Skip to main content

Omics in Stem Cell Therapy: The Road Ahead

  • Chapter
  • First Online:
  • 1833 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Understanding self-renewal and differentiation of stem cells at molecular levels is essential for both basic research and clinical applications of stem cells. The complexity of stem cell fate is controlled by the sophisticated mechanisms of temporal and spatial gene expression and protein function. Thus, the capacity to control a gene’s expression, build cellular reporters that reflect the activity state of lineage-specific endogenous genes, and either create or repair disease alleles is essential for realizing the potential of stem cell technology. In this chapter, we introduce zinc finger nucleases (ZFNs) as a tool to efficiently and selectively manipulate a given gene at the endogenous locus for advancing both our understanding as well as therapeutic application of stem cell biology. Proteins too are key players in the cell and often serve as biomarkers. They have diverse features that are not predictable from gene sequences or from the level of transcripts. Major breakthroughs in stem cell research were made by the identification of protein biomarkers such as colony-stimulating factors (CSFs) and cell-surface CD molecules. Recently, the Human Proteome Organization (HUPO) and Asia Oceanic HUPO (AOHUPO) launched initiatives for systematic MS-based proteomics as well as a gene coded proteomic approach to understanding stem cell differentiation. These studies will shed new light on stem cell biology and accelerate clinical applications of stem cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105(8):2883–2888

    Article  PubMed  CAS  Google Scholar 

  2. Mali P, Ye Z, Hommond HH, Yu X, Lin J, Chen G, Zou J, Cheng L (2008) Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26(8):1998–2005

    Article  PubMed  CAS  Google Scholar 

  3. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprograming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  5. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Google Scholar 

  6. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, Sui G, Cutler DJ, Liu Y, Brimble SN, Noaksson K, Hyllner J, Schulz TC, Zeng X, Freed WJ, Crook J, Abraham S, Colman A, Sartipy P, Matsui S, Carpenter M, Gazdar AF, Rao M, Chakravarti A (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37(10):1099–1103

    Article  PubMed  CAS  Google Scholar 

  7. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1):53–54

    Article  PubMed  CAS  Google Scholar 

  8. Vogel G (2005) Cell biology. Ready or not? Human ES cells head toward the clinic. Science 308(5728):1534–1538

    Google Scholar 

  9. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–3039

    PubMed  CAS  Google Scholar 

  10. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902

    Article  PubMed  CAS  Google Scholar 

  11. Marx J (2003) Cancer research. Mutant stem cells may seed cancer. Science 301(5638):1308–1310

    Article  PubMed  CAS  Google Scholar 

  12. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124(6):1111–1115

    Article  PubMed  CAS  Google Scholar 

  13. Rajasekhar VK, Dalerba P, Passegue E, Lagasse E, Najbauer J (2007) Stem cells, cancer, and context dependence. Stem Cells 26:292–298

    Google Scholar 

  14. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Google Scholar 

  15. Thomas KR, Folger KR, Capecchi MR (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44(3):419–428

    Article  PubMed  CAS  Google Scholar 

  16. Davis RP, Ng ES, Costa M, Mossman AK, Sourris K, Elefanty AG, Stanley EG (2008) Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111(4):1876–1884

    Article  PubMed  CAS  Google Scholar 

  17. Di Domenico AI, Christodoulou I, Pells SC, McWhir J, Thomson AJ (2008) Sequential genetic modification of the hprt locus in human ESCs combining gene targeting and recombinase-mediated cassette exchange. Cloning Stem Cells 10(2):217–230

    Article  PubMed  Google Scholar 

  18. Irion S, Luche H, Gadue P, Fehling HJ, Kennedy M, Keller G (2007) Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol 25(12):1477–1482

    Article  PubMed  CAS  Google Scholar 

  19. Ruby KM, Zheng B (2009) Gene targeting in a HUES line of human embryonic stem cells via electroporation. Stem Cells 27(7):1496–1506

    Article  PubMed  CAS  Google Scholar 

  20. Urbach A, Schuldiner M, Benvenisty N (2004) Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22(4):635–641

    Article  PubMed  CAS  Google Scholar 

  21. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21(3):319–321

    Article  PubMed  CAS  Google Scholar 

  22. Jang JH, Koerber JT, Kim JS, Asuri P, Vazin T, Bartel M, Keung A, Kwon I, Park KI, Schaffer DV (2011) An evolved adeno-associated viral variant enhances gene delivery and gene targeting in neural stem cells. Mol Ther 19(4):667–675

    Article  PubMed  CAS  Google Scholar 

  23. Khan IF, Hirata RK, Russell DW (2011) AAV-mediated gene targeting methods for human cells. Nat Protoc 6(4):482–501

    Article  PubMed  CAS  Google Scholar 

  24. Khan IF, Hirata RK, Wang PR, Li Y, Kho J, Nelson A, Huo Y, Zavaljevski M, Ware C, Russell DW (2010) Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol Ther 18(6):1192–1199

    Article  PubMed  CAS  Google Scholar 

  25. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646

    Article  PubMed  CAS  Google Scholar 

  26. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8(1):74–79

    Article  PubMed  CAS  Google Scholar 

  27. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    Article  PubMed  CAS  Google Scholar 

  28. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7):778–785

    Article  PubMed  CAS  Google Scholar 

  29. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793

    Article  PubMed  CAS  Google Scholar 

  30. Malphettes L, Freyvert Y, Chang J, Liu PQ, Chan E, Miller JC, Zhou Z, Nguyen T, Tsai C, Snowden AW, Collingwood TN, Gregory PD, Cost GJ (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106(5):774–783

    Article  PubMed  CAS  Google Scholar 

  31. Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 105(15):5809–5814

    Article  PubMed  CAS  Google Scholar 

  32. Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD (2010) BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng 105(2):330–340

    Article  PubMed  CAS  Google Scholar 

  33. Liu PQ, Chan EM, Cost GJ, Zhang L, Wang J, Miller JC, Guschin DY, Reik A, Holmes MC, Mott JE, Collingwood TN, Gregory PD (2010) Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol Bioeng 106(1):97–105

    PubMed  CAS  Google Scholar 

  34. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28(8):839–847

    Article  PubMed  CAS  Google Scholar 

  35. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26(7):808–816

    Article  PubMed  CAS  Google Scholar 

  36. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5(1):97–110

    Article  PubMed  CAS  Google Scholar 

  37. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91(13):6064–6068

    Article  PubMed  CAS  Google Scholar 

  38. Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12(6):224–228

    Article  PubMed  CAS  Google Scholar 

  39. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104(9):3055–3060

    Article  PubMed  CAS  Google Scholar 

  40. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763

    Article  PubMed  Google Scholar 

  41. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23(8):967–973

    Article  PubMed  CAS  Google Scholar 

  42. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651

    Article  PubMed  CAS  Google Scholar 

  43. Collin J, Lako M (2011) Concise review: putting a finger on stem cell biology: zinc finger nuclease-driven targeted genetic editing in human pluripotent stem cells. Stem Cells 29(7):1021–1033

    Article  PubMed  CAS  Google Scholar 

  44. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25(11):1298–1306

    Article  PubMed  CAS  Google Scholar 

  45. Benabdallah BF, Allard E, Yao S, Friedman G, Gregory PD, Eliopoulos N, Fradette J, Spees JL, Haddad E, Holmes MC, Beausejour CM (2010) Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy 12(3):394–399

    Article  PubMed  CAS  Google Scholar 

  46. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27(9):851–857

    Article  PubMed  CAS  Google Scholar 

  47. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734

    Google Scholar 

  48. Vogel G (2010) Stem cells. Diseases in a dish take off. Science 330(6008):1172–1173

    Article  PubMed  CAS  Google Scholar 

  49. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146(2):318–331

    Article  PubMed  CAS  Google Scholar 

  50. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9):753–755

    Google Scholar 

  51. DeKelver RC, Choi VM, Moehle EA, Paschon DE, Hockemeyer D, Meijsing SH, Sancak Y, Cui X, Steine EJ, Miller JC, Tam P, Bartsevich VV, Meng X, Rupniewski I, Gopalan SM, Sun HC, Pitz KJ, Rock JM, Zhang L, Davis GD, Rebar EJ, Cheeseman IM, Yamamoto KR, Sabatini DM, Jaenisch R, Gregory PD, Urnov FD (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 20(8):1133–1142

    Article  PubMed  CAS  Google Scholar 

  52. Krijgsveld J, Whetton AD, Lee B, Lemischka I, Oh S, Pera M, Mummery C, Heck AJ (2008) Proteome biology of stem cells: a new joint HUPO and ISSCR initiative. Mol Cell Proteomics 7(1):204–205

    PubMed  CAS  Google Scholar 

  53. Uhlen M, Ponten F (2005) Antibody-based proteomics for human tissue profiling. Mol Cell Proteomics 4(4):384–393

    Article  PubMed  CAS  Google Scholar 

  54. Agaton C, Galli J, Hoiden Guthenberg I, Janzon L, Hansson M, Asplund A, Brundell E, Lindberg S, Ruthberg I, Wester K, Wurtz D, Hoog C, Lundeberg J, Stahl S, Ponten F, Uhlen M (2003) Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues. Mol Cell Proteomics 2(6):405–414

    PubMed  CAS  Google Scholar 

  55. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Skollermo A, Steen J, Stenvall M, Sterky F, Stromberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Walden A, Wan J, Wernerus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Ponten F (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4(12):1920–1932

    Article  PubMed  CAS  Google Scholar 

  56. Bentley GA, Boulot G, Chitarra V (1994) Cross-reactivity in antibody-antigen interactions. Res Immunol 145(1):45–48

    Article  PubMed  CAS  Google Scholar 

  57. Baharvand H, Fathi A, van Hoof D, Salekdeh GH (2007) Concise review: trends in stem cell proteomics. Stem Cells 25(8):1888–1903

    Article  PubMed  CAS  Google Scholar 

  58. Yu L, Gaskell SJ, Brookman JL (1998) Epitope mapping of monoclonal antibodies by mass spectrometry: identification of protein antigens in complex biological systems. J Am Soc Mass Spectrom 9(3):208–215

    Article  PubMed  CAS  Google Scholar 

  59. Wu CC, MacCoss MJ, Howell KE, Yates JR 3rd (2003) A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21(5):532–538

    Article  PubMed  CAS  Google Scholar 

  60. Wu CC, Yates JR 3rd (2003) The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21(3):262–267

    Article  PubMed  CAS  Google Scholar 

  61. Elliott ST, Crider DG, Garnham CP, Boheler KR, Van Eyk JE (2004) Two-dimensional gel electrophoresis database of murine R1 embryonic stem cells. Proteomics 4(12):3813–3832

    Article  PubMed  CAS  Google Scholar 

  62. Unwin RD, Smith DL, Blinco D, Wilson CL, Miller CJ, Evans CA, Jaworska E, Baldwin SA, Barnes K, Pierce A, Spooncer E, Whetton AD (2006) Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells. Blood 107(12):4687–4694

    Article  PubMed  CAS  Google Scholar 

  63. Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics 5(16):4052–4061

    Article  PubMed  CAS  Google Scholar 

  64. Ong SE, Mittler G, Mann M (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1(2):119–126

    Article  PubMed  CAS  Google Scholar 

  65. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308(5727):1472–1477

    Article  PubMed  CAS  Google Scholar 

  66. Van Hoof D, Muñoz J, Braam SR, Pinkse MW, Linding R, Heck AJ, Mummery CL,Krijgsveld J (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5(2):214-226

    Article  PubMed  Google Scholar 

  67. Arrell DK, Niederlander NJ, Faustino RS, Behfar A, Terzic A (2008) Cardioinductive Network Guiding Stem Cell Differentiation Revealed by Proteomic Cartography of Tumor Necrosis Factor {alpha}-Primed Endodermal Secretome. Stem Cells 26(2):387–400

    Article  PubMed  CAS  Google Scholar 

  68. Jacobs JM, Waters KM, Kathmann LE (2008) Camp Ii, D.G., Wiley, H.S., Smith, R.D., Thrall, B.D.: The Mammary Epithelial Cell Secretome and Its Regulation by Signal Transduction Pathways. J Proteome Res 7(2):558–569

    Article  PubMed  CAS  Google Scholar 

  69. Khwaja FW, Svoboda P, Reed M, Pohl J, Pyrzynska B, Van Meir EG (2006) Proteomic identification of the wt-p53-regulated tumor cell secretome. Oncogene 25(58):7650–7661

    Article  PubMed  CAS  Google Scholar 

  70. Gasson JC, Weisbart RH, Kaufman SE, Clark SC, Hewick RM, Wong GG, Golde DW (1984) Purified human granulocyte-macrophage colony-stimulating factor: direct action on neutrophils. Science N Y 226(4680):1339–1342

    Article  CAS  Google Scholar 

  71. Nomura H, Imazeki I, Oheda M, Kubota N, Tamura M, Ono M, Ueyama Y, Asano S (1986) Purification and characterization of human granulocyte colony-stimulating factor (G-CSF). EMBO J 5(5):871–876

    PubMed  CAS  Google Scholar 

  72. Baba M, Hasegawa H, Nakayabu M, Shimizu N, Suzuki S, Kamada N, Tani K (1995) Establishment and characteristics of a gastric cancer cell line (HuGC-OOHIRA) producing high levels of G-CSF, GM-CSF, and IL-6: the presence of autocrine growth control by G-CSF. Am J Hematol 49(3):207–215

    Article  PubMed  CAS  Google Scholar 

  73. Kang D, Oh S, Ahn SM, Lee BH, Moon MH (2008) Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J Proteome Res 7(8):3475–3480

    Article  PubMed  CAS  Google Scholar 

  74. Heck AJ, Mummery C, Whetton AD, Oh S, Lee B, Pera M, Lemischka I, Krijgsveld J (2007) Proteome biology of stem cells. Stem Cell Res 1:7–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Jee Hyun Oh, Mr. Daesik Kim, Ms. Jin-A Kang, and Dr. Enkhjaigal Bayarsaikhan for their efforts. This research was supported by a grant from the National Research Foundation to KB (2011-0003677). Funding in part was also provided by a National Research Foundation (2010-0020573; BL) and the 21ST frontier science program SC-2110 of the Korea stem cell research center (BL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonghee Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science + Bussines Media, LLC

About this chapter

Cite this chapter

Byun, K., Jeong, GB., Collingwood, T.N., Lee, B. (2012). Omics in Stem Cell Therapy: The Road Ahead. In: Baharvand, H., Aghdami, N. (eds) Advances in Stem Cell Research. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-940-2_13

Download citation

Publish with us

Policies and ethics