Skip to main content

Mammalian Target of Rapamycin in Renal Cell Carcinoma

  • Chapter
  • First Online:
Book cover Renal Cell Carcinoma

Part of the book series: Current Clinical Urology ((CCU))

  • 1868 Accesses

Abstract

The mammalian target of rapamycin (mTOR), described two decades ago, is implicated in cellular growth and metabolism pathways. In renal cell carcinoma (RCC), mTOR is active and leads to downstream translation of ribosomal proteins via hypoxia-induced factor-1α (HIF-1α). Two mTOR inhibitors (mTORis), everolimus and temsirolimus, are currently approved for the treatment of patients with RCC after showing an improvement in progression-free survival and overall survival, respectively. In this chapter, we will review the signaling pathways involving mTOR, and the phase I, II, and III trials leading to the approval of mTORis. The role and place of mTORis in the treatment algorithms of RCC are still unclear and are being evaluated by ongoing clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253:905–9.

    PubMed  CAS  Google Scholar 

  2. Choi J, Chen J, Schreiber SL, Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science. 1996;273:239–42.

    PubMed  CAS  Google Scholar 

  3. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–84.

    PubMed  CAS  Google Scholar 

  4. Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature. 1994;369:756–8.

    PubMed  CAS  Google Scholar 

  5. Sabers CJ, Martin MM, Brunn GJ, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995;270:815–22.

    PubMed  CAS  Google Scholar 

  6. Helliwell SB, Wagner P, Kunz J, et al. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell. 1994;5:105–18.

    PubMed  CAS  Google Scholar 

  7. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3:155–68.

    PubMed  CAS  Google Scholar 

  8. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9–22.

    PubMed  CAS  Google Scholar 

  9. Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110:177–89.

    PubMed  CAS  Google Scholar 

  10. Loewith R, Jacinto E, Wullschleger S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002;10:457–68.

    PubMed  CAS  Google Scholar 

  11. Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163–75.

    PubMed  CAS  Google Scholar 

  12. Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275:661–5.

    PubMed  CAS  Google Scholar 

  13. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18:1926–45.

    PubMed  CAS  Google Scholar 

  14. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.

    PubMed  CAS  Google Scholar 

  15. Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.

    PubMed  CAS  Google Scholar 

  16. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 2005;102:8204–9.

    PubMed  CAS  Google Scholar 

  17. Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem. 2003;278:29655–60.

    PubMed  CAS  Google Scholar 

  18. De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene. 2004;23:3189–99.

    PubMed  Google Scholar 

  19. Soni A, Akcakanat A, Singh G, et al. eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Mol Cancer Ther. 2008;7:1782–8.

    PubMed  CAS  Google Scholar 

  20. Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005;433:477–80.

    PubMed  CAS  Google Scholar 

  21. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002;4:658–65.

    PubMed  CAS  Google Scholar 

  22. Tang JM, He QY, Guo RX, Chang XJ. Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer. 2006;51:181–91.

    PubMed  Google Scholar 

  23. Neshat MS, Mellinghoff IK, Tran C, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA. 2001;98:10314–9.

    PubMed  CAS  Google Scholar 

  24. Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER. Inactivation of the von Hippel–Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosomes Cancer. 1998;22:200–9.

    PubMed  CAS  Google Scholar 

  25. Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science. 1993;260:1317–20.

    PubMed  CAS  Google Scholar 

  26. Patel PH, Chadalavada RS, Chaganti RS, Motzer RJ. Targeting von Hippel–Lindau pathway in renal cell carcinoma. Clin Cancer Res. 2006;12:7215–20.

    PubMed  CAS  Google Scholar 

  27. Brugarolas J. Renal-cell carcinoma–molecular pathways and therapies. N Engl J Med. 2007;356:185–7.

    PubMed  CAS  Google Scholar 

  28. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004;22:4991–5004.

    PubMed  CAS  Google Scholar 

  29. Maranchie JK, Vasselli JR, Riss J, et al. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell. 2002;1:247–55.

    PubMed  CAS  Google Scholar 

  30. Thomas GV, Tran C, Mellinghoff IK, et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med. 2006;12:122–7.

    PubMed  CAS  Google Scholar 

  31. Kourembanas S, Hannan RL, Faller DV. Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest. 1990;86:670–4.

    PubMed  CAS  Google Scholar 

  32. de Paulsen N, Brychzy A, Fournier MC, et al. Role of transforming growth factor-alpha in von Hippel–Lindau (VHL)(−/−) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci USA. 2001;98:1387–92.

    PubMed  Google Scholar 

  33. Brenner W, Farber G, Herget T, et al. Loss of tumor suppressor protein PTEN during renal carcinogenesis. Int J Cancer. 2002;99:53–7.

    PubMed  CAS  Google Scholar 

  34. Abraham RT, Gibbons JJ. The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res. 2007;13:3109–14.

    PubMed  CAS  Google Scholar 

  35. Rini BI, Atkins MB. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 2009;10:992–1000.

    PubMed  CAS  Google Scholar 

  36. Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP. Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol. 2007;177:346–52.

    PubMed  Google Scholar 

  37. Pantuck AJ, Seligson DB, Klatte T, et al. Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer. 2007;109:2257–67.

    PubMed  CAS  Google Scholar 

  38. Cho D, Signoretti S, Dabora S, et al. Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2007;5:379–85.

    PubMed  CAS  Google Scholar 

  39. Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo). 1975;28:727–32.

    CAS  Google Scholar 

  40. Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28:721–6.

    CAS  Google Scholar 

  41. Martel RR, Klicius J, Galet S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol. 1977;55:48–51.

    PubMed  CAS  Google Scholar 

  42. Calne RY, Collier DS, Lim S, et al. Rapamycin for immunosuppression in organ allografting. Lancet. 1989;2:227.

    PubMed  CAS  Google Scholar 

  43. Houchens DP, Ovejera AA, Riblet SM, Slagel DE. Human brain tumor xenografts in nude mice as a chemotherapy model. Eur J Cancer Clin Oncol. 1983;19:799–805.

    PubMed  CAS  Google Scholar 

  44. Eng CP, Sehgal SN, Vezina C. Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (Tokyo). 1984;37:1231–7.

    CAS  Google Scholar 

  45. Albers MW, Williams RT, Brown EJ, et al. FKBP-rapamycin inhibits a cyclin-dependent kinase activity and a cyclin D1-Cdk association in early G1 of an osteosarcoma cell line. J Biol Chem. 1993;268:22825–9.

    PubMed  CAS  Google Scholar 

  46. Dilling MB, Dias P, Shapiro DN, et al. Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor. Cancer Res. 1994;54:903–7.

    PubMed  CAS  Google Scholar 

  47. Seufferlein T, Rozengurt E. Rapamycin inhibits constitutive p70s6k phosphorylation, cell proliferation, and colony formation in small cell lung cancer cells. Cancer Res. 1996;56:3895–7.

    PubMed  CAS  Google Scholar 

  48. Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res. 1995;76:412–7.

    PubMed  CAS  Google Scholar 

  49. Grunwald V, DeGraffenried L, Russel D, et al. Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res. 2002;62:6141–5.

    PubMed  CAS  Google Scholar 

  50. Yu K, Toral-Barza L, Discafani C, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer. 2001;8:249–58.

    PubMed  Google Scholar 

  51. Hidalgo M, Buckner JC, Erlichman C, et al. A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res. 2006;12:5755–63.

    PubMed  CAS  Google Scholar 

  52. Raymond E, Alexandre J, Faivre S, et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 2004;22:2336–47.

    PubMed  CAS  Google Scholar 

  53. Punt CJ, Boni J, Bruntsch U, Peters M, Thielert C. Phase I and pharmacokinetic study of CCI-779, a novel cytostatic cell-cycle inhibitor, in combination with 5-fluorouracil and leucovorin in patients with advanced solid tumors. Ann Oncol. 2003;14:931–7.

    PubMed  CAS  Google Scholar 

  54. Boni JP, Hug B, Leister C, Sonnichsen D. Intravenous temsirolimus in cancer patients: clinical pharmacology and dosing considerations. Semin Oncol. 2009;36 Suppl 3:S18–25.

    PubMed  CAS  Google Scholar 

  55. Skotnicki JS, Leone CL, Smith AL. Design, synthesis and biological evaluation of C-42 hydroxyesters of rapamycin: the identification of CCI-779 [abstract 477]. Clin Cancer Res. 2001;7:3749S–50.

    Google Scholar 

  56. Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol. 2005;23:5294–304.

    PubMed  CAS  Google Scholar 

  57. Pandya KJ, Dahlberg S, Hidalgo M, et al. A randomized, phase II trial of two dose levels of temsirolimus (CCI-779) in patients with extensive-stage small-cell lung cancer who have responding or stable disease after induction chemotherapy: a trial of the Eastern Cooperative Oncology Group (E1500). J Thorac Oncol. 2007;2:1036–41.

    PubMed  Google Scholar 

  58. Chan S, Scheulen ME, Johnston S, et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2005;23:5314–22.

    PubMed  CAS  Google Scholar 

  59. Peralba JM, DeGraffenried L, Friedrichs W, et al. Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin Cancer Res. 2003;9:2887–92.

    PubMed  CAS  Google Scholar 

  60. FDA. http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022088s008lbl.pdf.

  61. Zimmerman JJ, Lasseter KC, Lim HK, et al. Pharmacokinetics of sirolimus (rapamycin) in subjects with mild to moderate hepatic impairment. J Clin Pharmacol. 2005;45:1368–72.

    PubMed  CAS  Google Scholar 

  62. Boni JP, Leister C, Bender G, et al. Population pharmacokinetics of CCI-779: correlations to safety and pharmacogenomic responses in patients with advanced renal cancer. Clin Pharmacol Ther. 2005;77:76–89.

    PubMed  CAS  Google Scholar 

  63. Sattler M, Guengerich FP, Yun CH, Christians U, Sewing KF. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos. 1992;20:753–61.

    PubMed  CAS  Google Scholar 

  64. Jacobsen W, Serkova N, Hausen B, et al. Comparison of the in vitro metabolism of the macrolide immunosuppressants sirolimus and RAD. Transplant Proc. 2001;33:514–5.

    PubMed  CAS  Google Scholar 

  65. Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol. 2004;22:909–18.

    PubMed  CAS  Google Scholar 

  66. Fischer P, Patel P, Carducci MA, et al. Phase I study combining treatment with temsirolimus and sunitinib malate in patients with advanced renal cell carcinoma. J Clin Oncol. 2008;26.

    Google Scholar 

  67. Merchan JR, Liu G FT, Picus J, et al. Phase I/II trial of CCI-779 and bevacizumab in stage IV renal cell carcinoma: phase I safety and activity results. J Clin Oncol 2007; ASCO annual meeting proceedings part I. 25, No. 18S (June 20 Supplement) 5034.

    Google Scholar 

  68. Merchan JR, Pitot HC, Qin R, et al. Phase I/II trial of CCI 779 and bevacizumab in advanced renal cell carcinoma (RCC): safety and activity in RTKI refractory RCC patients. J Clin Oncol. 2009;27(Suppl):15s [Abstr 5039].

    Google Scholar 

  69. Margolin K, Longmate J, Baratta T, et al. CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer. 2005;104:1045–8.

    PubMed  CAS  Google Scholar 

  70. Chang SM, Wen P, Cloughesy T, et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs. 2005;23:357–61.

    PubMed  CAS  Google Scholar 

  71. Duran I, Kortmansky J, Singh D, et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer. 2006;95:1148–54.

    PubMed  CAS  Google Scholar 

  72. Witzig TE, Geyer SM, Ghobrial I, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23:5347–56.

    PubMed  CAS  Google Scholar 

  73. Motzer RJ, Hudes GR, Curti BD, et al. Phase I/II trial of temsirolimus combined with interferon alfa for advanced renal cell carcinoma. J Clin Oncol. 2007;25:3958–64.

    PubMed  CAS  Google Scholar 

  74. Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol. 2002;20:289–96.

    PubMed  CAS  Google Scholar 

  75. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.

    PubMed  CAS  Google Scholar 

  76. Motzer RJ, Mazumdar M, Bacik J, et al. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol. 1999;17:2530–40.

    PubMed  CAS  Google Scholar 

  77. Mekhail TM, Abou-Jawde RM, Boumerhi G, et al. Validation and extension of the Memorial Sloan-Kettering prognostic factors model for survival in patients with previously untreated metastatic renal cell carcinoma. J Clin Oncol. 2005;23:832–41.

    PubMed  Google Scholar 

  78. Logan T, McDermott D, Dutcher J, et al. J Clin Oncol. 2008;26(Suppl) [Abstr 5050].

    Google Scholar 

  79. Dutcher JP, de Souza P, McDermott D, et al. Effect of temsirolimus versus interferon-alpha on outcome of patients with advanced renal cell carcinoma of different tumor histologies. Med Oncol. 2009;26:202–9.

    PubMed  CAS  Google Scholar 

  80. Patel PH, Senico PL, Curiel RE, Motzer RJ. Phase I study combining treatment with temsirolimus and sunitinib malate in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2009;7:24–7.

    PubMed  CAS  Google Scholar 

  81. Patnaik A, ricart A, Cooper J, Papadopoulos K. A phase I, pharmacokinetic and pharmacodynamic study of sorafenib (S), a multi-targeted kinase inhibitor in combination with temsirolimus (T), an mTOR inhibitor in patients with advanced solid malignancies. J Clin Oncol. 2007;25(Suppl 18S):3512 [2007 ASCO annual meeting proceedings part I].

    Google Scholar 

  82. Wyeth. Phase 3b, randomized, open-label study of bevacizumab  +  temsirolimus vs. bevacizumab  +  interferon-alfa as first-line treatment in subjects with advanced renal cell carcinoma. In: ClinicalTrialsgov [Internet] Bethesda (MD): National Library of Medicine (US) 2000 [cited 2011 Feb 08]. http://clinicaltrials.gov/show/NCT00631371. NLM Identifier: 00631371.

  83. ECOG. The BeST Trial: a randomized phase II study of VEGF, RAF Kinase, and mTOR combination targeted therapy (CTT) with bevacizumab, sorafenib and temsirolimus in advanced renal cell carcinoma [BeST]. In: ClinicalTrialsgov [Internet] Bethesda (MD): National Library of Medicine (US) 2000 [cited 2011 Feb 08]. http://clinicaltrials.gov/show/NCT0378703. NLM Identifier: 00378703.

  84. Wyeth. A randomized trial of temsirolimus versus sorafenib as second-line therapy in patients with advanced renal cell carcinoma who have failed first-line sunitinib therapy. In: ClinicalTrialsgov [Internet] Bethesda (MD): National Library of Medicine (US) 2000 [cited 2011 Feb 08]. Available from: http://clinicaltrials.gov/show/NCT00474786. NLM Identifier: NCT00474786.

  85. Neumayer HH, Paradis K, Korn A, et al. Entry-into-human study with the novel immunosuppressant SDZ RAD in stable renal transplant recipients. Br J Clin Pharmacol. 1999;48:694–703.

    PubMed  CAS  Google Scholar 

  86. Eisen HJ, Tuzcu EM, Dorent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med. 2003;349:847–58.

    PubMed  CAS  Google Scholar 

  87. Pascual J. Everolimus in clinical practice – renal transplantation. Nephrol Dial Transplant. 2006;21 Suppl 3:iii18–23.

    PubMed  Google Scholar 

  88. Sanchez-Fructuoso AI. Everolimus: an update on the mechanism of action, pharmacokinetics and recent clinical trials. Expert Opin Drug Metab Toxicol. 2008;4:807–19.

    PubMed  CAS  Google Scholar 

  89. Boulay A, Zumstein-Mecker S, Stephan C, et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res. 2004;64:252–61.

    PubMed  CAS  Google Scholar 

  90. Tanaka C, O’Reilly T, Kovarik JM, et al. Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol. 2008;26:1596–602.

    PubMed  CAS  Google Scholar 

  91. Crowe A, Bruelisauer A, Duerr L, Guntz P, Lemaire M. Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos. 1999;27:627–32.

    PubMed  CAS  Google Scholar 

  92. Kovarik JM, Hartmann S, Figueiredo J, et al. Effect of rifampin on apparent clearance of everolimus. Ann Pharmacother. 2002;36:981–5.

    PubMed  CAS  Google Scholar 

  93. O’Donnell A, Faivre S, Burris 3rd HA, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26:1588–95.

    PubMed  Google Scholar 

  94. Kovarik JM, Noe A, Berthier S, et al. Clinical development of an everolimus pediatric formulation: relative bioavailability, food effect, and steady-state pharmacokinetics. J Clin Pharmacol. 2003;43:141–7.

    PubMed  CAS  Google Scholar 

  95. Lampen A, Zhang Y, Hackbarth I, et al. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther. 1998;285:1104–12.

    PubMed  CAS  Google Scholar 

  96. Kovarik JM, Sabia HD, Figueiredo J, et al. Influence of hepatic impairment on everolimus pharmacokinetics: implications for dose adjustment. Clin Pharmacol Ther. 2001;70:425–30.

    PubMed  CAS  Google Scholar 

  97. Strom T, Haschke M, Zhang YL, et al. Identification of everolimus metabolite patterns in trough blood samples of kidney transplant patients. Ther Drug Monit. 2007;29:592–9.

    PubMed  CAS  Google Scholar 

  98. Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharmacokinetics of everolimus. Clin Pharmacokinet. 2004;43:83–95.

    PubMed  CAS  Google Scholar 

  99. Taylor PJ, Franklin ME, Graham KS, Pillans PI. A HPLC-mass spectrometric method suitable for the therapeutic drug monitoring of everolimus. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;848:208–14.

    PubMed  CAS  Google Scholar 

  100. Tabernero J, Rojo F, Calvo E, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26:1603–10.

    PubMed  CAS  Google Scholar 

  101. Amato RJ, Jac J, Giessinger S, Saxena S, Willis JP. A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer. 2009;115:2438–46.

    PubMed  CAS  Google Scholar 

  102. Hainsworth JD, Spigel DR, Burris 3rd HA, et al. Phase II trial of bevacizumab and everolimus in patients with advanced renal cell carcinoma. J Clin Oncol. 2010;28:2131–6.

    PubMed  CAS  Google Scholar 

  103. Whorf RC, Hainsworth JD, Spigel DR, Yardley DA, Burris HA III, Waterhouse DM, Vazquez ER, Greco FA. Phase II study of bevacizumab and everolimus (RAD001) in the treatment of advanced renal cell carcinoma (RCC). J Clin Oncol 2008;26(Suppl) [Abstr 5010].

    Google Scholar 

  104. Escudier B. How to interpret phase II data for everolimus plus bevacizumab in renal cell carcinoma. J Clin Oncol. 2010;28:2125–6.

    PubMed  Google Scholar 

  105. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372(9637):449–56.

    PubMed  CAS  Google Scholar 

  106. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Kidney Cancer v. http://www.nccn.org/professionals/physician_gls/PDF/kidney.pdf. Accessed 28 Feb 2011

  107. Motzer RJ, Escudier B, Oudard S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer. 2010;116:4256–65.

    PubMed  CAS  Google Scholar 

  108. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103–11.

    PubMed  Google Scholar 

  109. Escudier B, Bellmunt J, Negrier S, et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol. 2010;28:2144–50.

    PubMed  CAS  Google Scholar 

  110. Rini BI, Halabi S, Rosenberg JE, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28:2137–43.

    PubMed  CAS  Google Scholar 

  111. Rini BI, Halabi S, Rosenberg JE, et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol. 2008;26:5422–8.

    PubMed  CAS  Google Scholar 

  112. Roche-Pharma NPA. A Randomized, open-label, multi-center phase II study to compare bevacizumab plus RAD001 versus interferon alfa-2a plus bevacizumab for the first-line treatment of patients with metastatic clear cell carcinoma of the kidney. In: ClinicalTrialsgov [Internet] Bethesda (MD): National Library of Medicine (US); 2000 [cited in March 2011]. http://www.clinicaltrials.gov/ct2/show/NCT00719264.

  113. Chawla SP, Sankhala KK, Chua V, Menendez LR, Eilber FC, Eckardt JJ. A phase II study of AP23573 (an mTOR inhibitor) in patients (pts) with advanced sarcomas. ASCO Meet Abstr. 2005;23:9068

    Google Scholar 

  114. Perotti A, Locatelli A, Sessa C, et al. Phase IB study of the mTOR inhibitor ridaforolimus with capecitabine. J Clin Oncol. 2010;28:4554–61.

    PubMed  CAS  Google Scholar 

  115. Sessa C, Tosi D, Vigano L, et al. Phase Ib study of weekly mammalian target of rapamycin inhibitor ridaforolimus (AP23573; MK-8669) with weekly paclitaxel. Ann Oncol. 2010;21:1315–22.

    PubMed  CAS  Google Scholar 

  116. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    PubMed  CAS  Google Scholar 

  117. Dumont FJ, Staruch MJ, Grammer T, et al. Dominant mutations confer resistance to the immunosuppressant, rapamycin, in variants of a T cell lymphoma. Cell Immunol. 1995;163:70–9.

    PubMed  CAS  Google Scholar 

  118. Chen J, Zheng XF, Brown EJ, Schreiber SL. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA. 1995;92:4947–51.

    PubMed  CAS  Google Scholar 

  119. Fruman DA, Wood MA, Gjertson CK, et al. FK506 binding protein 12 mediates sensitivity to both FK506 and rapamycin in murine mast cells. Eur J Immunol. 1995;25:563–71.

    PubMed  CAS  Google Scholar 

  120. Sugiyama H, Papst P, Gelfand EW, Terada N. p70 S6 kinase sensitivity to rapamycin is eliminated by amino acid substitution of Thr229. J Immunol. 1996;157:656–60.

    PubMed  CAS  Google Scholar 

  121. Mahalingam M, Templeton DJ. Constitutive activation of S6 kinase by deletion of amino-terminal autoinhibitory and rapamycin sensitivity domains. Mol Cell Biol. 1996;16:405–13.

    PubMed  CAS  Google Scholar 

  122. Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol. 2004;14:1650–6.

    PubMed  CAS  Google Scholar 

  123. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26:1932–40.

    PubMed  CAS  Google Scholar 

  124. O’Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.

    PubMed  Google Scholar 

  125. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther. 2005;4:1533–40.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Jonasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jonasch, E., Choueiri, M. (2013). Mammalian Target of Rapamycin in Renal Cell Carcinoma. In: Campbell, S., Rini, B. (eds) Renal Cell Carcinoma. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-062-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-062-5_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-061-8

  • Online ISBN: 978-1-62703-062-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics