Skip to main content

Cultured Limbal Epithelial Stem Cell Therapy for Ocular Surface Diseases

  • Chapter
  • First Online:
Regenerative Medicine and Cell Therapy

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1428 Accesses

Abstract

The cornea is our transparent window to the world and its integrity and transparency are essential for proper functioning of the eye. The corneal epithelium is a multilayered, renewable barrier that is maintained in health by epithelial stem cells from the limbus. A recent discovery leads us to believe that limbal epithelial stem cells (LESCs) reside in specialised protective niche structures identified as the limbal crypts. The pathology of limbal epithelial stem cell deficiency occurs when there is an insufficiency of LESCs to replace lost surface epithelial cells leading to persistent epithelial defects, conjunctivalisation and ultimately, loss of vision. Researchers continue to discover new ways to harness the power of epithelial stem cells for the treatment of limbal stem cell deficiency and one such way is with an expanded limbal epithelial stem cell graft. Advances in the field of tissue engineering are contributing to the optimisation of these transplantation techniques by providing new and innovative biomaterials for use as substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thoft RA, Friend J (1983) The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci 24(10):1442–1443

    PubMed  CAS  Google Scholar 

  2. Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229(5286):560–561

    Article  PubMed  CAS  Google Scholar 

  3. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57(2):201–209

    Article  PubMed  CAS  Google Scholar 

  4. Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, De Luca M (1999) Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 145(4):769–782

    Article  PubMed  CAS  Google Scholar 

  5. Chen JJ, Tseng SC (1991) Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Invest Ophthalmol Vis Sci 32(8):2219–2233

    PubMed  CAS  Google Scholar 

  6. Li W, Hayashida Y, Chen YT, Tseng SC (2007) Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 17(1):26–36

    Article  PubMed  Google Scholar 

  7. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034

    Article  PubMed  CAS  Google Scholar 

  8. de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li D-Q (2005) ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 23(1):63–73

    Article  PubMed  Google Scholar 

  9. Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li D-Q (2004) Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 22(3):355–366

    Article  PubMed  Google Scholar 

  10. Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A 98(6):3156–3161

    Article  PubMed  CAS  Google Scholar 

  11. Dua HS, Joseph A, Shanmuganathan VA, Jones RE (2003) Stem cell differentiation and the effects of deficiency. Eye (Lond Engl) 17(8):877–885

    Article  CAS  Google Scholar 

  12. Chee KY, Kicic A, Wiffen SJ (2006) Limbal stem cells: the search for a marker. Clin Exp Ophthalmol 34(1):64–73

    Article  Google Scholar 

  13. Zhou SY, Zhang C, Baradaran E, Chuck RS (2010) Human corneal basal epithelial cells express an embryonic stem cell marker OCT4. Curr Eye Res 35(11):978–985

    Article  PubMed  CAS  Google Scholar 

  14. Wang H, Tao T, Tang J, Mao Y, Li W, Peng J, Tan G, Zhou Y, Zhong J, Tseng S, Kawakita T, Zhao Y, Liu Z (2009) Importin 13 serves as a potential marker for corneal epithelial progenitor cells. Stem Cells 27:2516–2526

    Article  PubMed  CAS  Google Scholar 

  15. Yoshida S, Shimmura S, Kawakita T, Miyashita H, Den S, Shimazaki J, Tsubota K (2006) Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Invest Ophthalmol Vis Sci 47(11):4780–4786

    Article  PubMed  Google Scholar 

  16. Hayashi R, Yamato M, Sugiyama H, Sumide T, Yang J, Okano T, Tano Y, Nishida K (2007) N-Cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells 25(2):289–296

    Article  PubMed  CAS  Google Scholar 

  17. Kurpakus MA, Stock EL, Jones JC (1990) Expression of the 55/64-kD corneal keratins in ocular surface epithelium. Invest Ophthalmol Vis Sci 31(3):448–456

    PubMed  CAS  Google Scholar 

  18. Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103(1):49–62

    Article  PubMed  CAS  Google Scholar 

  19. Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A 84(8):2302–2306

    Article  PubMed  CAS  Google Scholar 

  20. Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414(6859):98–104

    Article  PubMed  CAS  Google Scholar 

  21. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430

    Article  PubMed  CAS  Google Scholar 

  22. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778

    Article  PubMed  CAS  Google Scholar 

  23. Goldberg MF, Bron AJ (1982) Limbal palisades of Vogt. Trans Am Ophthalmol Soc 80:155–171

    PubMed  CAS  Google Scholar 

  24. Shortt A, Secker G, Munro P, Khaw P, Tuft S, Daniels J (2007) Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25(6):1402–1409

    Article  PubMed  Google Scholar 

  25. Dua H, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89(5):529–532

    Article  PubMed  CAS  Google Scholar 

  26. Levis HJ, Brown RA, Daniels JT (2010) Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 31:7726–7737

    Article  PubMed  CAS  Google Scholar 

  27. Ahmad S, Figueiredo F, Lako M (2006) Corneal epithelial stem cells: characterization, culture and transplantation. Regen Med 1(1):29–44

    Article  PubMed  CAS  Google Scholar 

  28. Ahmad S, Kolli S, Lako M, Figueiredo F, Daniels JT (2010) Stem cell therapies for ocular surface disease. Drug Discovery Today 15(7–8):306–313

    Article  PubMed  CAS  Google Scholar 

  29. Ahmad S, Osei-Bempong C, Dana R, Jurkunas U (2010) The culture and transplantation of human limbal stem cells. J Cell Physiol 225(1):15–19

    Article  PubMed  CAS  Google Scholar 

  30. Puangsricharern V, Tseng SC (1995) Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology 102(10):1476–1485

    PubMed  CAS  Google Scholar 

  31. Espana EM, Grueterich M, Romano AC, Touhami A, Tseng SC (2002) Idiopathic limbal stem cell deficiency. Ophthalmology 109(11):2004–2010

    Article  PubMed  Google Scholar 

  32. Ramaesh K, Ramaesh T, Dutton GN, Dhillon B (2005) Evolving concepts on the pathogenic mechanisms of aniridia related keratopathy. Int J Biochem Cell Biol 37(3):547–557

    Article  PubMed  CAS  Google Scholar 

  33. Dart J (1997) Impression cytology of the ocular surface–research tool or routine clinical investigation? Br J Ophthalmol 81(11):930

    Article  PubMed  CAS  Google Scholar 

  34. Shortt AJ, Secker GA, Rajan MS, Meligonis G, Dart JK, Tuft SJ, Daniels JT (2008) Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmology 115(11):1989–1997

    Article  PubMed  Google Scholar 

  35. Dua HS, Gomes JA, Singh A (1994) Corneal epithelial wound healing. Br J Ophthalmol 78(5):401–408

    Article  PubMed  CAS  Google Scholar 

  36. Grueterich M, Espana EM, Tseng SC (2003) Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 48(6):631–646

    Article  PubMed  Google Scholar 

  37. Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96(5):709–722 (discussion 722–703)

    PubMed  CAS  Google Scholar 

  38. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349(9057):990–993

    Article  PubMed  CAS  Google Scholar 

  39. Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343(2):86–93

    Article  PubMed  CAS  Google Scholar 

  40. Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, Daniels JT (2007) Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol 52(5):483–502

    Article  PubMed  Google Scholar 

  41. Baylis O, Figueiredo F, Henein C, Lako M, Ahmad S (2011) 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem 4:993–1002

    Article  Google Scholar 

  42. Holland EJ (1996) Epithelial transplantation for the management of severe ocular surface disease. Trans Am Ophthalmol Soc 94:677–743

    PubMed  CAS  Google Scholar 

  43. Kolli S, Ahmad S, Lako M, Figueiredo F (2010) Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells 28(3):597–610

    PubMed  CAS  Google Scholar 

  44. Osei-Bempong C, Henein C, Ahmad S (2009) Culture conditions for primary human limbal epithelial cells. Regen Med 4(3):461–470

    Article  PubMed  CAS  Google Scholar 

  45. James SE, Rowe A, Ilari L, Daya S, Martin R (2001) The potential for eye bank limbal rings to generate cultured corneal epithelial allografts. Cornea 20(5):488–494

    Article  PubMed  CAS  Google Scholar 

  46. Nakamura T, Takeda K, Inatomi T, Sotozono C, Kinoshita S (2011) Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol 95(7):942–946

    Article  PubMed  Google Scholar 

  47. Meyer-Blazejewska EA, Call MK, Yamanaka O, Liu H, Schlotzer-Schrehardt U, Kruse FE, Kao WW (2011) From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells 29(1):57–66

    Article  PubMed  CAS  Google Scholar 

  48. Ahmad S, Stewart R, Yung S, Kolli S, Armstrong L, Stojkovic M, Figueiredo F, Lako M (2007) Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells 25(5):1145–1155

    Article  PubMed  CAS  Google Scholar 

  49. Reinshagen H, Auw-Haedrich C, Sorg RV, Boehringer D, Eberwein P, Schwartzkopff J, Sundmacher R, Reinhard T (2011) Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmol 89(8):741–748

    Article  PubMed  Google Scholar 

  50. Gomes JA, Romano A, Santos MS, Dua HS (2005) Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol 16(4):233–240

    Article  PubMed  Google Scholar 

  51. Dua HS, Rahman I, Miri A, Said DG (2010) Variations in amniotic membrane: relevance for clinical applications. Br J Ophthalmol 94(8):963–964

    Article  PubMed  CAS  Google Scholar 

  52. Jang I-K, Ahn J-I, Shin J-S, Kwon Y-S, Ryu Y-H, Lee J-K, Park J-K, Song K-Y, Yang E-K, Kim J-C (2006) Transplantation of reconstructed corneal layer composed of corneal epithelium and fibroblasts on a lyophilized amniotic membrane to severely alkali-burned cornea. Artif Organs 30(6):424–431

    Article  PubMed  CAS  Google Scholar 

  53. von Versen-Höynck F, Hesselbarth U, Möller DE (2004) Application of sterilised human amnion for reconstruction of the ocular surface. Cell Tissue Banking 5(1):57–65

    Article  Google Scholar 

  54. Nakamura T, Sekiyama E, Takaoka M, Bentley AJ, Yokoi N, Fullwood NJ, Kinoshita S (2008) The use of trehalose-treated freeze-dried amniotic membrane for ocular surface reconstruction. Biomaterials 29(27):3729–3737

    Article  PubMed  CAS  Google Scholar 

  55. Uchino Y, Shimmura S, Miyashita H, Taguchi T, Kobayashi H, Shimazaki J, Tanaka J, Tsubota K (2007) Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium. J Biomed Mater Res Part B Appl Biomater 81(1):201–206

    Article  PubMed  Google Scholar 

  56. Zajicova A, Pokorna K, Lencova A, Krulova M, Svobodova E, Kubinova S, Sykova E, Pradny M, Michalek J, Svobodova J, Munzarova M, Holan V (2010) Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transp 19:1281–1290

    Article  Google Scholar 

  57. Marchini G, Pedrotti E, Pedrotti M, Barbaro V, Di Iorio E, Ferrari S, Bertolin M, Ferrari B, Passilongo M, Fasolo A, Ponzin D (2011) Long-term effectiveness of autologous cultured limbal stem cell grafts in patients with limbal stem cell deficiency due to chemical burns. Clin Exp Ophthalmol 40:255–267

    Article  Google Scholar 

  58. Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, Pellegrini G (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72(9):1478–1485

    Article  PubMed  CAS  Google Scholar 

  59. Han B, Schwab IR, Madsen TK, Isseroff RR (2002) A fibrin-based bioengineered ocular surface with human corneal epithelial stem cells. Cornea 21(5):505–510

    Article  PubMed  Google Scholar 

  60. Yang J, Yamato M, Nishida K, Hayashida Y, Shimizu T, Kikuchi A, Tano Y, Okano T (2006) Corneal epithelial stem cell delivery using cell sheet engineering: not lost in transplantation. J Drug Target 14(7):471–482

    Article  PubMed  CAS  Google Scholar 

  61. Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T (2004) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77(3):379–385

    Article  PubMed  Google Scholar 

  62. Reichl S, Borrelli M, Geerling G (2011) Keratin films for ocular surface reconstruction. Biomaterials 32(13):3375–3386

    Article  PubMed  CAS  Google Scholar 

  63. Lawrence BD, Cronin-Golomb M, Georgakoudi I, Kaplan DL, Omenetto FG (2008) Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9(4):1214–1220

    Article  PubMed  CAS  Google Scholar 

  64. Bray LJ, George KA, Ainscough SL, Hutmacher DW, Chirila TV, Harkin DG (2011) Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes. Biomaterials 33(16):4110–4117

    Google Scholar 

  65. Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NL, Hakim M, Song Y, Watsky MA (1999) Functional human corneal equivalents constructed from cell lines. Science 286(5447):2169–2172

    Article  PubMed  CAS  Google Scholar 

  66. Dravida S, Gaddipati S, Griffith M, Merrett K (2008) A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. J Tissue Eng Regen Med 2(5):263–271

    Article  PubMed  CAS  Google Scholar 

  67. Brown R, Wiseman M, Chuo C, Cheema U, Nazhat S (2005) Ultrarapid engineering of biomimetic materials and tissues: Fabrication of Nano-and Microstructures by Plastic Compression. Adv Funct Mater 15(11):1762–1770

    Article  CAS  Google Scholar 

  68. McIntosh AW, Salahuddin A, So S, Ng S, Ponce MS, Takezawa T, Schein O, Elisseeff J (2009) Collagen vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J Biomed Mater Res Part B Appl Biomater 90B(2):818–831

    Article  Google Scholar 

  69. Wray L, Orwin E (2009) Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Engineering Part A 15(7):1463–1472

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding support of the Technology Strategy Board, the EPSRC (HL) and the National Institute for Health Research Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital and UCL Institute of Ophthalmology (JTD). Thanks to Dr. Alex Shortt for use of the crypt and clinical images and Dr. Anna O’Callaghan for her CFE image.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah J. Levis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levis, H.J., Daniels, J.T., Ahmad, S. (2013). Cultured Limbal Epithelial Stem Cell Therapy for Ocular Surface Diseases. In: Baharvand, H., Aghdami, N. (eds) Regenerative Medicine and Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-098-4_3

Download citation

Publish with us

Policies and ethics