusion bioreactor system with IL-3, IL-6, and stem cell factor. Biotechnology (NY) 11(3):358–363

    Article  CAS  Google Scholar 

  33. Koller MR, Emerson SG, Palsson BO (1993) Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 82(2):378–384

    PubMed  CAS  Google Scholar 

  34. Palsson BO et al (1993) Expansion of human bone marrow progenitor cells in a high cell density continuous perfusion system. Biotechnology (NY) 11(3):368–372

    Article  CAS  Google Scholar 

  35. Di Maggio N et al (2011) Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials 32(2):321–329

    Article  PubMed  Google Scholar 

  36. Grayson WL et al (2011) Bioreactor cultivation of functional bone grafts. Methods Mol Biol 698:231–241

    Article  PubMed  CAS  Google Scholar 

  37. Yeatts AB, Fisher JP (2011) Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells. Tissue Eng C: Methods 17(3):337–348

    Article  CAS  Google Scholar 

  38. Alves da Silva ML et al (2011) Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J Tissue Eng Regen Med. DOI: 10.1002/term.372

    Google Scholar 

  39. Li D et al (2009) Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng A 15(10):2773–2783

    Article  CAS  Google Scholar 

  40. Kreke MR, Huckle WR, Goldstein AS (2005) Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36(6):1047–1055

    Article  PubMed  CAS  Google Scholar 

  41. Bieback K, Kinzebach S, Karagianni M (2010) Translating research into clinical scale manufacturing of mesenchymal stromal cells. Stem Cells Int 2010:193519

    Google Scholar 

  42. Kirouac DC, Zandstra PW (2008) The systematic production of cells for cell therapies. Cell Stem Cell 3(4):369–381

    Article  PubMed  CAS  Google Scholar 

  43. Mason C, Hoare M (2007) Regenerative medicine bioprocessing: building a conceptual framework based on early studies. Tissue Eng 13(2):301–311

    Article  PubMed  CAS  Google Scholar 

  44. Novais JL, Titchener-Hooker NJ, Hoare M (2001) Economic comparison between conventional and disposables-based technology for the production of biopharmaceuticals. Biotechnol Bioeng 75(2):143–153

    Article  PubMed  CAS  Google Scholar 

  45. Boo L et al (2011) Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture. J Mater Sci Mater Med. DOI: 10.1007/s10856-011-4294-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Santos, F.D., Andrade, P.Z., da Silva, C.L., Cabral, J.M.S. (2013). Scaling-up Ex Vivo Expansion of Mesenchymal Stem/Stromal Cells for Cellular Therapies. In: Chase, L., Vemuri, M. (eds) Mesenchymal Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-200-1_1

Download citation

Publish with us

Policies and ethics