Skip to main content

Immunosuppressive Properties of Mesenchymal Stromal Cells

  • Chapter
  • First Online:
Advances in Stem Cell Research

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The main interest in mesenchymal stromal cells (MSCs) is correlated with their ability to suppress the proliferation of T lymphocytes induced by mitogenic agents and alloantigens which regulate the transplantation rejection. Moreover, MSCs are resistant to the CD8+ T lymphocyte cytotoxicity, they are able to inhibit the differentiation of dendritic cells responsible for the antigen presentation, the proliferation, and antibody production of B lymphocytes and they stimulate the formation of regulatory T cells. The mechanisms at the basis of MSCs activity need cell–cell interaction and the secretion of soluble molecules induced by the micro-environment. The inhibitory functions of MSCs involve several soluble molecules as hepatocyte growth factor, transforming growth factor-beta, interleukin-10 and -2, tumor necrosis factor-alpha, prostaglandin E2, indoleamine 2,3-dioxygenase (IDO), and soluble HLA-G antigens. A large consensus has been obtained on the immuno-modulatory role of IDO and HLA-G molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedenstein AJ, Chailakhyan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea pig bone marrow and spleen colonies. Cell Tissue Kinet 3:393–403

    PubMed  CAS  Google Scholar 

  2. Prockop DJ (1997) Marrow stromal cells as stem cells for non-hematopoietic tissues. Science 276:71

    Article  PubMed  CAS  Google Scholar 

  3. Dominici M, Le Blank K, Prockop DI, Howartz E (2006) Position paper: minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  4. Dexter TM (1979) Cell interactions in vitro. Cin Haematol 8:453–468

    CAS  Google Scholar 

  5. Castro-Malaspina H, Gay RE, Resnik G, Kapoor N, Meyers P, Chiarieri D, McKenzie S, Broxmeyer HE, Moore MA (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56:289–301

    PubMed  CAS  Google Scholar 

  6. Tavassoli M, Friedenstein A (1983) Hemopoietic stromal microenvironment. Am J Haematol 15:196–203

    Article  Google Scholar 

  7. Eaves AC, Eaves CJ (1988) Maintenance and proliferation control of primitive hemopoietic progenitors in long-term cultures of human marrow cells. Blood Cells 14:355–368

    PubMed  CAS  Google Scholar 

  8. Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42

    PubMed  CAS  Google Scholar 

  9. Wulf GG, Jackson KA, Goodell MA (2001) Somatic stem cell plasticity: current evidence and emerging concepts. Exp Hematol 29:1361–1370

    Article  PubMed  CAS  Google Scholar 

  10. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143

    Article  PubMed  CAS  Google Scholar 

  11. Di Girolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281

    Article  Google Scholar 

  12. Reyes M, Lund T, Lenvik T, Aquiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  PubMed  CAS  Google Scholar 

  13. Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. PNAS 98:7841–7845

    Article  PubMed  CAS  Google Scholar 

  14. Urbani S, Caporale R, Lombardini L, Bosi A, Saccaridi R (2006) Use of CFDA-SE for evaluating the in vitro proliferation pattern of human MSC. Cytotherapy 8:243–253

    Article  PubMed  CAS  Google Scholar 

  15. Taormin A, Brune JC, Olsson E, Valcich J, Neuman U, Olofsson T, Jacobsen SE, Scheding S (2009) Characterization of bone marrow derived MSC based on gene expression profiling of functionally defined MSC subsets. Cytotherapy 11:114–128

    Article  CAS  Google Scholar 

  16. Majumdar MK, Keane-Moore M, Buyaner D et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10:228–241

    Article  PubMed  CAS  Google Scholar 

  17. Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73

    Article  PubMed  CAS  Google Scholar 

  18. Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E, D’Aurizio F, Verardon R, Piazza S, Pignatelli A, Poz A, Baccaroni U, Damiani D, Fanin R, Mariuzzi L, Finato N, Masolini P, Burelli S, Belluzzi O, Schneider C, Beltrami CA (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, bone marrow). Blood 110:3438

    Article  PubMed  CAS  Google Scholar 

  19. Götherström C, West A, Liden J, Uzunel M, Lahesmaa R, Le Blanc K (2005) Differences in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells. Haematologica 90:1017–1026

    PubMed  Google Scholar 

  20. Simmons PJ, Torok-Storb B (1991) Identification of stromal precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62

