Skip to main content

Emerging Electrophysiological Technologies for Assessing Ocular Toxicity in Laboratory Animals

  • Chapter
  • First Online:

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

The previous chapter on emerging imaging technologies emphasized new or improved devices that, for the most part, provide anatomic information about the living eye. In this chapter, we will review electrophysiological measures of ocular function. Functional assessment can often confirm and strengthen the anatomical findings. For example, in establishing early hydroxychloroquine (Plaquenil®) toxicity in humans, spectral domain optical coherence tomography (sdOCT) and multifocal electroretinography (mfERG) are frequently used together. Sometimes imaging can provide the most sensitive toxicologic test, such as may be the case for vitreous fluorophotometry and fluorescein angiography in detecting subtle breakdown of the blood-retinal barrier. At other times, functional measures may be the most sensitive. An example from clinical medicine is retinitis pigmentosa, which, early on, may produce only vague subjective symptoms in patients with normal appearing fundi but show a markedly reduced full-field ERG (ffERG). Since the animals used in preclinical toxicologic testing cannot communicate their visual symptoms, a combination of anatomic and functional measures is needed to definitively rule out injury to the visual system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. De Rouck AF. History of the electroretinogram. In: Heckenlively JR, Arden GB, editors. Principles and practice of clinical electrophysiology of vision. Cambridge, MA: The MIT Press; 2006. p. 3–10.

    Google Scholar 

  2. Harding GFA. History of visual evoked cortical testing. In: Heckenlively JR, Arden GB, editors. Principles and practice of clinical electrophysiology of vision. Cambridge, MA: The MIT Press; 2006. p. 15–9.

    Google Scholar 

  3. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol. 2009;118:69–77.

    PubMed  CAS  Google Scholar 

  4. Narfstrom K, Ekesten B, Rosolen SG, Spiess BM, Percicot CL, Ofri R. Guidelines for clinical electroretinography in the dog. Doc Ophthalmol. 2002;105:83–92.

    PubMed  Google Scholar 

  5. Narfstrom K. Electroretinography in veterinary medicine–easy or accurate? Vet Ophthalmol. 2002;5:249–51.

    PubMed  Google Scholar 

  6. Robson JG, Frishman LJ. Dissecting the dark-adapted electroretinogram. Doc Ophthalmol. 1998;95:187–215.

    PubMed  Google Scholar 

  7. Robson JG, Saszik SM, Ahmed J, Frishman LJ. Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol. 2003;547:509–30.

    PubMed  CAS  Google Scholar 

  8. Hood DC. Assessing retinal function with the multifocal technique. Prog Retin Eye Res. 2000;19:607–46.

    PubMed  CAS  Google Scholar 

  9. Hood DC, Odel JG, Chen CS, Winn BJ. The multifocal electroretinogram. J Neuroophthalmol. 2003;23:225–35.

    PubMed  Google Scholar 

  10. Sutter EE, Tran D. The field topography of ERG components in man–I. The photopic luminance response. Vision Res. 1992;32:433–46.

    PubMed  CAS  Google Scholar 

  11. Hood DC, Frishman LJ, Saszik S, Viswanathan S. Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci. 2002;43:1673–85.

    PubMed  Google Scholar 

  12. Nork TM, Murphy CJ, Kim CB, Ver Hoeve JN, Rasmussen CA, Miller PE, Wabers HD, Neider MW, Dubielzig RR, McCulloh RJ, et al. Functional and anatomic consequences of subretinal dosing in the cynomolgus macaque. Arch Ophthalmol. 2012;130:65–75.

    PubMed  CAS  Google Scholar 

  13. Li J, Tso MO, Lam TT. Reduced amplitude and delayed latency in foveal response of multifocal electroretinogram in early age related macular degeneration. Br J Ophthalmol. 2001;85:287–90.

    PubMed  CAS  Google Scholar 

  14. Kretschmann U, Bock M, Gockeln R, Zrenner E. Clinical applications of multifocal electroretinography. Doc Ophthalmol. 2000;100:99–113.

    PubMed  CAS  Google Scholar 

  15. Shimada Y, Li Y, Bearse Jr MA, Sutter EE, Fung W. Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol. 2001;85:414–19.

    PubMed  CAS  Google Scholar 

  16. Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R. An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci. 2000;41:1570–9.

    PubMed  CAS  Google Scholar 

  17. Holopigian K, Greenstein VC, Seiple W, Hood DC, Ritch R. Electrophysiologic assessment of photoreceptor function in patients with primary open-angle glaucoma. J Glaucoma. 2000;9:163–8.

    PubMed  CAS  Google Scholar 

  18. Bearse Jr MA, Han Y, Schneck ME, Adams AJ. Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. Invest Ophthalmol Vis Sci. 2004;45:296–304.

    PubMed  Google Scholar 

  19. Sutter EE, Bearse Jr MA. The optic nerve head component of the human ERG. Vision Res. 1999;39:419–36.

    PubMed  CAS  Google Scholar 

  20. Hood DC, Bearse Jr MA, Sutter EE, Viswanathan S, Frishman LJ. The optic nerve head component of the monkey’s (Macaca mulatta) multifocal electroretinogram (mERG). Vision Res. 2001;41:2029–41.

    PubMed  CAS  Google Scholar 

  21. Frishman LJ, Saszik S, Harwerth RS, Viswanathan S, Li Y, Smith 3rd EL, Robson JG, Barnes G. Effects of experimental glaucoma in macaques on the multifocal ERG. Multifocal ERG in laser-induced glaucoma. Doc Ophthalmol. 2000;100:231–351.

    PubMed  CAS  Google Scholar 

  22. Hare WA, Ton H, Ruiz G, Feldmann B, Wijono M, WoldeMussie E. Characterization of retinal injury using ERG measures obtained with both conventional and multifocal methods in chronic ocular hypertensive primates. Invest Ophthalmol Vis Sci. 2001;42:127–36.

    PubMed  CAS  Google Scholar 

  23. Nork TM, Kim CB, Heatley GA, Kaufman PL, Lucarelli MJ, Levin LA, Ver Hoeve JN. Serial multifocal electroretinograms during long-term elevation and reduction of intraocular pressure in non-human primates. Doc Ophthalmol. 2010;120:273–89.

    PubMed  Google Scholar 

  24. Heckenlively JR, Tanji T, Logani S. Retrospective study of hyperabnormal (supranormal) electroretinographic responses in 104 patients. Trans Am Ophthalmol Soc. 1994;92:217–31.

    PubMed  CAS  Google Scholar 

  25. Moschos MM, Brouzas D, Apostolopoulos M, Koutsandrea C, Loukianou E, Moschos M. Intravitreal use of bevacizumab (Avastin) for choroidal neovascularization due to ARMD: a preliminary multifocal-ERG and OCT study. Multifocal-ERG after use of bevacizumab in ARMD. Doc Ophthalmol. 2007;114:37–44.

    PubMed  Google Scholar 

  26. Kim CB, Ver Hoeve JN, Kaufman PL, Nork TM. Interspecies and gender differences in multifocal electroretinograms of cynomolgus and rhesus macaques. Doc Ophthalmol. 2004;109:73–86.

    PubMed  Google Scholar 

  27. Kim CB, Ver Hoeve JN, Kaufman PL, Nork TM. Effects of reference electrode location on monopolar-derived multifocal electroretinograms in cynomolgus monkeys. Doc Ophthalmol. 2005;111:113–25.

    PubMed  Google Scholar 

  28. Kim CBY, Ver Hoeve JN, Nork TM. The effect of pentobarbital sodium and propofol anesthesia on multifocal electroretinograms in rhesus macaques. Doc Ophthalmol 2011 (Dec. 28 [Epub]).

    Google Scholar 

  29. Rimmer S, Katz B. The pattern electroretinogram: technical aspects and clinical significance. J Clin Neurophysiol. 1989;6:85–99.

    PubMed  CAS  Google Scholar 

  30. Riggs LA. The human electroretinogram. AMA Arch Ophthalmol. 1958;60:739–49; discussion 749–54.

    PubMed  CAS  Google Scholar 

  31. Riggs LA. Progress in the recording of human retinal and occipital potentials. J Opt Soc Am. 1969;59:1558–66.

    PubMed  CAS  Google Scholar 

  32. Dodt E. The electrical response of the human eye to patterned stimuli: clinical observations. Doc Ophthalmol. 1987;65:271–86.

    PubMed  CAS  Google Scholar 

  33. Riggs LA, Johnson EP, Schick AM. Electrical responses of the human eye to moving stimulus patterns. Science. 1964;144:567.

    PubMed  CAS  Google Scholar 

  34. Lawwill T. The bar-pattern electroretinogram for clinical evaluation of the central retina. Am J Ophthalmol. 1974;78:121–6.

    PubMed  CAS  Google Scholar 

  35. Maffei L, Fiorentini A. Electroretinographic responses to alternating gratings in the cat. Exp Brain Res. 1982;48:327–34.

    PubMed  CAS  Google Scholar 

  36. Maffei L, Fiorentini A, Bisti S, Hollander H. Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res. 1985;59:423–5.

    PubMed  CAS  Google Scholar 

  37. Berardi N, Domenici L, Gravina A, Maffei L. Pattern ERG in rats following section of the optic nerve. Exp Brain Res. 1990;79:539–46.

    PubMed  CAS  Google Scholar 

  38. Ringens PJ, Vijfvinkel-Bruinenga S, van Lith GH. The pattern-elicited electroretinogram. I. A tool in the early detection of glaucoma? Ophthalmologica. 1986;192:171–5.

    PubMed  CAS  Google Scholar 

  39. Porciatti V, Falsini B, Brunori S, Colotto A, Moretti G. Pattern electroretinogram as a function of spatial frequency in ocular hypertension and early glaucoma. Doc Ophthalmol. 1987;65:349–55.

    PubMed  CAS  Google Scholar 

  40. Wanger P, Persson HE. Pattern-reversal electroretinograms from normotensive, hypertensive and glaucomatous eyes. Ophthalmologica. 1987;195:205–8.

    PubMed  CAS  Google Scholar 

  41. Weinstein GW, Arden GB, Hitchings RA, Ryan S, Calthorpe CM, Odom JV. The pattern electroretinogram (PERG) in ocular hypertension and glaucoma. Arch Ophthalmol. 1988;106:923–8.

    PubMed  CAS  Google Scholar 

  42. Korth M, Horn F, Storck B, Jonas J. The pattern-evoked electroretinogram (PERG): age-related alterations and changes in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1989;227:123–30.

    PubMed  CAS  Google Scholar 

  43. Pfeiffer N, Bach M. The pattern-electroretinogram in glaucoma and ocular hypertension. A cross-sectional and longitudinal study. Ger J Ophthalmol. 1992;1:35–40.

    PubMed  CAS  Google Scholar 

  44. Ventura LM, Porciatti V, Ishida K, Feuer WJ, Parrish 2nd RK. Pattern electroretinogram abnormality and glaucoma. Ophthalmology. 2005;112:10–9.

    PubMed  Google Scholar 

  45. Porciatti V, Ventura LM. Physiologic significance of steady-state pattern electroretinogram losses in glaucoma: clues from simulation of abnormalities in normal subjects. J Glaucoma. 2009;18:535–42.

    PubMed  Google Scholar 

  46. Atilla H, Tekeli O, Ornek K, Batioglu F, Elhan AH, Eryilmaz T. Pattern electroretinography and visual evoked potentials in optic nerve diseases. J Clin Neurosci. 2006;13:55–9.

    PubMed  Google Scholar 

  47. Kirkham TH, Coupland SG. Abnormal pattern electroretinograms with macular cherry-red spots: evidence for selective ganglion cell damage. Curr Eye Res. 1981;1:367–72.

    PubMed  CAS  Google Scholar 

  48. Porciatti V, Francesconi W, Bagnoli P. The pigeon pattern electroretinogram is not affected by massive loss of cell bodies in the ganglion layer induced by chronic section of the optic nerve. Doc Ophthalmol. 1985;61:41–7.

    PubMed  CAS  Google Scholar 

  49. Armington JC, Adolph AR. Local pattern electroretinograms and ganglion cell activity in the turtle eye. Int J Neurosci. 1990;50:1–11.

    PubMed  CAS  Google Scholar 

  50. Vaegan Graham SL, Goldberg I, Millar TJ. Selective reduction of oscillatory potentials and pattern electroretinograms after retinal ganglion cell damage by disease in humans or by kainic acid toxicity in cats. Doc Ophthalmol. 1991;77:237–53.

    Google Scholar 

  51. Porciatti V, Saleh M, Nagaraju M. The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2007;48:745–51.

    PubMed  Google Scholar 

  52. Maffei L, Fiorentini A. Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science. 1981;211:953–5.

    Google Scholar 

  53. Bach M, Hoffmann MB. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci. 2008;85:386–95.

    PubMed  Google Scholar 

  54. Holder GE. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res. 2001;20:531–61.

    PubMed  CAS  Google Scholar 

  55. Holder GE. Electrophysiological assessment of optic nerve disease. Eye. 2004;18:1133–43.

    PubMed  CAS  Google Scholar 

  56. Ventura LM, Porciatti V. Pattern electroretinogram in glaucoma. Curr Opin Ophthalmol. 2006;17:196–202.

    PubMed  Google Scholar 

  57. Fredette MJ, Anderson DR, Porciatti V, Feuer W. Reproducibility of pattern electroretinogram in glaucoma patients with a range of severity of disease with the new glaucoma paradigm. Ophthalmology. 2008;115:957–63.

    PubMed  Google Scholar 

  58. Nagaraju M, Saleh M, Porciatti V. IOP-dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. Invest Ophthalmol Vis Sci. 2007;48:4573–9.

    PubMed  Google Scholar 

  59. Saleh M, Nagaraju M, Porciatti V. Longitudinal evaluation of retinal ganglion cell function and IOP in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2007;48:4564–72.

    PubMed  Google Scholar 

  60. Johnson MA, Drum BA, Quigley HA, Sanchez RM, Dunkelberger GR. Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci. 1989;30:897–907.

    PubMed  CAS  Google Scholar 

  61. Marx MS, Podos SM, Bodis-Wollner I, Howard-Williams JR, Siegel MJ, Teitelbaum CS, Maclin EL, Severin C. Flash and pattern electroretinograms in normal and laser-induced glaucomatous primate eyes. Invest Ophthalmol Vis Sci. 1986;27:378–86.

    PubMed  CAS  Google Scholar 

  62. Marx MS, Podos SM, Bodis-Wollner I, Lee PY, Wang RF, Severin C. Signs of early damage in glaucomatous monkey eyes: low spatial frequency losses in the pattern ERG and VEP. Exp Eye Res. 1988;46:173–84.

    PubMed  CAS  Google Scholar 

  63. Viswanathan S, Frishman LJ, Robson JG. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci. 2000;41:2797–810.

    PubMed  CAS  Google Scholar 

  64. Hodos W, Ghim MM, Potocki A, Fields JN, Storm T. Contrast sensitivity in pigeons: a comparison of behavioral and pattern ERG methods. Doc Ophthalmol. 2002;104:107–18.

    PubMed  Google Scholar 

  65. Porciatti V, Hodos W, Signorini G, Bramanti F. Electroretinographic changes in aged pigeons. Vision Res. 1991;31:661–8.

    PubMed  CAS  Google Scholar 

  66. Bagnoli P, Porciatti V, Francesconi W, Barsellotti R. Pigeon pattern electroretinogram: a response unaffected by chronic section of the optic nerve. Exp Brain Res. 1984;55:253–62.

    PubMed  CAS  Google Scholar 

  67. Blondeau P, Lamarche J, Lafond G, Brunette JR. Pattern electroretinogram and optic nerve section in pigeons. Curr Eye Res. 1987;6:747–56.

    PubMed  CAS  Google Scholar 

  68. Miura G, Wang MH, Ivers KM, Frishman LJ. Retinal pathway origins of the pattern ERG of the mouse. Exp Eye Res. 2009;89:49–62.

    PubMed  CAS  Google Scholar 

  69. Bodis-Wollner I. Visual electrophysiology in Parkinson’s disease: PERG, VEP and visual P300. Clin Electroencephalogr. 1997;28:143–7.

    PubMed  CAS  Google Scholar 

  70. Calzetti S, Franchi A, Taratufolo G, Groppi E. Simultaneous VEP and PERG investigations in early Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1990;53:114–17.

    PubMed  CAS  Google Scholar 

  71. Nightingale S, Mitchell KW, Howe JW. Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Psychiatry. 1986;49:1280–7.

    PubMed  CAS  Google Scholar 

  72. Peppe A, Stanzione P, Pierelli F, De Angelis D, Pierantozzi M, Bernardi G. Visual alterations in de novo Parkinson’s disease: pattern electroretinogram latencies are more delayed and more reversible by levodopa than are visual evoked potentials. Neurology. 1995;45:1144–8.

    PubMed  CAS  Google Scholar 

  73. Sartucci F, Orlandi G, Lucetti C, Bonuccelli U, Murri L, Orsini C, Porciatti V. Changes in pattern electroretinograms to equiluminant red-green and blue-yellow gratings in patients with early Parkinson’s disease. J Clin Neurophysiol. 2003;20:375–81.

    PubMed  Google Scholar 

  74. Tagliati M, Bodis-Wollner I, Yahr MD. The pattern electroretinogram in Parkinson’s disease reveals lack of retinal spatial tuning. Electroencephalogr Clin Neurophysiol. 1996;100:1–11.

    PubMed  CAS  Google Scholar 

  75. Tartaglione A, Oneto A, Bandini F, Favale E. Visual evoked potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Psychiatry. 1987;50:1243–4.

    PubMed  CAS  Google Scholar 

  76. Archibald NK, Clarke MP, Mosimann UP, Burn DJ. The retina in Parkinson’s disease. Brain. 2009;132:1128–45.

    PubMed  Google Scholar 

  77. McCulloch DL, Garcia-Filion P, van Boemel GB, Borchert MS. Retinal function in infants with optic nerve hypoplasia: electroretinograms to large patterns and photopic flash. Eye (Lond). 2007;21:712–20.

    CAS  Google Scholar 

  78. McCulloch DL, Garcia-Filion P, Fink C, Chaplin CA, Borchert MS. Clinical electrophysiology and visual outcome in optic nerve hypoplasia. Br J Ophthalmol. 2010;94(8):1017–23. Epub 2009 Dec 2. PMID: 19955198 [PubMed - indexed for MEDLINE].

    PubMed  CAS  Google Scholar 

  79. Birch DG, Anderson JL, Fish GE, Jost BF. Pattern-reversal electroretinographic follow-up of laser photocoagulation for subfoveal neovascular lesions in age-related macular degeneration. Am J Ophthalmol. 1993;116:148–55.

    PubMed  CAS  Google Scholar 

  80. Birch DG, Anderson JL, Fish GE, Jost BF. Pattern-reversal electroretinographic acuity in untreated eyes with subfoveal neovascular membranes. Invest Ophthalmol Vis Sci. 1992;33:2097–104.

    PubMed  CAS  Google Scholar 

  81. da Costa GM, dos Anjos LM, Souza GS, Gomes BD, Saito CA, Pinheiro Mda C, Ventura DF, da Silva Filho M, Silveira LC. Mercury toxicity in Amazon gold miners: visual dysfunction assessed by retinal and cortical electrophysiology. Environ Res. 2008;107:98–107.

    PubMed  Google Scholar 

  82. Odom JV, Maida TM, Dawson WW, Hobson R. Pattern electroretinogram: effects of reference electrode position. Doc Ophthalmol. 1987;65:297–306.

    PubMed  CAS  Google Scholar 

  83. Dawson WW, Trick GL, Litzkow CA. Improved electrode for electroretinography. Invest Ophthalmol Vis Sci. 1979;18:988–91.

    PubMed  CAS  Google Scholar 

  84. Fisher AC, Hagan RP, Brown MC. Automatic positioning of cursors in the transient pattern electroretinogram (PERG) with very poor SNR using an Expert System. Doc Ophthalmol. 2007;115:61–8.

    PubMed  Google Scholar 

  85. Nunez P, Srinivasa R. Electric fields of the brain. The neurophysics of EEG. New York: Oxford University Press; 2006.

    Google Scholar 

  86. Regan D. Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. London: Elsevier; 1989.

    Google Scholar 

  87. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan. ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol. 2009;120:111–19.

    PubMed  Google Scholar 

  88. Hou C, Good WV, Norcia AM. Validation study of VEP vernier acuity in normal-vision and amblyopic adults. Invest Ophthalmol Vis Sci. 2007;48:4070–8.

    PubMed  Google Scholar 

  89. Mirabella G, Norcia AM. Neural correlates of transformational apparent motion. Perception. 2008;37:1368–79.

    PubMed  Google Scholar 

  90. Norcia AM, Wesemann W, Manny RE. Electrophysiological correlates of vernier and relative motion mechanisms in human visual cortex. Vis Neurosci. 1999;16:1123–31.

    PubMed  CAS  Google Scholar 

  91. Norcia AM, Hale J, Pettet MW, McKee SP, Harrad RA. Disparity tuning of binocular facilitation and suppression after normal versus abnormal visual development. Invest Ophthalmol Vis Sci. 2009;50:1168–75.

    PubMed  Google Scholar 

  92. Struck MC, Ver Hoeve JN, France TD. Binocular cortical interactions in the monofixation syndrome. J Pediatr Ophthalmol Strabismus. 1996;33:291–7.

    PubMed  CAS  Google Scholar 

  93. Bearse Jr MA, Sutter EE. Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A Opt Image Sci Vis. 1996;13:634–40.

    PubMed  Google Scholar 

  94. Sutter E. The interpretation of multifocal binary kernels. Doc Ophthalmol. 2000;100:49–75.

    PubMed  CAS  Google Scholar 

  95. Sutter EE. Imaging visual function with the multifocal m-sequence technique. Vision Res. 2001;41:1241–55.

    PubMed  CAS  Google Scholar 

  96. Fortune B, Demirel S, Zhang X, Hood DC, Johnson CA. Repeatability of normal multifocal VEP: implications for detecting progression. J Glaucoma. 2006;15:131–41.

    PubMed  Google Scholar 

  97. Hood DC, Zhang X, Greenstein VC, Kangovi S, Odel JG, Liebmann JM, Ritch R. An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci. 2000;41:1580–7.

    PubMed  CAS  Google Scholar 

  98. Klistorner AI, Graham SL. Multifocal pattern VEP perimetry: analysis of sectoral waveforms. Doc Ophthalmol. 1999;98:183–96.

    PubMed  CAS  Google Scholar 

  99. Yang EB, Hood DC, Rodarte C, Zhang X, Odel JG, Behrens MM. Improvement in conduction velocity after optic neuritis measured with the multifocal VEP. Invest Ophthalmol Vis Sci. 2007;48:692–8.

    PubMed  Google Scholar 

  100. Zhang X, Hood DC. A principal component analysis of multifocal pattern reversal VEP. J Vis. 2004;4:32–43.

    PubMed  Google Scholar 

  101. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan. ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol. 2010;120:111–19.

    PubMed  Google Scholar 

  102. Fortune B, Wang L, Bui BV, Burgoyne CF, Cioffi GA. Idiopathic bilateral optic atrophy in the rhesus macaque. Invest Ophthalmol Vis Sci. 2005;46:3943–56.

    PubMed  Google Scholar 

  103. Dubielzig RR, Leedle R, Nork TM, Ver Hoeve JN, Christian BJ. Bilateral optic atrophy: A background finding in cynomolgus macaques used in toxicologic research. Presented at Association for Research in Vision and Ophthalmology, May 2009, Fort Lauderdale, FL.

    Google Scholar 

  104. Murphy CJ, Mutti DO, Zadnik K, Ver HJ. Effect of optical defocus on visual acuity in dogs. Am J Vet Res. 1997;58:414–18.

    PubMed  CAS  Google Scholar 

  105. Mutti DO, Ver Hoeve JN, Zadnik K, Murphy CJ. The artifact of retinoscopy revisited: comparison of refractive error measured by retinoscopy and visual evoked potential in the rat. Optom Vis Sci. 1997;74:483–8.

    PubMed  CAS  Google Scholar 

  106. Ver Hoeve JN, Danilov YP, Kim CB, Spear PD. VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci. 1999;16:607–17.

    PubMed  CAS  Google Scholar 

  107. Maertz NA, Kim CB, Nork TM, Levin LA, Lucarelli MJ, Kaufman PL, Ver Hoeve JN. Multifocal visual evoked potentials in the anesthetized non-human primate. Curr Eye Res. 2006;31:885–93.

    PubMed  Google Scholar 

  108. Gabelt BT, Rasmussen CA, Tektas OY, Kim CB, Peterson JC, Nork TM, Ver Hoeve JN, Lütjen-Drecoll E, Kaufman PL. Structure/function studies and the effects of memantine in monkeys with experimental glaucoma. Invest Ophthalmol Vis Sci. 2012 Apr 30;53(4):2368–76.

    Google Scholar 

  109. Yu M, Narayanan SP, Wang F, Morse E, Macklin WB, Peachey NS. Visual abnormalities associated with enhanced optic nerve myelination. Brain Res. 2011;1374:36–42.

    PubMed  CAS  Google Scholar 

  110. Heiduschka P, Julien S, Schuettauf F, Schnichels S. Loss of retinal function in aged DBA/2J mice - New insights into retinal neurodegeneration. Exp Eye Res. 2009;91:779–83.

    Google Scholar 

  111. Heiduschka P, Schnichels S, Fuhrmann N, Hofmeister S, Schraermeyer U, Wissinger B, Alavi MV. Electrophysiological and histologic assessment of retinal ganglion cell fate in a mouse model for OPA1-associated autosomal dominant optic atrophy. Invest Ophthalmol Vis Sci. 2010;51:1424–31.

    PubMed  Google Scholar 

  112. Michaelson MD, Bieri PL, Mehler MF, Xu H, Arezzo JC, Pollard J, Kessler JA. CSF-1 deficiency in mice results in abnormal brain development. Development. 1996;122:2661–72.

    PubMed  CAS  Google Scholar 

  113. Boyes WK, Bercegeay M, Oshiro WM, Krantz QT, Kenyon EM, Bushnell PJ, Benignus VA. Acute perchloroethylene exposure alters rat visual-evoked potentials in relation to brain concentrations. Toxicol Sci. 2009;108:159–72.

    PubMed  CAS  Google Scholar 

  114. Xu W, Wang H, Wang F, Jiang Y, Zhang X, Wang W, Qian J, Xu X, Sun X. Testing toxicity of multiple intravitreal injections of bevacizumab in rabbit eyes. Can J Ophthalmol. 2010;45:386–92.

    PubMed  Google Scholar 

  115. Komarowska I, Heilweil G, Rosenfeld PJ, Perlman I, Loewenstein A. Retinal toxicity of commercially available intravitreal ketorolac in albino rabbits. Retina. 2009;29:98–105.

    PubMed  Google Scholar 

  116. Goffeng LO, Heier MS, Kjuus H, Sjöholm H, Sørensen KA, Skaug V. Nerve conduction, visual evoked responses and electroretinography in tunnel workers previously exposed to acrylamide and N-methylolacrylamide containing grouting agents. Neurotoxicol Teratol. 2008;30:186–94.

    PubMed  CAS  Google Scholar 

  117. Saint-Amour D, Roy MS, Bastien C, Ayotte P, Dewailly E, Després C, Gingras S, Muckle G. Alterations of visual evoked potentials in preschool Inuit children exposed to methylmercury and polychlorinated biphenyls from a marine diet. Neurotoxicology. 2006;27:567–78.

    PubMed  CAS  Google Scholar 

  118. Heravian J, Saghafi M, Shoeibi N, Hassanzadeh S, Shakeri MT, Sharepoor M. A comparative study of the usefulness of color vision, photostress recovery time, and visual evoked potential tests in early detection of ocular toxicity from hydroxychloroquine. Int Ophthalmol. 2011;31:283–9.

    PubMed  Google Scholar 

  119. Marmor MF, Holder GE, Seeliger MW, Yamamoto S. Standard for clinical electroretinography (2004 update). Doc Ophthalmol. 2004;108:107–14.

    PubMed  Google Scholar 

  120. Marmor MF. New American Academy of Ophthalmology recommendations on screening for hydroxychloroquine retinopathy. Arthritis Rheum. 2003;48:1764.

    PubMed  Google Scholar 

  121. Menon V, Jain D, Saxena R, Sood R. Prospective evaluation of visual function for early detection of ethambutol toxicity. Br J Ophthalmol. 2009;93:1251–4.

    PubMed  CAS  Google Scholar 

  122. Tabatabaei SA, Soleimani M, Alizadeh M, Movasat M, Mansoori MR, Alami Z, Foroutan A, Joshaghani M, Safari S, Goldiz A. Predictive value of visual evoked potentials, relative afferent pupillary defect, and orbital fractures in patients with traumatic optic neuropathy. Clin Ophthalmol. 2011;5:1021–6.

    PubMed  Google Scholar 

  123. Harding CO, Gillingham MB, van Calcar SC, Wolff JA, Verhoeve JN, Mills MD. Docosahexaenoic acid and retinal function in children with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. J Inherit Metab Dis. 1999;22:276–80.

    PubMed  CAS  Google Scholar 

  124. Sartucci F, Orlandi G, Bonuccelli U, Borghetti D, Murri L, Orsini C, Domenici L, Porciatti V. Chromatic pattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophy compared with Parkinson’s disease. Neurol Sci. 2006;26:395–401.

    PubMed  CAS  Google Scholar 

  125. Sener HO, Akbostanci MC, Yucesan C, Dora B, Selcuki D. Visual evoked potentials in Parkinson’s disease-correlation with clinical involvement. Clin Neurol Neurosurg. 2001;103:147–50.

    PubMed  CAS  Google Scholar 

  126. Watts MT, Good PA, O’Neill EC. The flash stimulated VEP in the diagnosis of glaucoma. Eye (Lond). 1989;3:732–7.

    Google Scholar 

  127. Korth M, Nguyen NX, Junemann A, Martus P, Jonas JB. VEP test of the blue-sensitive pathway in glaucoma. Invest Ophthalmol Vis Sci. 1994;35:2599–610.

    PubMed  CAS  Google Scholar 

  128. Parisi V, Miglior S, Manni G, Centofanti M, Bucci MG. Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Ophthalmology. 2006;113:216–28.

    PubMed  Google Scholar 

  129. Fortune B, Demirel S, Zhang X, Hood DC, Patterson E, Jamil A, Mansberger SL, Cioffi GA, Johnson CA. Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci. 2007;48:1173–80.

    PubMed  Google Scholar 

  130. Hood DC, Thienprasiddhi P, Greenstein VC, Winn BJ, Ohri N, Liebmann JM, Ritch R. Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Invest Ophthalmol Vis Sci. 2004;45:492–8.

    PubMed  Google Scholar 

  131. Thienprasiddhi P, Greenstein VC, Chu DH, Xu L, Liebmann JM, Ritch R, Hood DC. Detecting early functional damage in glaucoma suspect and ocular hypertensive patients with the multifocal VEP technique. J Glaucoma. 2006;15:321–7.

    PubMed  Google Scholar 

  132. Wangsupadilok B, Greenstein VC, Kanadani FN, Grippo TM, Liebmann JM, Ritch R, Hood DC. A method to detect progression of glaucoma using the multifocal visual evoked potential technique. Doc Ophthalmol. 2009;118:139–50.

    PubMed  Google Scholar 

  133. Arvind H, Klistorner A, Graham S, Grigg J, Goldberg I, Klistorner A, Billson FA. Dichoptic stimulation improves detection of glaucoma with multifocal visual evoked potentials. Invest Ophthalmol Vis Sci. 2007;48:4590–6.

    PubMed  Google Scholar 

  134. Arvind H, Graham S, Leaney J, Grigg J, Goldberg I, Billson F, Klistorner A. Identifying preperimetric functional loss in glaucoma: a blue-on-yellow multifocal visual evoked potentials study. Ophthalmology. 2009 Jun;116(6):1134–41. Epub 2009 Apr 23. PMID: 19395037.

    PubMed  Google Scholar 

  135. Klistorner A, Arvind H, Nguyen T, Garrick R, Paine M, Graham S, O’Day J, Yiannikas C. Multifocal VEP and OCT in optic neuritis: a topographical study of the structure-function relationship. Doc Ophthalmol. 2009;118:129–37.

    PubMed  Google Scholar 

  136. Klistorner A, Graham S, Fraser C, Garrick R, Nguyen T, Paine M, O’Day J, Grigg J, Arvind H, Billson FA. Electrophysiological evidence for heterogeneity of lesions in optic neuritis. Invest Ophthalmol Vis Sci. 2007;48:4549–56.

    PubMed  Google Scholar 

  137. Klistorner A, Fraser C, Garrick R, Graham S, Arvind H. Correlation between full-field and multifocal VEPs in optic neuritis. Doc Ophthalmol. 2008;116:19–27.

    PubMed  Google Scholar 

  138. Pai SA, Shetty R, Vijayan PB, Venkatasubramaniam G, Yadav NK, Shetty BK, Babu RB, Narayana KM. Clinical, anatomic, and electrophysiologic evaluation following intravitreal bevacizumab for macular edema in retinal vein occlusion. Am J Ophthalmol. 2007;143:601–6.

    PubMed  CAS  Google Scholar 

  139. Hirata M, Kosaka H. Effects of lead exposure on neurophysiological parameters. Environ Res. 1993;63:60–9.

    PubMed  CAS  Google Scholar 

  140. Kutlu G, Gomceli YB, Sonmez T, Inan LE. Peripheral neuropathy and visual evoked potential changes in workers exposed to n-hexane. J Clin Neurosci. 2009;16:1296–9.

    PubMed  CAS  Google Scholar 

  141. Holder GE, Brigell MG, Hawlina M, Meigen T, Vaegan BM, International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical pattern electroretinography-2007 update. Doc Ophthalmol. 2007;114:111–16.

    PubMed  Google Scholar 

  142. Thurtell MJ, Bala E, Yaniglos SS, Rucker JC, Peachey NS, Leigh RJ. Evaluation of optic neuropathy in multiple sclerosis using low-contrast visual evoked potentials. Neurology. 2009;73:1849.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James N. Ver Hoeve M.S., Ph.D. or T. Michael Nork M.D., M.S., DABO, FARVO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hoeve, J.N.V., Munger, R.J., Murphy, C.J., Nork, T.M. (2012). Emerging Electrophysiological Technologies for Assessing Ocular Toxicity in Laboratory Animals. In: Weir, A., Collins, M. (eds) Assessing Ocular Toxicology in Laboratory Animals. Molecular and Integrative Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-164-6_4

Download citation

Publish with us

Policies and ethics