Skip to main content

Chlamydiaceae

  • Chapter
  • First Online:
Book cover Molecular Typing in Bacterial Infections

Part of the book series: Infectious Disease ((ID))

  • 2228 Accesses

Abstract

The family of Gram-negative Chlamydiaceae bacteria is comprised of nine species, three of which are known to cause a diversity of diseases among humans that range from asymptomatic and mild to severe and debilitating. The common sites of infection are the eyes and respiratory tract in all age groups, and the urogenital tract, upper reproductive tract, and rectum primarily in adolescents and adults. The three species responsible for human disease are Chlamydia trachomatis, Chlamydia pneumonia, and Chlamydia psittaci, although C. pecorum and C. suis also likely play a role in ocular trachoma. While C. trachomatis is confined to humans, C. pneumoniae and C. psittaci have been isolated from other mammals and both mammals and birds, respectively. Infection does not elicit protective lasting immunity. Currently, there are no vaccines to prevent either these infections nor rapid, cost-effective diagnostics. Due to the high prevalence of asymptomatic infections and the high cost of screening, especially for sexually transmitted diseases due to C. trachomatis, there are large numbers of undiagnosed and untreated individuals who can transmit the organisms, fueling the high global prevalence of these infections. This chapter covers the history of these three species, their initial discovery and efforts at diagnosis along with the evolution of strain typing techniques. We conclude with a discussion of future typing methods for Chlamydia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerbase AC, Rowley JT, Mertens TE (1998) Global epidemiology of sexually transmitted diseases. Lancet 351(Suppl 3):2–4

    PubMed  Google Scholar 

  2. Resnikoff S, Pascolini D, Etya’ale D et al (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851

    PubMed  Google Scholar 

  3. Dean D (2010) Pathogenesis of Chlamydial Ocular Infections. In: Tasman W, Jaeger EA (eds) Duane’s Foundations of Clinical Ophthalmology. Lippincott Williams & Wilkins, Philadelphia, PA, pp 678–702

    Google Scholar 

  4. Neureiter D, Heuschmann P, Stintzing S et al (2003) Detection of Chlamydia pneumoniae but not of Helicobacter pylori in symptomatic atherosclerotic carotids associated with enhanced serum antibodies, inflammation and apoptosis rate. Atherosclerosis 168:153–162

    PubMed  CAS  Google Scholar 

  5. Cook PJ, Honeybourne D, Lip GY et al (1998) Chlamydia pneumoniae antibody titers are significantly associated with acute stroke and transient cerebral ischemia: the West Birmingham Stroke Project. Stroke 29:404–410

    PubMed  CAS  Google Scholar 

  6. Lin TM, Chen CH, Wu HL et al (2008) The association of C (-260)–>T polymorphism in CD14 promoter and Chlamydia pneumoniae infection in ischemic stroke patients. Am J Clin Pathol 130:595–601

    PubMed  CAS  Google Scholar 

  7. Hahn DL, Dodge RW, Golubjatnikov R (1991) Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA 266:225–230

    PubMed  CAS  Google Scholar 

  8. Dean D (2009) Psittacosis Monograph. Br Med J:http://www.bestpractice.bmj.com(accessed 12/10)

  9. Dean D, Suchland RJ, Stamm WE (2000) Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping. J Infect Dis 182:909–916

    PubMed  CAS  Google Scholar 

  10. Hogan RJ, Mathews SA, Mukhopadhyay S et al (2004) Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72:1843–1855

    PubMed  CAS  Google Scholar 

  11. Stamm WE, Jones RB, Batteiger BE (2005) Part III. Infectious diseases and their etiologic agents, Section C. Chlamydial Diseases. In: Mandell GL et al (eds) Principles and Practice of Infectious Diseases. Churchill Livingston, Philadelphia, pp 2239–2253

    Google Scholar 

  12. Moss TR, Hawkswell J (1986) Evidence of infection with Chlamydia trachomatis in patients with pelvic inflammatory disease: value of partner investigation. Fertil Steril 45:429–430