    PubMed  CAS  Google Scholar 

  21. Campioni D, Lanza F, Moretti S, Dominaci M, Punturieri M, Pauli S, Hofmann T, Horwitz E, Castaldi GL (2003) Functional and immunophenotypic characteristics of isolated CD105+ and fibroblasts + mesenchymal cells from acute myeloid leukaemia: implication for their plasticity along endothelial lineage. Cytotherapy 5:66–79

    Article  PubMed  CAS  Google Scholar 

  22. Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271

    Google Scholar 

  23. Deschaseux F, Charbord P (2000) Human marrow stromal precursors are α1 integrin subunit-positive. J Cell Physiol 184:319–325

    Article  Google Scholar 

  24. Battula VL, Treml S, Bareiss PM, Gieseke F, Roelofs H, de Zwart P, Muller I, Schewe B, Skutella T, Fibbe WE, Kanz L, Buhring HJ (2009) Isolation of functionally distinct MSC cell subsets using antibodies aginst CD56, CD271 and mesenchymal stem cell antigen-1 (MSCA-1). Haematologica 94:173–184

    Article  PubMed  CAS  Google Scholar 

  25. Bhuring HJ, Kuci S, Conze T, Rathke G, Scherl-Mostageer M, Brummendorf TH, Schweifer N, Lammers R (2004) CDCP1 identifies a broad spectrum of normal and malignant stem/progenitor cell subsets of hematopoietic and non-hematopoietic origin. Stem Cells 22:334–343

    Article  Google Scholar 

  26. SorrentinoA, Ferracin M, Castelli G, Biffoni M, Tomaselli G, Baiocchi M, Fatica A, Negrini M, Peschle C, Valtieri M (2008) Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp Haematol 36:1035–1046

    Google Scholar 

  27. Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Delivers GL (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Haematol 30:783–791

    Article  CAS  Google Scholar 

  28. Gang EJ, Bosnakovsky D, Figueiredo CA et al (2007) SSEA-4 identifies MSC from bone marrow. Blood 109:1743–1751

    Article  PubMed  CAS  Google Scholar 

  29. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikopolov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    Article  PubMed  CAS  Google Scholar 

  30. Tormin A, Li O, Brune JC, Walsh S, Schtz B, Ehinger M, Ditzel N, Kassem M, Scheding S (2011) CD146 expression on primary non-hematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117:5067–5077

    Article  PubMed  CAS  Google Scholar 

  31. Martinez C, Hofman TJ, Marino R, Dominaci M, Horwitz EM (2007) Human bone marrow mesenchymal cells express the neural ganglioside GD2: a novel surface markers for the identification of MSC. Blood 109:4245–4248

    Article  PubMed  CAS  Google Scholar 

  32. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islet. Blood 106:419–425

    Article  PubMed  CAS  Google Scholar 

  33. Sanchez-Guijo FM, Blanco JF, Cruz G, Muntion S, Gomez M, Carrancio S, Lopez-Villar O, Barbado MV, Sanchez-Abarca LI, Blanco B, Brinon JG, Del Canizo MC (2009) Multiparametric comparison of mesenchymal stromal cells obtained from trabecular bone by using a novel isolation method with those obtained by iliac crest aspiration from the subjects. Cell Tissue Res 336(3):501–507

    Article  PubMed  Google Scholar 

  34. Landuyt KBV, Jones EA, McGonagle D, Luyten FP, Lories RJ (2010) Flow cytometric characterization of freshly isolated and cultured expanded human synovial cell population in patients with chronic arthritis. Arthr Res Ther 12:R15

    Article  CAS  Google Scholar 

  35. Jones E, English A, Kinsey S et al (2006) Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry Part B 70B:391–399

    Article  CAS  Google Scholar 

  36. Bradford JA, Clarke ST (2011) Panel development for multicolor flow cytometry testing of proliferation and immunophenotype in h MSCs. Methods Mol Biol 698:367–385

    Article  PubMed  CAS  Google Scholar 

  37. Tabera S, Perez-Simon JA, Diez-Campelo M, Sanchez-Abarca LI, Blanco B, Lopez A, Benito A, Ocio E, Sanchez-Guijo FM, Canizo C, San Miguel JF (2008) The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-Lymphocytes. Haematologica 93:1301–1309

    Article  PubMed  CAS  Google Scholar 

  38. Meuleman N, Tondreau T, Delforge A, Dejeneffe M, Massy M, Libertalis M, Bron D, Lagneaux L (2006) Human marrow mesenchymal stem cell culture : serum-free medium allows better expansion than classical a-MEM medium. Eur J Haematol 76:309–316

    Article  PubMed  Google Scholar 

  39. Mueller I, Kordowich S, Holzwarth C, Spano C, Isensee G, Staiber A, Viebahn S, Gleseke F, Langer H, Gawaz MP, Horwitz EM, Conte P (2006) Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 8:437–444

    Article  Google Scholar 

  40. Esposito MT, Di Noto R, Mirabelli P, Garrese M, Parisi S, Montanaro D, Del Vecchio L, Pastore L (2009) Culture conditions allow selection of different MSC progenitors from adult mouse bone marrow. Tissue Eng Part A 15:124

    Article  CAS  Google Scholar 

  41. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:74–85

    Article  PubMed  Google Scholar 

  42. Kalz N, Ringe J, Holzwarth C, Chrabord P, Niemeyer M, Jacobs VR, Peschel C (2010) Novel markers of mesenchymal stem cells defined by genome-wide gene expression analysis of stromal cells from different sources. Exp Cell Res 316:2609–2617

    Article  CAS  Google Scholar 

  43. Lee RH, Hsu SC, Munoz J, Jung JS, Lee NR, Pochampally R, Prockop DJ (2006) A subset of human rapidly-self renewing marrow stromal cells (MSCs) preferentially engraft in mice. Blood 107:2153–2161

    Article  PubMed  CAS  Google Scholar 

  44. Samuelsson H, Ringden O, Lönnies L, Le Blanc K (2009) Optimizing in vitro conditions for immunomodulation and expansion of mesenchymal stem cells. Cytotherapy 11:129–136

    Article  PubMed  CAS  Google Scholar 

  45. Grisendi G, Anneren C, Cafarelli L, Sternieri R, Veronesi E, Cervo GL, Luminari S, Maur M, Frassoldati A, Palazzi G, Otsuru S, Bambi F, Paolucci P, Conte PF, Horwitz E, Dominici M (2010) GMP-manufactured density gradient media for optimized mesenchymal stromal stem cell isolation and expansion. Cytotherapy 12:466–477

    Article  PubMed  CAS  Google Scholar 

  46. Bieback K, Kinzebach S, Karagianni M (2010) Translating research into clinical scale manufacturing of mesenchymal stromal cells. Stem Cells Int 2010:193519

    Google Scholar 

  47. Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94:258–263

    Article  PubMed  CAS  Google Scholar 

  48. Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A 99:12877–12882

    Google Scholar 

  49. Jin HJ, Park SK, Oh W, Yang YS, Kim SW, Choi SJ (2009) Down-regulation of CD105 is associated with multilineage differentiation in human umbilical cord derived-MSC. Biochem Biophys Res Comm 381:676–681

    Article  PubMed  CAS  Google Scholar 

  50. Kemp K, Morse R, Wexler S, Cox C, Mallam E, Hows J, Donaldson C (2010) Chemotherapy induce mesenchymal stem cell damage in patients with haematological malignancy. Ann Hematol 89:701–713

    Article  PubMed  CAS  Google Scholar 

  51. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2000) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  Google Scholar 

  52. Le Blanc K, Tammik C, Rosendahl K, Zetterbergie E, Ringdén O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal cells. Exp Hematol 31:890–896

    Article  PubMed  CAS  Google Scholar 

  53. Rizzo R, Campioni D, Stignani M, Melchiorri L, Bagnara GP, Bonsi L, Alviano F, Lanzoni G, Moretti S, Cuneo A, Lanza F, Baricordi OR (2008) A functional role for soluble HLA-G antigens in immune modulation mediated by mesenchymal stromal cells. Cytotherapy 10:364–375

    Article  PubMed  CAS  Google Scholar 

  54. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplant 75:389–397

    Article  CAS  Google Scholar 

  55. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621

    Article  PubMed  CAS  Google Scholar 

  56. Taylor MW, Feng G (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5(11):2516–2522

    PubMed  CAS  Google Scholar 

  57. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia S, Burgess R, Slingwff CL Jr, Mellor AL (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870

    Article  PubMed  CAS  Google Scholar 

  58. Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457

    Article  PubMed  CAS  Google Scholar 

  59. Popp FC, Eggenhofer E, Renner P, Slowik P, Lang SA, Kaspar H, Geissler EK, Piso P, Schlitt HJ, Dahlke MH (2008) Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy with low-dose mycophenolate. Transpl Immunol 20(1–2):55–60

    Article  PubMed  CAS  Google Scholar 

  60. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333

    Article  PubMed  CAS  Google Scholar 

  61. Spoerri PE, Caballero S, Wilson SH, Shaw LC, Grant MB (2003) Expression of IGFBP-3 by human retinal endothelial cell cultures: IGFBP-3 involvement in growth inhibition and apoptosis. Invest Ophthalmol Vis Sci 44(1):365–369

    Article  PubMed  Google Scholar 

  62. Baricordi OR, Stignani M, Melchiorri L, Rizzo R (2008) HLA-G and inflammatory diseases. Inflamm Allergy Drug Targets 7:67–74

    Article  PubMed  CAS  Google Scholar 

  63. Götherström C, West A, Liden J, Uzunel M, Lahesmaa R, Le Blanc K (2005) Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells. Haematol 90:1017–1026

    Google Scholar 

  64. Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, Boutarfa A, Bouchet S, Gorin NC, Thierry D, Fouillard L (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplant 84(2):231–237

    Article  CAS  Google Scholar 

  65. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2(1):212–222

    Article  CAS  Google Scholar 

  66. Ning H, Yang F, Jiang M, Hu L, Feng K, Zhang J, Yu Z, Li B, Xu C, Li Y, Wang J, Hu J, Lou X, Chen H (2008) The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22:593–599

    Article  PubMed  CAS  Google Scholar 

  67. Rizzo R, Campioni D, Lanza F, Baricordi OR (2008) Cotransplantation of mesenchymal cells and a higher relapse rate: a role for HLA-G molecules? Leukemia 22:2273

    Article  PubMed  CAS  Google Scholar 

  68. Rizzo R, Lanzoni G, Stignani M, Campioni D, Alviano F, Ricci F, Tazzari PL, Melchiorri L, Scalinci SZ, Cuneo A, Bonsi L, Lanza F, Bagnara GP, Baricordi OR (2011) A simple method for identifying bone marrow mesenchymal stromal cells with a high immunosuppressive potential. Cytotherapy 13:523–527

    Article  PubMed  CAS  Google Scholar 

  69. Ivanova-Todorova E, Mourdjeva M, Kyurkchiev D, Bochev I, Stoyanova E, Dimitrov R, Timeva T, Yunakova M, Bukarev D, Shterev A, Tivchev P, Kyurkchiev S (2009) HLA-G expression is up-regulated by progesterone in mesenchymal stem cells. Am J Reprod Immunol 62(1):25–33

    Article  PubMed  CAS  Google Scholar 

  70. Lanza F, Campioni D, Moretti S, Ferrari L, Rizzo R, Baricordi R, Cuneo A (2007) Aberrant expression of HLA-DR antigen by bone marrow-derived mesenchymal stromal cells from patients affected by acute lymphoproliferative disorders. Leukemia 21:378–381

    Article  PubMed  CAS  Google Scholar 

  71. Bocelli-Tyndall C, Zajac P, Di Maggio N, Trella E, Benvenuto F, Iezzi G, Scherberich A, Barbero A, Schaeren S, Pistoia V, Spagnoli G, Vukcevik M, Martin I, Tyndall A (2010) Fibroblast growth factor 2 and Platelet-derived growth factor, but not platelet lysete, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis Rheum 62:3815–3825

    Article  PubMed  CAS  Google Scholar 

  72. Campioni D, Rizzo R, Stignani M, Melchiorri L, Ferrari L, Rizzo R, Baricordi R, Cuneo A, Lanza F, Moretti S, Ferrari L, Alviano F, Russo A (2009) A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs. Cytometry 76(3):225–230

    Article  PubMed  CAS  Google Scholar 

  73. Kuci S, Kuci Z, Kreyemberg H, Deak E, Putsch K, Huenecke S, Amara C, Koller S, Rettinger E, Grez M, Koehl U, Latifi-Pupovci H, Henschler R, Tonn T, von Laer D, Kliengebiel T, Bader P (2010) CD271 antigen define a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica 95(4):651–659

    Article  PubMed  CAS  Google Scholar 

  74. Nasef A, Zhang YZ, Mazurier C, Bouchet S, Bensidhoum M, Francois S, Gorin NC, Lopez M, Thierry D, Fouillard L, Chapel A (2009) Selected STRO-1 enriched bone marrow stromal cells display a major suppressive effect on lymphocyte proliferation. Int J Lab Hematol 31:9–19

    Article  PubMed  CAS  Google Scholar 

  75. Krampera M, Franchini M, Pizzolo G, Aprili G (2007) Mesenchymal stem cells: from biology to clinical use. Blood Transfus 5:120–129

    PubMed  Google Scholar 

  76. Schäfer R, Dominici M, Müller I, Horwitz E, Asahara T, Bulte JW, Bieback K, le Blanc K, Buhring HJ, Capogrossi MC, Dazzi F, Gorodetsky R, Henschler R, Handgretinger R, Kajstura J, K Luger P, Lange C, Luettichau I, Mertsching H, Schrezenmejer H, Sievert KD, Strunk D, Verfaillie C, Northoff H (2008) Basic research and clinical applications of non-hematopoietic stem cells. Cytotherapy 11:245–255 (4–5 April 2008, Tübingen, Germany)

    Google Scholar 

  77. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus host disease: a phase II study. Lancet 371:1579–1586

    Google Scholar 

  78. Horwitz EM, Gordon PL, Koo WKK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937

    Article  PubMed  CAS  Google Scholar 

  79. Almeida-Porada G, Flake AW, Glimp HA, Flake AW, Glimp HA, Zanjani ED (1999) Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol 27:1569–1575

    Article  PubMed  CAS  Google Scholar 

  80. Devine SM, Cobbs C, Jennings M (2003) Mesenchymal stem cells distribute to a wide range of tissue following systemic infusion into nonhuman primates. Blood 101:2999–3001

    Article  PubMed  CAS  Google Scholar 

  81. Horwitz EM, Dominici M (2008) How do mesenchymal stromal cells exert their therapeutic benefit? Cytotherapy 10:771–774

    Article  PubMed  CAS  Google Scholar 

  82. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stem cells differentiate into neurons. J Neurosci Res 61:223–229

    Article  Google Scholar 

  83. Bouchez G, Sensebè L, Vourc’h P, Garreau L, Bodard S, Rico A, Guilloteau D, Charbord P, Besnard JC, Chalon S (2008) Partial recovery of dopaminergic pathway after graft of adult MSC in a rat model of Parkinson’s disease. Neurochem Int 52:1332–1342

    Google Scholar 

  84. Kalbermatten DF, Pierer G, Terenghi G, Kingham PJ (2010) Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg 12:e811–e817

    Google Scholar 

  85. Kingham PJ, Mantovani C, Terenghi G (2011) Stem cell and neuron co-cultures for the study of nerve regeneration. Methods Mol Biol 695:115–127

    Article  PubMed  CAS  Google Scholar 

  86. Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stem cells into neurons: differentiation, transdifferentiation or artefact? J Neurosci Res 77:174–191

    Article  PubMed  CAS  Google Scholar 

  87. Planat-Bénard V, Menard C, Andrè M, Puceat M, Perez A, Garcia-Verdugo JM, Penicaud L, Casteilla L (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229

    Article  PubMed  CAS  Google Scholar 

  88. Rossini A, Frati C, Lagrasta C, Graiani G, Scopece A,Cavalli S, Musso E, Baccarini M, Di Segni M, Fagnoni F, Germani A, Quaini E, Mayr M, Qingbo Xu, Barbuti A, Di Francesco, Pompilio G, Quaini F, Gaetano C, Capogrossi MC (2011) Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovascular Res 89:650–660

    Google Scholar 

  89. Gnecchi M, He H, Melo GM, Noiseux N, Morello F, De Boer R, Zhang L, Pratt RE, Dzau VJ, Ingwall JS (2009) Early beneficial effects of bone marrow derived mesenchymal cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells 27:971–979

    Article  PubMed  CAS  Google Scholar 

  90. Mirza A, Hyvelin JM, Rochefort GY, Lermusiaux P, Antier D, Awede B, Bonnet P, Domenech J, Eder V (2008) Undifferentiated MSC seeded on a vascular prosthesis contribute to the restoration of vascular wall. J Vasc Surg 47:1313–1321

    Article  PubMed  Google Scholar 

  91. Mauritz C, Martens A, Rojas SV, Schnick T, Rathert C, Schecker N, Menke S, Glage S, Zweigerdt R, Haverich A, Martin U, Kutschaka I (2011) Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J. doi:10.1093/eurheart/ehr166

  92. Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, Chen JR, Chen YP, Lee OK (2004) In vitro hepatic differentiation of human MSC. Hepatology 40:1275–1284

    Article  PubMed  CAS  Google Scholar 

  93. Wang HS, Shyu JF, Shen WS, Hsu HC, Chi TC, Chen CP, Huang SW, Shyr YM, Tang KT, Chen TH (2011) Transplantation of insulin producing cells derived from umbilical cord stromal mesenchymal cells to treat NOD mice. Cell Transplant 20(3):455–466

    Article  PubMed  CAS  Google Scholar 

  94. Lange C, Togel F, Ittrich H, Clayton F, Nolte- Ernesting C, Zander AR, Westen Felder C (2005) Administered MSC enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68:1613–1617

    Article  PubMed  Google Scholar 

  95. Bussolati B (2011) Stem cells for organ repair: support or replace? Biomatter 1:95

    Google Scholar 

  96. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA (2009) Mesenchymal stem cells: immunobiology and in immunomodulation and tissue regeneration. Cytotherapy 11:377–391

    Article  PubMed  CAS  Google Scholar 

  97. Zachos T, Diggs A, Weisbrode S, Bartlett J, Bertone A (2007) Mesenchymal stem cells mediated gene delivery of bone morphogenetic protein-2 in an articular fracture model. Mol Ther 15:1543–1550

    Article  PubMed  CAS  Google Scholar 

  98. Caplan AI (2007) Adult MSC for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  PubMed  CAS  Google Scholar 

  99. Barti-Juhasz H, Mihalik R, Nagy K, Grisendi G, Dominici M, Petak I (2011) Bone marrow derived MSC transduced with full length human TRAIL repress the growth of rhabdomyosarcoma cells in vitro. Haematologica 96:e21

    Article  PubMed  Google Scholar 

  100. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  PubMed  CAS  Google Scholar 

  101. Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM, Locatelli F, Fibbe WE (2007) Cotransplantation of ex vivo expanded MSC accelerates lymphocyte recovery and may reduce risk of graft failure in haploidentical hematopoietic stem cell transplantation. Blood 110:2764–2767

    Article  PubMed  CAS  Google Scholar 

  102. Lazarus HM, Koc ON, Devine SM, Curtin P, Marziaz RT, Holland HK, Shpall EJ, McCarthy P, Atkinson K, Cooper BW, Gerson SL, Laughlin MJ, Loberizia FR, Moseley AB, Bacigalupo A (2005) Cotransplantation of HLA-identical sibling culture expanded MSC and HSC in hematologic malignancy patients. Biol Blood Marrow Transpl 11:389–398

    Article  Google Scholar 

  103. Le Blanc K, Ringden O (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transpl 11:321–334

    Article  CAS  Google Scholar 

  104. Sensebè L, Krampera M, Schrezenmeier H, Bourin P, Giordano R (2010) Mesenchymal stem cell for clinical application. Vox Sang 98:93–107

    Article  PubMed  CAS  Google Scholar 

  105. Vianello F, Dazzi F (2008) Mesenchymal stem cells for graft-versus host disease: a doible-egde sword? Leukemia 22:463–465

    Article  PubMed  CAS  Google Scholar 

  106. Tolar J, Villeneuve P, Keating A (2011) Mesenchymal stromal cells for graft-versus-host disease. Hum Gene Ther 22:257–262

    Article  PubMed  CAS  Google Scholar 

  107. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O (2008) Mesenchymal stem cells for treatment of steroid resistant, severe, acut GVHD: a phase II study. Lancet 363:1439–1441

    Article  Google Scholar 

  108. Kucerova L, Matuskova M, Hlubinova K, Altanerova V, Altaner C (2010) Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 9:129

    Article  PubMed  CAS  Google Scholar 

  109. Prockop D, Brenner M, Fibbe W (2010) Defining the risk of therapies with MSC. Cytotherapy 12:576–578

    Article  PubMed  Google Scholar 

  110. Marini FC (2009) Commentary: the complex love-hate relationship between mesenchymal stromal cells and tumors. Cytotherapy 11:375–376

    Article  PubMed  Google Scholar 

  111. Djouad F, Plence P, Bony C (2003) Immunosuppressive effect of mesenchymal stem cells favours tumor growth in allogeneic animals. Blood 102:3837–3844

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Lanza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science + Bussines Media, LLC

About this chapter

Cite this chapter

Lanza, F., Campioni, D., Mauro, E., Pasini, A., Rizzo, R. (2012). Immunosuppressive Properties of Mesenchymal Stromal Cells. In: Baharvand, H., Aghdami, N. (eds) Advances in Stem Cell Research. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-940-2_15

Download citation

Publish with us

Policies and ethics