Skip to main content

Familial Renal Cell Carcinoma

  • Chapter
  • First Online:
Renal Cell Carcinoma

Part of the book series: Current Clinical Urology ((CCU))

  • 1868 Accesses

Abstract

Recent advances in molecular genetics have elucidated the biological mechanisms of familial renal cell carcinoma (RCC), which have been responsible for the development and introduction of novel targeted agents that continue to change and refine the management of advanced disease. The genetic pathways have been well characterized and defined for several hereditary kidney cancer syndromes, including von Hippel–Lindau, hereditary papillary RCC, Birt–Hogg–Dubè, and hereditary leiomyomatosis RCC. Each of these hereditary kidney cancer syndromes has distinct clinical manifestations and treatment challenges. In this context, our objective is to provide an overview of the molecular genetics, clinical syndromes, and management strategy of hereditary kidney cancer syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  2. Pfaffenroth EC, Linehan WM. Genetic basis for kidney cancer: opportunity for disease-specific approaches to therapy. Expert Opin Biol Ther. 2008;8(6):779–90.

    Article  PubMed  CAS  Google Scholar 

  3. Maher ER, Iselius L, Yates JR, et al. Von Hippel–Lindau disease: a genetic study. J Med Genet. 1991;28(7):443–7.

    Article  PubMed  CAS  Google Scholar 

  4. Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.

    Article  PubMed  CAS  Google Scholar 

  5. Stolle C, Glenn G, Zbar B, et al. Improved detection of germline mutations in the von Hippel–Lindau disease tumor suppressor gene. Hum Mutat. 1998;12(6):417–23.

    Article  PubMed  CAS  Google Scholar 

  6. Yao M, Yoshida M, Kishida T, et al. VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J Natl Cancer Inst. 2002;94(20):1569–75.

    Article  PubMed  CAS  Google Scholar 

  7. Kim HL, Seligson D, Liu X, et al. Using tumor markers to predict the survival of patients with metastatic renal cell carcinoma. J Urol. 2005;173(5):1496–501.

    Article  PubMed  CAS  Google Scholar 

  8. Patard JJ, Rioux-Leclercq N, Masson D, et al. Absence of VHL gene alteration and high VEGF expression are associated with tumour aggressiveness and poor survival of renal-cell carcinoma. Br J Cancer. 2009;101(8):1417–24.

    Article  PubMed  CAS  Google Scholar 

  9. Patard JJ, Fergelot P, Karakiewicz PI, et al. Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. Int J Cancer. 2008;123(2):395–400.

    Article  PubMed  CAS  Google Scholar 

  10. Maher ER, Yates JR. Familial renal cell carcinoma: clinical and molecular genetic aspects. Br J Cancer. 1991;63(2):176–9.

    Article  PubMed  CAS  Google Scholar 

  11. Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7(1):85–90.

    Article  PubMed  CAS  Google Scholar 

  12. Shuin T, Kondo K, Torigoe S, et al. Frequent somatic mutations and loss of heterozygosity of the von Hippel–Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res. 1994;54(11):2852–5.

    PubMed  CAS  Google Scholar 

  13. Neumann HP, Bender BU, Berger DP, et al. Prevalence, morphology and biology of renal cell carcinoma in von Hippel–Lindau disease compared to sporadic renal cell carcinoma. J Urol. 1998;160(4):1248–54.

    Article  PubMed  CAS  Google Scholar 

  14. Nickerson ML, Jaeger E, Shi Y, et al. Improved identification of von Hippel–Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 2008;14(15):4726–34.

    Article  PubMed  CAS  Google Scholar 

  15. Duan DR, Pause A, Burgess WH, et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995;269(5229):1402–6.

    Article  PubMed  CAS  Google Scholar 

  16. Kibel A, Iliopoulos O, DeCaprio JA, Kaelin Jr WG. Binding of the von Hippel–Lindau tumor suppressor protein to Elongin B and C. Science. 1995;269(5229): 1444–6.

    Article  PubMed  CAS  Google Scholar 

  17. Pause A, Lee S, Worrell RA, et al. The von Hippel–Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA. 1997;94(6):2156–61.

    Article  PubMed  CAS  Google Scholar 

  18. Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.

    Article  PubMed  CAS  Google Scholar 

  19. Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol. 2000;2(7):423–7.

    Article  PubMed  CAS  Google Scholar 

  20. Stebbins CE, Kaelin Jr WG, Pavletich NP. Structure of the VHL-ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science. 1999;284(5413):455–61.

    Article  PubMed  CAS  Google Scholar 

  21. Zbar B. Von Hippel–Lindau disease and sporadic renal cell carcinoma. Cancer Surv. 1995;25:219–32.

    PubMed  CAS  Google Scholar 

  22. Neumann HP, Bender BU. Genotype-phenotype correlations in von Hippel–Lindau disease. J Intern Med. 1998;243(6):541–5.

    Article  PubMed  CAS  Google Scholar 

  23. Zbar B, Klausner R, Linehan WM. Studying cancer families to identify kidney cancer genes. Annu Rev Med. 2003;54:217–33.

    Article  PubMed  CAS  Google Scholar 

  24. Chen F, Kishida T, Yao M, et al. Germline mutations in the von Hippel–Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat. 1995;5(1):66–75.

    Article  PubMed  CAS  Google Scholar 

  25. Friedrich CA. Genotype–phenotype correlation in von Hippel–Lindau syndrome. Hum Mol Genet. 2001;10(7):763–7.

    Article  PubMed  CAS  Google Scholar 

  26. Verine J, Pluvinage A, Bousquet G, et al. Hereditary renal cancer syndromes: an update of a systematic review. Eur Urol. 2010;58(5):701–10.

    Article  PubMed  Google Scholar 

  27. Clifford SC, Maher ER. Von Hippel–Lindau disease: clinical and molecular perspectives. Adv Cancer Res. 2001;82:85–105.

    Article  PubMed  CAS  Google Scholar 

  28. Zbar B, Glenn G, Lubensky I, et al. Hereditary papillary renal cell carcinoma: clinical studies in 10 families. J Urol. 1995;153(3 Pt 2):907–12.

    PubMed  CAS  Google Scholar 

  29. Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt L, Junker K, Weirich G, et al. Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res. 1998;58(8):1719–22.

    PubMed  CAS  Google Scholar 

  31. Schmidt L, Junker K, Nakaigawa N, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18(14):2343–50.

    Article  PubMed  CAS  Google Scholar 

  32. Kovacs G. Molecular cytogenetics of renal cell tumors. Adv Cancer Res. 1993;62:89–124.

    Article  PubMed  CAS  Google Scholar 

  33. Zbar B, Tory K, Merino M, et al. Hereditary papillary renal cell carcinoma. J Urol. 1994;151(3):561–6.

    PubMed  CAS  Google Scholar 

  34. Ornstein DK, Lubensky IA, Venzon D, Zbar B, Linehan WM, Walther MM. Prevalence of microscopic tumors in normal appearing renal parenchyma of patients with hereditary papillary renal cancer. J Urol. 2000;163(2):431–3.

    Article  PubMed  CAS  Google Scholar 

  35. Birt AR, Hogg GR, Dube WJ. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol. 1977;113(12):1674–7.

    Article  PubMed  CAS  Google Scholar 

  36. Zbar B, Alvord WG, Glenn G, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt–Hogg–Dube syndrome. Cancer Epidemiol Biomarkers Prev. 2002;11(4):393–400.

    PubMed  Google Scholar 

  37. Roth JS, Rabinowitz AD, Benson M, Grossman ME. Bilateral renal cell carcinoma in the Birt–Hogg–Dube syndrome. J Am Acad Dermatol. 1993;29(6):1055–6.

    Article  PubMed  CAS  Google Scholar 

  38. Toro JR, Glenn G, Duray P, et al. Birt–Hogg–Dube syndrome: a novel marker of kidney neoplasia. Arch Dermatol. 1999;135(10):1195–202.

    Article  PubMed  CAS  Google Scholar 

  39. Menko FH, van Steensel MA, Giraud S, et al. Birt–Hogg–Dube syndrome: diagnosis and management. Lancet Oncol. 2009;10(12):1199–206.

    Article  PubMed  CAS  Google Scholar 

  40. Pavlovich CP, Walther MM, Eyler RA, et al. Renal tumors in the Birt–Hogg–Dube syndrome. Am J Surg Pathol. 2002;26(12):1542–52.

    Article  PubMed  Google Scholar 

  41. Schmidt LS, Nickerson ML, Angeloni D, et al. Early onset hereditary papillary renal carcinoma: germline missense mutations in the tyrosine kinase domain of the met proto-oncogene. J Urol. 2004;172(4 Pt 1):1256–61.

    Article  PubMed  Google Scholar 

  42. Khoo SK, Bradley M, Wong FK, Hedblad MA, Nordenskjold M, Teh BT. Birt–Hogg–Dube syndrome: mapping of a novel hereditary neoplasia gene to chromosome 17p12–q11.2. Oncogene. 2001;20(37): 5239–42.

    Article  PubMed  CAS  Google Scholar 

  43. Baba M, Hong SB, Sharma N, et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci USA. 2006;103(42):15552–7.

    Article  PubMed  CAS  Google Scholar 

  44. Pavlovich CP, Grubb RL, Hurley K, et al. Evaluation and management of renal tumors in the Birt–Hogg–Dube’ syndrome. J Urol. 2005;173(5):1482–6.

    Article  PubMed  Google Scholar 

  45. Toro JR, Wei MH, Glenn GM, et al. BHD mutations, clinical and molecular genetic investigations of Birt–Hogg–Dube syndrome: a new series of 50 families and a review of published reports. J Med Genet. 2008;45(6):321–31.

    Article  PubMed  CAS  Google Scholar 

  46. Butnor KJ, Guinee Jr DG. Pleuropulmonary pathology of Birt–Hogg–Dube syndrome. Am J Surg Pathol. 2006;30(3):395–9.

    PubMed  Google Scholar 

  47. Ayo DS, Aughenbaugh GL, Yi ES, Hand JL, Ryu JH. Cystic lung disease in Birt–Hogg–Dube syndrome. Chest. 2007;132(2):679–84.

    Article  PubMed  Google Scholar 

  48. Reed WB, Walker R, Horowitz R. Cutaneous leiomyomata with uterine leiomyomata. Acta Derm Venereol. 1973;53(5):409–16.

    PubMed  CAS  Google Scholar 

  49. Launonen V, Vierimaa O, Kiuru M, et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci USA. 2001;98(6): 3387–92.

    Article  PubMed  CAS  Google Scholar 

  50. Tomlinson IP, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.

    Article  PubMed  CAS  Google Scholar 

  51. Sudarshan S, Linehan M, Neckers L. HIF and fumarate hydratase in renal cancer. Br J Cancer. 2007;96(3): 403–7.

    Article  PubMed  CAS  Google Scholar 

  52. Isaacs JS, Jung YJ, Mole DR, et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell. 2005;8(2):143–53.

    Article  PubMed  CAS  Google Scholar 

  53. Toro JR, Nickerson ML, Wei MH, et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet. 2003;73(1):95–106.

    Article  PubMed  CAS  Google Scholar 

  54. Alam NA, Olpin S, Leigh IM. Fumarate hydratase mutations and predisposition to cutaneous leiomyomas, uterine leiomyomas and renal cancer. Br J Dermatol. 2005;153(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  55. Wei MH, Toure O, Glenn GM, et al. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet. 2006;43(1):18–27.

    Article  PubMed  CAS  Google Scholar 

  56. Grubb 3rd RL, Franks ME, Toro J, et al. Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol. 2007;177(6):2074–9. discussion 2079–80.

    Article  PubMed  CAS  Google Scholar 

  57. Walther MM, Choyke PL, Glenn G, et al. Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol. 1999;161(5): 1475–9.

    Article  PubMed  CAS  Google Scholar 

  58. Walther MM, Lubensky IA, Venzon D, Zbar B, Linehan WM. Prevalence of microscopic lesions in grossly normal renal parenchyma from patients with von Hippel–Lindau disease, sporadic renal cell carcinoma and no renal disease: clinical implications. J Urol. 1995;154(6):2010–4. discussion 2014–5.

    Article  PubMed  CAS  Google Scholar 

  59. Poston CD, Jaffe GS, Lubensky IA, et al. Characterization of the renal pathology of a familial form of renal cell carcinoma associated with von Hippel–Lindau disease: clinical and molecular genetic implications. J Urol. 1995;153(1):22–6.

    Article  PubMed  CAS  Google Scholar 

  60. Huang WC, Elkin EB, Levey AS, Jang TL, Russo P. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors–is there a difference in mortality and cardiovascular outcomes? J Urol. 2009;181(1):55–61. discussion 61–52.

    Article  PubMed  Google Scholar 

  61. Miller DC, Schonlau M, Litwin MS, Lai J, Saigal CS. Renal and cardiovascular morbidity after partial or radical nephrectomy. Cancer. 2008;112(3):511–20.

    Article  PubMed  Google Scholar 

  62. Thompson RH, Boorjian SA, Lohse CM, et al. Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. J Urol. 2008;179(2):468–71. discussion 472–463.

    Article  PubMed  Google Scholar 

  63. Thompson RH, Siddiqui S, Lohse CM, Leibovich BC, Russo P, Blute ML. Partial versus radical nephrectomy for 4 to 7 cm renal cortical tumors. J Urol. 2009;182(6):2601–6.

    Article  PubMed  Google Scholar 

  64. Weight CJ, Larson BT, Gao T, et al. Elective partial nephrectomy in patients with clinical T1b renal tumors is associated with improved overall survival. Urology. 2010;76(3):631–7.

    Article  PubMed  Google Scholar 

  65. Weight CJ, Lieser G, Larson BT, et al. Partial nephrectomy is associated with improved overall survival compared to radical nephrectomy in patients with unanticipated benign renal tumours. Eur Urol. 2010;58(2):293–8.

    Article  PubMed  Google Scholar 

  66. Herring JC, Enquist EG, Chernoff A, Linehan WM, Choyke PL, Walther MM. Parenchymal sparing surgery in patients with hereditary renal cell carcinoma: 10-year experience. J Urol. 2001;165(3):777–81.

    Article  PubMed  CAS  Google Scholar 

  67. Walther MM, Choyke PL, Weiss G, et al. Parenchymal sparing surgery in patients with hereditary renal cell carcinoma. J Urol. 1995;153(3 Pt 2):913–6.

    PubMed  CAS  Google Scholar 

  68. Pavlovich CP, Walther MM, Choyke PL, et al. Percutaneous radio frequency ablation of small renal tumors: initial results. J Urol. 2002;167(1):10–5.

    Article  PubMed  Google Scholar 

  69. Hwang JJ, Walther MM, Pautler SE, et al. Radio frequency ablation of small renal tumors intermediate results. J Urol. 2004;171(5):1814–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley C. Leibovich MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, S.P., Leibovich, B.C. (2013). Familial Renal Cell Carcinoma. In: Campbell, S., Rini, B. (eds) Renal Cell Carcinoma. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-062-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-062-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-061-8

  • Online ISBN: 978-1-62703-062-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics