Skip to main content

Molecular Epidemiology

  • Chapter
  • First Online:
  • 2364 Accesses

Part of the book series: Infectious Disease ((ID))

Abstract

This chapter describes the field of molecular epidemiology by identifying key components of molecular epidemiology and by providing examples of applications of molecular epidemiology. Molecular epidemiology involves the integration of molecular techniques with traditional epidemiologic methods to describe distribution and determinants of disease. The strength of molecular epidemiology is its ability to precisely describe associations between risk factors and disease on a population level using biomarkers of exposure, intermediate endpoints, and disease or susceptibility. Applications of molecular epidemiology include epidemiologic surveillance, describing geographic distribution, temporal trends, and identifying modes of transmission of an infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gordis L (2000) Epidemiology, 2nd edn. Saunders, Philadelphia, PA

    Google Scholar 

  2. Hennekens CH, Buring JE (1987) Epidemiology in medicine, 1st edn. Lippincott, Philadelphia, PA

    Google Scholar 

  3. Heath CW Jr, Alexander AD, Galton MM (1965) Leptospirosis in the United States: analysis of 483 cases in Man, 1949–1961. N Engl J Med 273:915–922

    Article  PubMed  Google Scholar 

  4. Truett J, Cornfield J, Kannel W (1967) A multivariate analysis of the risk of coronary heart disease in Framingham. J Chronic Dis 20:511–524

    Article  PubMed  CAS  Google Scholar 

  5. Higginson J (1977) The role of the pathologist in environmental medicine and public health. Am J Pathol 86:460–484

    PubMed  CAS  Google Scholar 

  6. Lower GM Jr, Nilsson T, Nelson CE et al (1979) N-Acetyltransferase phenotype and risk in urinary bladder cancer: approaches in molecular epidemiology. Preliminary results in Sweden and Denmark. Environ Health Perspect 29:71–79

    Article  PubMed  CAS  Google Scholar 

  7. Perera FP, Weinstein IB (1982) Molecular epidemiology and carcinogen-DNA adduct detection: new approaches to studies of human cancer causation. J Chronic Dis 35:581–600

    Article  PubMed  CAS  Google Scholar 

  8. Summers WC (1980) Molecular epidemiology of DNA viruses: applications of restriction endonuclease cleavage site analysis. Yale J Biol Med 53:55–59

    PubMed  CAS  Google Scholar 

  9. Harris TJR, Underwood BO, Knowles NJ et al (1979) Molecular approach to the epidemiology of swine vesicular disease: correlation of variation in the virus structural polypeptides with serological properties. Infect Immun 24:593–599

    PubMed  CAS  Google Scholar 

  10. Committee on Biological Markers of the National Research Council (1987) Biologic markers in environmental health research. Environ Health Perspect 74:3–9

    Google Scholar 

  11. Schulte PA (1993) A conceptual and historical framework for molecular epidemiology. In: Schulte PA, Perrera FP (eds) Molecular epidemiology: principles and practices. Academic, New York, NY, pp 3–44

    Google Scholar 

  12. Hulka BS, Wilcosky T (1988) Biological markers in epidemiologic research. Arch Environ Health 43:83–89

    Article  PubMed  CAS  Google Scholar 

  13. Backhouse JL, Gidding HF, MacIntyre CR et al (2007) Population-based seroprevalence of Neisseria meningitidis serogroup C capsular antibody before the introduction of conjugate vaccine, in Australia. Vaccine 25:1310–1315

    Article  PubMed  CAS  Google Scholar 

  14. Edwards LB, Acquaviva FA, Livesay VT et al (1969) An atlas of sensitivity to tuberculin, PPD-B, and histoplasmin in the United States. Am Rev Respir Dis 99(Suppl):1–132

    PubMed  Google Scholar 

  15. deVries RRP, Fat RLA, Nijenhuis LE et al (1976) HLA-linked genetic control of host response to Mycobacterium leprae. Lancet 2:1328–1330

    Article  CAS  Google Scholar 

  16. vanEden W, deVries RRP, Mehra NK et al (1980) HLA segregation of tuberculoid leprosy: confirmation of the DR2 marker. J Infect Dis 141:693–701

    Article  CAS  Google Scholar 

  17. Hill AV (1996) Genetic susceptibility to malaria and other infectious diseases: from the MHC to the whole genome. Parasitology 112:S75–S84

    Google Scholar 

  18. Wright V, Hibberd M, Levin M (2009) Genetic polymorphisms in host response to meningococcal infection: the role of susceptibility and severity genes. Vaccine 27(Suppl 2):B90–B102

    Article  PubMed  CAS  Google Scholar 

  19. Silberstein C, Creydt VP, Gerhardt E et al (2008) Inhibition of water absorption in human proximal tubular epithelial cells in response to Shiga toxin-2. Pediatr Nephrol 23:1981–1990

    Article  PubMed  Google Scholar 

  20. Lipsitch M (1997) Evolution in health and disease. Trends Microbiol 5:303–305

    Article  PubMed  CAS  Google Scholar 

  21. Thompson RCA, Constantine CC, Morgan UM (1998) Overview and significance of molecular methods: what role for molecular epidemiology? Parasitology 117:S161–S175

    Article  PubMed  Google Scholar 

  22. Li W, Raoult D, Fournier P-E (2009) Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33:892–916

    Article  PubMed  CAS  Google Scholar 

  23. Mullis K, Faloona F, Scharf S et al (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Laboratory, LI:263–273

    Google Scholar 

  24. Bartlett JMS, Stirling D (2003) PCR protocols: a short history of the polymerase chain reaction. In: Methods in molecular biology. 2nd ed. (vol 226 pp3–6). Totowa, NJ: Humana Press

    Google Scholar 

  25. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Article  PubMed  CAS  Google Scholar 

  26. Prevost G, Pottecher B, Dahlet M et al (1991) Pulse field gel electrophoresis as a new epidemiological tool for monitoring methicillin-resistant Staphylococcus aureus in an intensive care unit. J Hosp Infect 17:255–269

    Article  PubMed  CAS  Google Scholar 

  27. Saiki RK, Scharf S, Faloona F et al (1985) Enzymatic amplification of Β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  PubMed  CAS  Google Scholar 

  28. Maiden MCJ, Bygraves JA, Feil E et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    Article  PubMed  CAS  Google Scholar 

  29. Zafar A, Stone M, Ibrahim S et al (2011) Prevalent genotypes of methicillin resistant Staphylococcus aureus; report from Pakistan. J. Med Microbiol 60:56–62

    Google Scholar 

  30. Karagiannis I, Sideroglou T, Gkolfinopoulou K et al (2010) A waterborne Campylobacter jejuni outbreak on a greek island. Epidemiol Infect 138:1726–1743

    Google Scholar 

  31. Kamerbeek J, Schouls L, Kolk A et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914

    PubMed  CAS  Google Scholar 

  32. Mazars E, Lesjean S, Banuls A-L et al (2001) High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci USA 98:1901–1906

    Article  PubMed  CAS  Google Scholar 

  33. Benson DA, Karsch-Mizrachi I, Lipman DJ et al (2011) GenBank. Nucleic Acids Research 39:D32–D37

    Google Scholar 

  34. Centers for Disease Control and Prevention (2012) PulseNet. Last updated February 29, 2012. Retrieved August 20, 2012 from http://www.cdc.gov/pulsenet

  35. Riley LW (2004) Molecular epidemiology of infectious diseases: principles and practices. ASM, Washington, DC

    Google Scholar 

  36. Lomonaco S, Nucera D, Griglio B et al (2008) Real-time subtyping via PFGE reveals potential epidemiological relatedness among human salmonellosis cases in Northern Italy. Lett Appl Microbiol 47:227–234

    Article  Google Scholar 

  37. Feil EJ, Cooper JE, Grundmann H et al (2003) How clonal is Staphylococcus aureus? J Bacteriol 185:3307–3316

    Article  PubMed  CAS  Google Scholar 

  38. Frenay HME, Bunschoten AE, Schouls LM et al (1996) Molecular typing of ­methicillin-­resistant Staphylococcus aureus on the basis of protein A gene polymorphism. Eur J Clin Microbiol Infect Dis 15:60–64

    Article  PubMed  CAS  Google Scholar 

  39. Grundmann H, Aanensen DM, van den Wijngaard CC et al (2010) Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 7:e1000215

    Article  PubMed  Google Scholar 

  40. Aikembayev AM, Lukhnova L, Temiraliyeva G et al (2010) Historical distribution and molecular diversity of Bacillus anthracis, Kazakhstan. Emerg Infect Dis 16:789–796

    Article  PubMed  CAS  Google Scholar 

  41. Feikin DR, Klugman KP (2002) Historical changes in pneumococcal serogroup distribution: implications for the era of pneumococcal conjugate vaccines. Clin Infect Dis 35:547–555

    Article  PubMed  Google Scholar 

  42. Birtles RJ, Fry NK, Ventosilla P et al (2002) Identification of Bartonella bacilliformis genotypes and their relevance to epidemiological investigations of human bartonellosis. J Clin Microbiol 40:3606–3612

    Article  PubMed  CAS  Google Scholar 

  43. Holmes A, Nolan R, Taylor R et al (1999) An epidemic of Burkholderia cepacia transmitted between patients with and without cystic fibrosis. J Infect Dis 179:1197–1205

    Article  PubMed  CAS  Google Scholar 

  44. Tresoldi AT, Padoveze MC, Trabasso P et al (2000) Enterobacter cloacae sepsis outbreak in a newborn unit caused by contaminated total parenteral nutrition solution. Am J Infect Control 28:258–261

    Article  PubMed  CAS  Google Scholar 

  45. Small PM, Hopewell PC, Singh SP et al (1994) The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N Engl J Med 330:1703–1709

    Article  PubMed  CAS  Google Scholar 

  46. Shamputa IC, Lee J, Allix-Beguec C et al (2010) Genetic diversity of Mycobacterium tuberculosis isolates from a tertiary care tuberculosis hospital in South Korea. J Clin Microbiol 48:387–394

    Article  PubMed  CAS  Google Scholar 

  47. Mlambo CK, Warren RM, Poswa X et al (2008) Genotypic diversity of extensively drug-resistant tuberculosis (XDR-TB) in South Africa. Int J Tuberc Lung Dis 12:99–104

    PubMed  CAS  Google Scholar 

  48. Dinleyici EC, Yargic A (2009) Current knowledge regarding the investigational 13-valent pneumococcal conjugate vaccine. Expert Rev Vaccines 8:977–986

    Article  PubMed  CAS  Google Scholar 

  49. Duggan ST (2010) Pneumococcal polysaccharide conjugate vaccine(13-Valent, Adsorbed) [Prevenar 13]. Drugs 70:1973–1986

    Article  PubMed  CAS  Google Scholar 

  50. Prymula R, Schuerman L (2009) 10-Valent pneumococcal nontypeable Haemophilus influenzae PD conjugate vaccine: SynflorixTM. Expert Rev Vaccines 8:1479–1500

    Article  PubMed  CAS  Google Scholar 

  51. Lennon D, Jackson C, Wong S et al (2009) Fast tracking the vaccine licensure process to control an epidemic of serogroup B meningococcal disease in New Zealand. Clin Infect Dis 49:597–605

    Article  PubMed  Google Scholar 

  52. Russell JE, Urwin R, Gray SJ et al (2008) Molecular epidemiology of meningococcal disease in England and Wales 1975–1995, before the introduction of serogroup C conjugate vaccines. Microbiology 154:1170–1177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, NIAID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rebecca Prevots Ph.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seitz, A.E., Prevots, D.R. (2013). Molecular Epidemiology. In: de Filippis, I., McKee, M. (eds) Molecular Typing in Bacterial Infections. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-185-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-185-1_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-184-4

  • Online ISBN: 978-1-62703-185-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics