Skip to main content

Keratinocyte Stem Cells: Biology and Clinical Applications

  • Chapter
  • First Online:
Regenerative Medicine and Cell Therapy

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1481 Accesses

Abstract

Human epidermis represents a large reservoir of stem cells that continue to self-renew throughout life. Stem cells are essential for skin regeneration and for repair after wounding. They allow long-term culture of keratinocytes that produce large sheets of epidermis to cover extensive burns, thus being lifesaving for these patients. Furthermore, stem cells can be expanded in culture, genetically modified to correct the gene deficiency in genetic skin diseases. This chapter will describe the most recent data on stem cell biology and the potential medical applications of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coolen NA, Verkerk M, Reijnen L, Vlig M, van den Bogaerdt AJ, Breetveld M, Gibbs S, Middelkoop E, Ulrich MM (2007) Culture of keratinocytes for transplantation without the need of feeder layer cells. Cell Transplant 16(6):649–661

    PubMed  Google Scholar 

  2. Pincelli C, Marconi A (2011) Keratinocyte stem cells: friends and foes. J Cell Physiol 225(2):310–315

    Article  Google Scholar 

  3. Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373

    Article  PubMed  CAS  Google Scholar 

  4. Levy V, Lindon C, Harfe BD, Morgan BA (2005) Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell 9(6):855–861

    Article  PubMed  CAS  Google Scholar 

  5. Jiang S, Zhao L, Teklemariam T, Hantash BM (2010) Small cutaneous wounds induce telogen to anagen transition of murine hair follicle stem cells. J Dermatol Sci 60(3):143–150

    Article  PubMed  CAS  Google Scholar 

  6. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337

    Article  PubMed  CAS  Google Scholar 

  7. Kobayashi K, Rochat A, Barrandon Y (1993) Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc Natl Acad Sci USA 90(15):7391–7395

    Article  PubMed  CAS  Google Scholar 

  8. Zhang YV, White BS, Shalloway DI, Tumbar T (2010) Stem cell dynamics in mouse hair follicles: a story from cell division counting and single cell lineage tracing. Cell Cycle 9(8):1504–1510

    Article  PubMed  CAS  Google Scholar 

  9. Cotsarelis G (2006) Gene expression profiling gets to the root of human hair follicle stem cells. J Clin Invest 116:19–22

    Article  PubMed  CAS  Google Scholar 

  10. Inoue K, Aoi N, Sato T, Yamauchi Y, Suga H, Eto H, Kato H, Araki J, Yoshimura K (2009) Differential expression of stem-cell-associated markers in human hair follicle epithelial cells. Lab Invest 89:844–856

    Article  PubMed  CAS  Google Scholar 

  11. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648

    Article  PubMed  CAS  Google Scholar 

  12. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgård R (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40:1291–1299

    Article  PubMed  CAS  Google Scholar 

  13. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgård R, Clevers H (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327:1385–1389

    Article  PubMed  CAS  Google Scholar 

  14. Ghazizadeh S, Taichman LB (2001) Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J 20(6):1215–1222

    Article  PubMed  CAS  Google Scholar 

  15. Clayton E, Doupé DP, Klein AM, Winton DJ, Simons BD, Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446:185–189

    Article  PubMed  CAS  Google Scholar 

  16. Barrandon Y, Morgan JR, Mulligan RC, Green H (1989) Restoration of growth potential in paraclones of human keratinocytes by a viral oncogene. Proc Natl Acad Sci USA 86(11):4102–4106

    Article  PubMed  CAS  Google Scholar 

  17. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73(4):713–724

    Article  PubMed  CAS  Google Scholar 

  18. Tiberio R, Marconi A, Fila C, Fumelli C, Pignatti M, Krajewski S, Giannetti A, Reed JC, Pincelli C (2002) Keratinocytes enriched for stem cells are protected from anoikis via an integrin signaling pathway in a Bcl-2 dependent manner. FEBS Lett 524(1–3):139–144

    Article  PubMed  CAS  Google Scholar 

  19. Li A, Simmons PJ, Kaur P (1998) Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA 95:3902–3907

    Article  PubMed  CAS  Google Scholar 

  20. Schlüter H, Paquet-Fifield S, Gangatirkar P, Li J, Kaur P (2011) Functional characterization of quiescent keratinocyte stem cells and their progeny reveals a hierarchical organization in human skin epidermis. Stem Cells 29(8):1256–1268

    Article  PubMed  Google Scholar 

  21. Legg J, Jensen UB, Broad S, Leigh I, Watt FM (2003) Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Dev 130:6049–6063

    Article  CAS  Google Scholar 

  22. Jensen KB, Watt FM (2006) Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci USA 103:11958–11963

    Article  PubMed  CAS  Google Scholar 

  23. Muffler S, Stark HJ, Amoros M, Falkowska-Hansen B, Boehnke K, Bühring HJ, Marmé A, Bickenbach JR, Boukamp P (2008) A stable niche supports long-term maintenance of human epidermal stem cells in organotypic cultures. Stem Cells 26:2506–2515

    Article  PubMed  CAS  Google Scholar 

  24. Braun KM, Niemann C, Jensen UB, Sundberg JP, Silva-Vargas V, Watt FM (2003) Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Dev 130:5241–5255

    Article  CAS  Google Scholar 

  25. Peck MD (2011) Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns 37(7):1087–1100

    Article  PubMed  Google Scholar 

  26. Clark RA, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Invest Dermatol 127(5):1018–1029

    Article  PubMed  CAS  Google Scholar 

  27. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  PubMed  CAS  Google Scholar 

  28. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659

    Article  PubMed  CAS  Google Scholar 

  29. Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA 76(11):5665–5668

    Article  PubMed  CAS  Google Scholar 

  30. Masson-Gadais B, Fugere C, Paquet C, Leclerc S, Lefort NR, Germain L, Guérin SL (2006) The feeder layer-mediated extended lifetime of cultured human skin keratinocytes is associated with altered levels of the transcription factors Sp1 and Sp3. J Cell Physiol 206:831–842

    Article  PubMed  CAS  Google Scholar 

  31. Lavoie A, Fugère C, Fradette J, Larouche D, Paquet C, Beauparlant A, Gauvin R, Têtu FA, Roy A, Bouchard M, Genest H, Auger FA, Germain L (2001) Considerations in the choice of a skin donor site for harvesting keratinocytes containing a high proportion of stem cells for culture in vitro. Burns 37(3):440–447

    Article  Google Scholar 

  32. Shi C, Zhu Y, Su Y, Cheng T (2006) Stem cells and their applications in skin-cell therapy. Trends Biotechnol 24(1):48–52

    Article  PubMed  CAS  Google Scholar 

  33. Lapouge G, Blanpain C (2008) Medical applications of epidermal stem cells. In: Research Community (ed) The stem cell, Stembook. Harvard Stem Cell Institute, Cambridge

    Google Scholar 

  34. Schneider H, Mühle C, Pacho F (2007) Biological function of laminin-5 and pathogenic impact of its deficiency. Eur J Cell Biol 86(11–12):701–717

    Article  PubMed  CAS  Google Scholar 

  35. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, Maruggi G, Ferrari G, Provasi E, Bonini C, Capurro S, Conti A, Magnoni C, Giannetti A, De Luca M (2006) Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 12(12):1397–1402

    Article  PubMed  CAS  Google Scholar 

  36. Di Nunzio F, Maruggi G, Ferrari S, Di Iorio E, Poletti V, Garcia M, Del Rio M, De Luca M, Larcher F, Pellegrini G, Mavilio F (2008) Correction of laminin-5 deficiency in human epidermal stem cells by transcriptionally targeted lentiviral vectors. Mol Ther 16(12):1977–1985

    Article  PubMed  Google Scholar 

  37. Warrick E, Garcia M, Chagnoleau C, Chevallier O, Bergoglio V, Sartori D, Mavilio F, Angulo JF, Avril MF, Sarasin A, Larcher F, Del Rio M, Bernerd F, Magnaldo T (2012) Preclinical corrective gene transfer in xeroderma pigmentosum human skin stem cells. Mol Ther 20(4):798–807

    Article  PubMed  CAS  Google Scholar 

  38. Moretti S, Fabbri P, Baroni G, Berti S, Bani D, Berti E, Nassini R, Lotti T, Massi D (2009) Keratinocyte dysfunction in vitiligo epidermis: cytokine microenvironment and correlation to keratinocyte apoptosis. Histol Histopathol 24(7):849–857

    PubMed  CAS  Google Scholar 

  39. Bondanza S, Maurelli R, Paterna P, Migliore E, Giacomo FD, Primavera G, Paionni E, Dellambra E, Guerra L (2007) Keratinocyte cultures from involved skin in vitiligo patients show an impaired in vitro behaviour. Pigment Cell Res 20(4):288–300

    Article  PubMed  CAS  Google Scholar 

  40. Khodadadi L, Shafieyan S, Sotoudeh M, Dizaj AV, Shahverdi A, Aghdami N, Baharvand H (2010) Intraepidermal injection of dissociated epidermal cell suspension improves vitiligo. Arch Dermatol Res 302(8):593–599

    Article  PubMed  Google Scholar 

  41. Guerra L, Capurro S, Melchi F, Primavera G, Bondanza S, Cancedda R, Luci A, De Luca M, Pellegrini G (2000) Treatment of “stable” vitiligo by Timed surgery and transplantation of cultured epidermal autografts. Arch Dermatol 136(11):1380–1389

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Pincelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pincelli, C., Marconi, A. (2013). Keratinocyte Stem Cells: Biology and Clinical Applications. In: Baharvand, H., Aghdami, N. (eds) Regenerative Medicine and Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-098-4_4

Download citation

Publish with us

Policies and ethics