    PubMed  CAS  Google Scholar 

  13. White JA (2009) Manifestations and management of lymphogranuloma venereum. Curr Opin Infect Dis 22:57–66

    PubMed  Google Scholar 

  14. Kumar S, Hammerschlag MR (2007) Acute respiratory infection due to Chlamydia pneumoniae: current status of diagnostic methods. Clin Infect Dis 44:568–576

    PubMed  Google Scholar 

  15. Andersen AA (1997) Two new serovars of Chlamydia psittaci from North American birds. J Vet Diagn Invest 9:159–164

    PubMed  CAS  Google Scholar 

  16. Ruettger A, Feige J, Slickers P et al (2011) Genotyping of Chlamydia trachomatis strains from culture and clinical samples using an ompA-based DNA microarray assay. Mol Cell Probes 25:19–27

    PubMed  CAS  Google Scholar 

  17. Borel N, Kempf E, Hotzel H et al (2008) Direct identification of chlamydiae from clinical samples using a DNA microarray assay: a validation study. Mol Cell Probes 22:55–64

    PubMed  CAS  Google Scholar 

  18. Morré SA, Munk C, Persson K et al (2002) Comparison of three commercially available peptide-based immunoglobulin G (IgG) and IgA assays to microimmunofluorescence assay for detection of Chlamydia trachomatis antibodies. J Clin Microbiol 40:584–587

    PubMed  Google Scholar 

  19. Wong KH, Skelton SK, Daugharty H (1994) Utility of complement fixation and microimmunofluorescence assays for detecting serologic responses in patients with clinically diagnosed psittacosis. J Clin Microbiol 32:2417–2421

    PubMed  CAS  Google Scholar 

  20. Richmond SJ, Caul EO (1975) Fluorescent antibody studies in chlamydial infections. J Clin Microbiol 1:345–352

    PubMed  CAS  Google Scholar 

  21. Jones CS, Maple PA, Andrews NJ et al (2003) Measurement of IgG antibodies to Chlamydia trachomatis by commercial enzyme immunoassays and immunofluorescence in sera from pregnant women and patients with infertility, pelvic inflammatory disease, ectopic pregnancy, and laboratory diagnosed Chlamydia psittaci/Chlamydia pneumoniae infection. J Clin Pathol 56:225–229

    PubMed  CAS  Google Scholar 

  22. Amor B, Kahan A, Orfila J et al (1979) Immunological evidence of chlamydial infection in Reiter’s syndrome. Ann Rheum Dis 38(Suppl 1):116–118

    PubMed  Google Scholar 

  23. Mardh PA, Lind I, Svensson L et al (1981) Antibodies to Chlamydia trachomatis, Mycoplasma hominis, and Neisseria gonorrhoeae in sera from patients with acute salpingitis. Br J Vener Dis 57:125–129

    PubMed  CAS  Google Scholar 

  24. Land JA, Gijsen AP, Kessels AG et al (2003) Performance of five serological chlamydia antibody tests in subfertile women. Hum Reprod 18:2621–2627

    PubMed  CAS  Google Scholar 

  25. Mahmoud E, Elshibly S, Mardh PA (1994) Seroepidemiologic study of Chlamydia pneumoniae and other chlamydial species in a hyperendemic area for trachoma in the Sudan. Am J Trop Med Hyg 51:489–494

    PubMed  CAS  Google Scholar 

  26. Bennedsen M, Berthelsen L, Lind I et al (2002) Performance of three microimmunofluorescence assays for detection of Chlamydia pneumoniae immunoglobulin M, G, and A antibodies. Clin Diagn Lab Immunol 9:833–839

    PubMed  CAS  Google Scholar 

  27. Grayston JT (2000) Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J Infect Dis 181(Suppl 3):S402–S410

    PubMed  CAS  Google Scholar 

  28. Messmer TO, Martinez J, Hassouna F et al (2001) Comparison of two commercial microimmunofluorescence kits and an enzyme immunoassay kit for detection of serum immunoglobulin G antibodies to Chlamydia pneumoniae. Clin Diagn Lab Immunol 8:588–592

    PubMed  CAS  Google Scholar 

  29. Persson K, Boman J (2000) Comparison of five serologic tests for diagnosis of acute infections by Chlamydia pneumoniae. Clin Diagn Lab Immunol 7:739–744

    PubMed  CAS  Google Scholar 

  30. Hallsworth PG, Wesselingh SL, McDonald PJ (1992) Development of an enzyme immunoassay to detect antibody to Chlamydia pneumoniae strain TWAR and its application in a limited seroepidemiological survey. Pathology (Phila) 24:87–90

    CAS  Google Scholar 

  31. Bobo L, Coutlee F, Yolken RH et al (1990) Diagnosis of Chlamydia trachomatis cervical infection by detection of amplified DNA with an enzyme immunoassay. J Clin Microbiol 28:1968–1973

    PubMed  CAS  Google Scholar 

  32. Bobo L, Munoz B, Viscidi R et al (1991) Diagnosis of Chlamydia trachomatis eye infection in Tanzania by polymerase chain reaction/enzyme immunoassay. Lancet 338:847–850

    PubMed  CAS  Google Scholar 

  33. Harkinezhad T, Verminnen K, De Buyzere M et al (2009) Prevalence of Chlamydophila psittaci infections in a human population in contact with domestic and companion birds. J Med Microbiol 58:1207–1212

    PubMed  Google Scholar 

  34. Evans RT, Taylor-Robinson D (1982) Development and evaluation of an enzyme-linked immunosorbent assay (ELISA), using chlamydial group antigen, to detect antibodies, to Chlamydia trachomatis. J Clin Pathol 35:1122–1128

    PubMed  CAS  Google Scholar 

  35. Hessel T, Dhital SP, Plank R et al (2001) Immune response to chlamydial 60-kilodalton heat shock protein in tears from Nepali trachoma patients. Infect Immun 69:4996–5000

    PubMed  CAS  Google Scholar 

  36. Mascellino MT, Ciardi MR, Oliva A et al (2008) Chlamydia trachomatis detection in a population of asymptomatic and symptomatic women: correlation with the presence of serological markers for this infection. New Microbiol 31:249–256

    PubMed  CAS  Google Scholar 

  37. Cappello F, Conway de Macario E, Di Felice V et al (2009) Chlamydia trachomatis infection and anti-Hsp60 immunity: the two sides of the coin. PLoS Pathog 5:e1000552

    PubMed  Google Scholar 

  38. Stevens TL, Bossie A, Sanders VM et al (1988) Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature 334:255–258

    PubMed  CAS  Google Scholar 

  39. Sharma J, Zhong Y, Dong F et al (2006) Profiling of human antibody responses to Chlamydia trachomatis urogenital tract infection using microplates arrayed with 156 chlamydial fusion proteins. Infect Immun 74:1490–1499

    PubMed  CAS  Google Scholar 

  40. Skwor T, Kandel RP, Basravi S et al (2010) Characterization of humoral immune responses to chlamydial HSP60, CPAF, and CT795 in inflammatory and severe trachoma. Invest Ophthalmol Vis Sci 51:5128–5136

    PubMed  Google Scholar 

  41. Crane DD, Carlson JH, Fischer ER et al (2006) Chlamydia trachomatis polymorphic membrane protein D is a species-common pan-neutralizing antigen. Proc Natl Acad Sci USA 103:1894–1899

    PubMed  CAS  Google Scholar 

  42. Mancini F, Savarino A, Losardo M et al (2009) Characterization of the serological response to phospholipase D protein of Chlamydophila pneumoniae in patients with acute coronary syndromes. Microbes Infect 11:367–373

    PubMed  CAS  Google Scholar 

  43. Muller-Loennies S, Gronow S, Brade L et al (2006) A monoclonal antibody against a carbohydrate epitope in lipopolysaccharide differentiates Chlamydophila psittaci from Chlamydophila pecorum, Chlamydophila pneumoniae, and Chlamydia trachomatis. Glycobiology 16:184–196

    PubMed  Google Scholar 

  44. Coble BI, Nordahl-Akesson E, Vinnerberg A et al (2006) Urine-based testing for Chlamydia trachomatis using polymerase chain reaction, leucocyte esterase and urethral and cervical smears. Scand J Clin Lab Invest 66:269–277

    PubMed  Google Scholar 

  45. Dean D (1997) Chlamydial infections. In: Connor DH et al (eds) Pathology of Infectious Diseases. Appleton and Lange Publishers, Stamford, CT, pp 473–490

    Google Scholar 

  46. Gaydos CA, Roblin PM, Hammerschlag MR et al (1994) Diagnostic utility of PCR-enzyme immunoassay, culture, and serology for detection of Chlamydia pneumoniae in symptomatic and asymptomatic patients. J Clin Microbiol 32:903–905

    PubMed  CAS  Google Scholar 

  47. Lietman T, Brooks D, Moncada J et al (1998) Chronic follicular conjunctivitis associated with Chlamydia psittaci or Chlamydia pneumoniae. Clin Infect Dis 26:1335–1340

    PubMed  CAS  Google Scholar 

  48. Dean D, Palmer L, Pant CR et al (1989) Use of a Chlamydia trachomatis DNA probe for detection of ocular chlamydiae. J Clin Microbiol 27:1062–1067

    PubMed  CAS  Google Scholar 

  49. Cano RJ, Murrieta CM, Spaulding DC et al (1991) Evaluation of a DNA probe of plasmid origin for the detection of Chlamydia trachomatis in cultures and clinical specimens. Mol Cell Probes 5:419–427

    PubMed  CAS  Google Scholar 

  50. Mouton JW, Verkooyen R, van der Meijden WI et al (1997) Detection of Chlamydia trachomatis in male and female urine specimens by using the amplified Chlamydia trachomatis test. J Clin Microbiol 35:1369–1372

    PubMed  CAS  Google Scholar 

  51. Stothard DR, Williams JA, Van Der Pol B et al (1998) Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect Immun 66:6010–6013

    PubMed  CAS  Google Scholar 

  52. Jespersen DJ, Flatten KS, Jones MF et al (2005) Prospective comparison of cell cultures and nucleic acid amplification tests for laboratory diagnosis of Chlamydia trachomatis Infections. J Clin Microbiol 43:5324–5326

    PubMed  CAS  Google Scholar 

  53. Geisler WM, Chow JM, Schachter J et al (2007) Pelvic examination findings and Chlamydia trachomatis infection in asymptomatic young women screened with a nucleic acid amplification test. Sex Transm Dis 34:335–338

    PubMed  Google Scholar 

  54. Rogers SM, Miller WC, Turner CF et al (2008) Concordance of chlamydia trachomatis infections within sexual partnerships. Sex Transm Infect 84:23–28

    PubMed  CAS  Google Scholar 

  55. Schachter J, Hook EW, Martin DH et al (2005) Confirming positive results of nucleic acid amplification tests (NAATs) for Chlamydia trachomatis: all NAATs are not created equal. J Clin Microbiol 43:1372–1373

    PubMed  CAS  Google Scholar 

  56. Gaydos CA (2005) Nucleic acid amplification tests for gonorrhea and Chlamydia: practice and applications. Infect Dis Clin North Am 19:367–386

    PubMed  Google Scholar 

  57. Unemo M, Olcen P, Agne-Stadling I et al (2007) Experiences with the new genetic variant of Chlamydia trachomatis in Orebro county, Sweden—proportion, characteristics and effective diagnostic solution in an emergent situation. Euro Surveill 12:E5–E6

    PubMed  CAS  Google Scholar 

  58. Fine D, Dicker L, Mosure D et al (2008) Increasing chlamydia positivity in women screened in family planning clinics: do we know why? Sex Transm Dis 35:47–52

    PubMed  Google Scholar 

  59. Kapoor S (2008) Re-emergence of lymphogranuloma venereum. J Eur Acad Dermatol Venereol 22:409–416

    PubMed  CAS  Google Scholar 

  60. Stary G, Meyer T, Bangert C et al (2008) New Chlamydia trachomatis L2 strains identified in a recent outbreak of lymphogranuloma venereum in Vienna, Austria. Sex Transm Dis 35:377–382

    PubMed  CAS  Google Scholar 

  61. McLean CA, Stoner BP, Workowski KA (2007) Treatment of lymphogranuloma venereum. Clin Infect Dis 44(Suppl 3):S147–S152

    PubMed  Google Scholar 

  62. Ciervo A, Petrucca A, Cassone A (2003) Identification and quantification of Chlamydia pneumoniae in human atherosclerotic plaques by LightCycler real-time-PCR. Mol Cell Probes 17:107–111

    PubMed  CAS  Google Scholar 

  63. Tondella ML, Talkington DF, Holloway BP et al (2002) Development and evaluation of real-time PCR-based fluorescence assays for detection of Chlamydia pneumoniae. J Clin Microbiol 40:575–583

    PubMed  CAS  Google Scholar 

  64. Dean D, Kandel RP, Adhikari HK et al (2008) Multiple Chlamydiaceae species in trachoma: implications for disease pathogenesis and control. PLoS Med 5:e14

    PubMed  Google Scholar 

  65. Wang SP, Kuo CC, Barnes RC et al (1985) Immunotyping of Chlamydia trachomatis with monoclonal antibodies. J Infect Dis 152:791–800

    PubMed  CAS  Google Scholar 

  66. Wang SP, Grayston JT (1991) Three new serovars of Chlamydia trachomatis: Da, Ia, and L2a. J Infect Dis 163:403–405

    PubMed  CAS  Google Scholar 

  67. Dean D, Schachter J, Dawson CR et al (1992) Comparison of the major outer membrane protein variant sequence regions of B/Ba isolates: A molecular epidemiologic approach to Chlamydia trachomatis infections. J Infect Dis 166:383–392

    PubMed  CAS  Google Scholar 

  68. Baehr W, Zhang YX, Joseph T et al (1988) Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. Proc Natl Acad Sci USA 85:4000–4004

    PubMed  CAS  Google Scholar 

  69. Geens T, Desplanques A, Van Loock M et al (2005) Sequencing of the Chlamydophila psittaci ompA gene reveals a new genotype, E/B, and the need for a rapid discriminatory genotyping method. J Clin Microbiol 43:2456–2461

    PubMed  CAS  Google Scholar 

  70. Kutlin A, Roblin PM, Kumar S et al (2007) Molecular characterization of Chlamydophila pneumoniae isolates from Western barred bandicoots. J Med Microbiol 56:407–417

    PubMed  CAS  Google Scholar 

  71. Xiong L, Kong F, Zhou H et al (2006) Use of PCR and reverse line blot hybridization assay for rapid simultaneous detection and serovar identification of Chlamydia trachomatis. J Clin Microbiol 44:1413–1418

    PubMed  CAS  Google Scholar 

  72. Maraha B, Berg H, Kerver M et al (2004) Is the perceived association between Chlamydia pneumoniae and vascular diseases biased by methodology? J Clin Microbiol 42:3937–3941

    PubMed  CAS  Google Scholar 

  73. Meijer A, Kwakkel GJ, de Vries A et al (1997) Species identification of Chlamydia isolates by analyzing restriction fragment length polymorphism of the 16 S-23S rRNA spacer region. J Clin Microbiol 35:1179–1183

    PubMed  CAS  Google Scholar 

  74. Demkin VV, Zimin AL (2005) A new amplification target for PCR-RFLP detection and identification of Chlamydiaceae species. Arch Microbiol 183:169–175

    PubMed  CAS  Google Scholar 

  75. Morré SA, Rozendaal L, van Valkengoed IG et al (2000) Urogenital Chlamydia trachomatis serovars in men and women with a symptomatic or asymptomatic infection: an association with clinical manifestations? J Clin Microbiol 38:2292–2296

    PubMed  Google Scholar 

  76. Stothard DR, Toth GA, Batteiger BE (2003) Polymorphic membrane protein H has evolved in parallel with the three disease-causing groups of Chlamydia trachomatis. Infect Immun 71:1200–1208

    PubMed  CAS  Google Scholar 

  77. Meijer A, Morré SA, van den Brule AJ et al (1999) Genomic relatedness of Chlamydia isolates determined by amplified fragment length polymorphism analysis. J Bacteriol 181:4469–4475

    PubMed  CAS  Google Scholar 

  78. Boumedine KS, Rodolakis A (1998) AFLP allows the identification of genomic markers of ruminant Chlamydia psittaci strains useful for typing and epidemiological studies. Res Microbiol 149:735–744

    PubMed  CAS  Google Scholar 

  79. Carter MW, Harrison TG, Shuja Shafi M et al (1998) Typing strains of Chlamydia pneumoniae by amplified fragment length polymorphism typing. Clin Microbiol Infect 4:663–664

    PubMed  CAS  Google Scholar 

  80. Fukushi H, Hirai K (1989) Genetic diversity of avian and mammalian Chlamydia psittaci strains and relation to host origin. J Bacteriol 171:2850–2855

    PubMed  CAS  Google Scholar 

  81. Yuan Y, Zhang YX, Watkins NG et al (1989) Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun 57:1040–1049

    PubMed  CAS  Google Scholar 

  82. Brunham R, Yang C, Maclean I et al (1994) Chlamydia trachomatis from individuals in a sexually transmitted diseases core group exhibit frequent sequence variation in the major outer membrane protein (omp1) gene. J Clin Invest 94:458–463

    PubMed  CAS  Google Scholar 

  83. Klint M, Lofdahl M, Ek C et al (2006) Lymphogranuloma venereum prevalence in Sweden among men who have sex with men and characterization of Chlamydia trachomatis ompA genotypes. J Clin Microbiol 44:4066–4071

    PubMed  CAS  Google Scholar 

  84. Millman K, Tavaré S, Dean D (2001) Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. J Bacteriol 183:5997–6008

    PubMed  CAS  Google Scholar 

  85. Molestina RE, Dean D, Miller RD et al (1998) Characterization of a strain of Chlamydia pneumoniae isolated from a coronary atheroma by analysis of the omp1 gene and biological activity in human endothelial cells. Infect Immun 66:1370–1376

    PubMed  CAS  Google Scholar 

  86. Cochrane M, Walker P, Gibbs H et al (2005) Multiple genotypes of Chlamydia pneumoniae identified in human carotid plaque. Microbiology 151:2285–2290

    PubMed  CAS  Google Scholar 

  87. Brunelle BW, Nicholson TL, Stephens RS (2004) Microarray-based genomic surveying of gene polymorphisms in Chlamydia trachomatis. Genome Biol 5:R42

    PubMed  Google Scholar 

  88. Carlson JH, Hughes S, Hogan D et al (2004) Polymorphisms in the Chlamydia trachomatis cytotoxin locus associated with ocular and genital isolates. Infect Immun 72:7063–7072

    PubMed  CAS  Google Scholar 

  89. Koo IC, Walthers D, Hefty PS et al (2006) ChxR is a transcriptional activator in Chlamydia. Proc Natl Acad Sci USA 103:750–755

    PubMed  CAS  Google Scholar 

  90. O’Connell CM, AbdelRahman YM, Green E et al (2011) Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum. Infect Immun 79:1044–1056

    PubMed  Google Scholar 

  91. Molina DM, Pal S, Kayala MA et al (2010) Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. Vaccine 28:3014–3024

    PubMed  CAS  Google Scholar 

  92. Sachse K, Vretou E, Livingstone M et al (2009) Recent developments in the laboratory diagnosis of chlamydial infections. Vet Microbiol 135:2–21

    PubMed  CAS  Google Scholar 

  93. Lodes MJ, Suciu D, Wilmoth JL et al (2007) Identification of upper respiratory tract pathogens using electrochemical detection on an oligonucleotide microarray. PLoS One 2:e924

    PubMed  Google Scholar 

  94. Shi G, Wen SY, Chen SH et al (2005) Fabrication and optimization of the multiplex PCR-based oligonucleotide microarray for detection of Neisseria gonorrhoeae, Chlamydia trachomatis and Ureaplasma urealyticum. J Microbiol Methods 62:245–256

    PubMed  CAS  Google Scholar 

  95. Tang J, Xu Z, Zhou L et al (2010) Rapid and simultaneous detection of Ureaplasma parvum and Chlamydia trachomatis antibodies based on visual protein microarray using gold nanoparticles and silver enhancement. Diagn Microbiol Infect Dis 67:122–128

    PubMed  CAS  Google Scholar 

  96. Sachse K, Laroucau K, Hotzel H et al (2008) Genotyping of Chlamydophila psittaci using a new DNA microarray assay based on sequence analysis of ompA genes. BMC Microbiol 8:63

    PubMed  Google Scholar 

  97. Kari L, Whitmire WM, Carlson JH et al (2008) Pathogenic diversity among Chlamydia trachomatis ocular strains in nonhuman primates is affected by subtle genomic variations. J Infect Dis 197:449–456

    PubMed  CAS  Google Scholar 

  98. Albert TJ, Dailidiene D, Dailide G et al (2005) Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat Methods 2:951–953

    PubMed  CAS  Google Scholar 

  99. Maiden MC, Bygraves JA, Feil E et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    PubMed  CAS  Google Scholar 

  100. Chan MS, Maiden MC, Spratt BG (2001) Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics 17:1077–1083

    PubMed  CAS  Google Scholar 

  101. Kotetishvili M, Stine OC, Chen Y et al (2003) Multilocus sequence typing has better discriminatory ability for typing Vibrio cholerae than does pulsed-field gel electrophoresis and provides a measure of phylogenetic relatedness. J Clin Microbiol 41:2191–2196

    PubMed  CAS  Google Scholar 

  102. Enright MC, Day NP, Davies CE et al (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015

    PubMed  CAS  Google Scholar 

  103. Meats E, Feil EJ, Stringer S et al (2003) Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol 41:1623–1636

    PubMed  CAS  Google Scholar 

  104. Viscidi RP, Demma JC (2003) Genetic diversity of Neisseria gonorrhoeae housekeeping genes. J Clin Microbiol 41:197–204

    PubMed  CAS  Google Scholar 

  105. Klint M, Fuxelius HH, Goldkuhl RR et al (2007) High-resolution genotyping of Chlamydia trachomatis strains by multilocus sequence analysis. J Clin Microbiol 45:1410–1414

    PubMed  CAS  Google Scholar 

  106. Pannekoek Y, Morelli G, Kusecek B et al (2008) Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol 8:42

    PubMed  Google Scholar 

  107. Dean D, Bruno WJ, Wan R et al (2009) Predicting phenotype and emerging strains among Chlamydia trachomatis infections. Emerg Infect Dis 15:1385–1394

    PubMed  CAS  Google Scholar 

  108. Gomes JP, Bruno WJ, Nunes A et al (2007) Evolution of Chlamydia trachomatis diversity occurs by widespread interstrain recombination involving hotspots. Genome Res 17:50–60

    PubMed  CAS  Google Scholar 

  109. Somboonna N, Wan R, Ojcius DM et al (2011) Hypervirulent Chlamydia trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L2) and D lineages. mBio 2:10.1128/mBio.00045-11

    Google Scholar 

  110. Joseph SJ, Didelot X, Gandhi K et al (2011) Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biol Direct 6:28

    PubMed  Google Scholar 

  111. WHO (2001) Global prevalence and incidence of selected curable sexually transmitted infections. (Accessed December 23, 2009, at http://www.who.int/hiv/pub/sti/pub7/en/)

  112. Centers for Disease Control and Prevention, Division of STD Prevention (2007) Surveillance Report on Chlamydia.1–192

    Google Scholar 

  113. Mahilum-Tapay L, Laitila V, Wawrzyniak JJ et al (2007) New point of care Chlamydia Rapid Test–bridging the gap between diagnosis and treatment: performance evaluation study. BMJ 335:1190–1194

    PubMed  Google Scholar 

  114. Marcy Y, Ishoey T, Lasken RS et al (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet 3:1702–1708

    PubMed  CAS  Google Scholar 

  115. Boedicker JQ, Li L, Kline TR et al (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Dean M.D., MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skwor, T., Dean, D. (2013). Chlamydiaceae. In: de Filippis, I., McKee, M. (eds) Molecular Typing in Bacterial Infections. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-185-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-185-1_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-184-4

  • Online ISBN: 978-1-62703-185-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics