Skip to main content

Cardiovascular Nanomedicine: Challenges and Opportunities

  • Chapter
  • First Online:

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Nanomedicine is a multidisciplinary field that integrates concepts of nanotechnology and medicine. More specifically, nanomedicine covers development of nanovectors, nanostructure surfaces, nanomaterials and nanoelectronics for improving diagnosis, therapy and monitoring of disease as well as tissue regeneration. This chapter begins with a brief historical overview of the field of nanomedicine, and introduces the concepts of nanomedicine with a specific focus on potential benefits for detection and management of cardiovascular disorders (CVDs). We review nanomaterials for molecular and magnetic resonance imaging aimed at detecting CVD as early as possible, with the goal of ultimately imaging disease at the level of a single cell. Molecularly targeted therapeutic nanovectors developed to provide localized and more efficient therapies with fewer side effects are discussed. Lastly, we examine how medical devices based on nanomaterials and nanoscale technologies are being developed for identification of new and precise quantification of known disease biomarkers for early diagnosis of CVD such as myocardial infarction and vulnerable plaque. Though cardiovascular nanomedicine is still in its infancy, there is a great hope that new innovations in imaging, biomaterials, tissue-targeted nanovectors, biosensors, and personalized therapies can offer physicians new avenues to improve patient care.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Godin B, Driessen WH, Proneth B, et al. An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv Genet. 2010;69:31–64.

    PubMed  CAS  Google Scholar 

  2. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine—challenge and perspectives. Angew Chem Int Ed Engl. 2009;48(5):872–97.

    PubMed  CAS  Google Scholar 

  3. Theis T, Parr D, Binks P, et al. Nan’o.tech.nol’o.gy n. Nat Nanotechnol. 2006;1(1):8–10.

    PubMed  Google Scholar 

  4. Godin B, Serda RE, Sakamoto J, Decuzzi P, Ferrari M. Nanoparticles for cancer detection and therapy. In: Vogel V editor. Nanotechnology. Volume 5: Nanomedicine and Nano­biotechnology, Wiley-VCH Verlag GmbH&Co. Germany: KGaA Weinheirn; 2009. p. 51–88.

    Google Scholar 

  5. Sanhai WR, Sakamoto JH, Canady R, Ferrari M. Seven challenges for nanomedicine. Nat Nanotechnol. 2008;3(5):242–4.

    PubMed  CAS  Google Scholar 

  6. Buxton DB, Lee SC, Wickline SA, Ferrari M. Recommendations of the National Heart, Lung, and Blood Institute Nanotechnology Working Group. Circulation. 2003;108(22):2737–42.

    PubMed  Google Scholar 

  7. Lee CC, MacKay JA, Frechet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23(12):1517–26.

    PubMed  CAS  Google Scholar 

  8. Sun G, Berezin MY, Fan J, et al. Bright fluorescent nanoparticles for developing potential optical imaging contrast agents. Nanoscale. 2010;2(4):548–58.

    PubMed  CAS  Google Scholar 

  9. Amir RJ, Albertazzi L, Willis J, Khan A, Kang T, Hawker CJ. Multifunctional trackable dendritic scaffolds and delivery agents. Angew Chem Int Ed Engl. 2011;50(15):3425–9.

    PubMed  CAS  Google Scholar 

  10. Chan JM, Zhang L, Tong R, et al. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci U S A. 2010;107(5):2213–8.

    PubMed  CAS  Google Scholar 

  11. Radisic M, Park H, Gerecht S, Cannizzaro C, Langer R, Vunjak-Novakovic G. Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1357–68.

    PubMed  CAS  Google Scholar 

  12. Zhao W, Schafer S, Choi J, et al. Cell-surface sensors for real-time probing of cellular environments. Nat Nanotechnol. 2011;6:524–31.

    PubMed  CAS  Google Scholar 

  13. Winau F, Westphal O, Winau R. Paul Ehrlich—in search of the magic bullet. Microbes Infect. 2004;6(8):786–9.

    PubMed  CAS  Google Scholar 

  14. Blagosklonny MV. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle. 2004;3(8):1035–42.

    PubMed  CAS  Google Scholar 

  15. Hatefi A, Amsden B. Camptothecin delivery methods. Pharm Res. 2002;19(10):1389–99.

    PubMed  CAS  Google Scholar 

  16. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24(6):1029–46.

    PubMed  CAS  Google Scholar 

  17. Huuskonen J, Salo M, Taskinen J. Neural network modeling for estimation of the aqueous solubility of structurally related drugs. J Pharm Sci. 1997;86(4):450–4.

    PubMed  CAS  Google Scholar 

  18. Ferrari M. Nanovector therapeutics. Curr Opin Chem Biol. 2005;9(4):343–6.

    PubMed  CAS  Google Scholar 

  19. Canal P, Gamelin E, Vassal G, Robert J. Benefits of pharmacological knowledge in the design and monitoring of cancer chemotherapy. Pathol Oncol Res. 1998;4(3):171–8.

    PubMed  CAS  Google Scholar 

  20. Tallaj JA, Franco V, Rayburn BK, et al. Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. J Heart Lung Transplant. 2005;24(12):2196–201.

    PubMed  Google Scholar 

  21. Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med. 2008;59:251–65.

    PubMed  CAS  Google Scholar 

  22. Wang MD, Shin DM, Simons JW, Nie S. Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther. 2007;7(6):833–7.

    PubMed  CAS  Google Scholar 

  23. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7.

    PubMed  CAS  Google Scholar 

  24. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161–71.

    PubMed  CAS  Google Scholar 

  25. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    PubMed  CAS  Google Scholar 

  26. Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156(4):1363–80.

    PubMed  CAS  Google Scholar 

  27. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.

    PubMed  CAS  Google Scholar 

  28. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.

    PubMed  CAS  Google Scholar 

  29. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71(3):409–19.

    PubMed  CAS  Google Scholar 

  30. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688–701.

    PubMed  CAS  Google Scholar 

  31. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–60.

    PubMed  CAS  Google Scholar 

  32. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–59.

    PubMed  CAS  Google Scholar 

  33. Kale AA, Torchilin VP. “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. J Liposome Res. 2007;17(3–4):197–203.

    PubMed  CAS  Google Scholar 

  34. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.

    PubMed  CAS  Google Scholar 

  35. Souza GR, Staquicini FI, Christianson DR, et al. Combinatorial targeting and nanotechnology applications. Biomed Microdev. 2010;12:597–606.

    Google Scholar 

  36. Juweid M, Neumann R, Paik C, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res. 1992;52(19):5144–53.

    PubMed  CAS  Google Scholar 

  37. Levchenko TS, Hartner WC, Verma DD, Bernstein EA, Torchilin VP. ATP-loaded liposomes for targeted treatment in models of myocardial ischemia. Methods Mol Biol. 2010;605:361–75.

    PubMed  CAS  Google Scholar 

  38. Mikhaylov G, Mikac U, Magaeva AA, et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol. 2011;6(9):594–602.

    PubMed  CAS  Google Scholar 

  39. Ferrari M. Frontiers in cancer nanomedicine: transport oncophysics and logic-embedded vectors. Trends Biotechnol. 2010;28:181–8.

    PubMed  CAS  Google Scholar 

  40. Serda RE, Mack A, van de Ven AL, et al. Logic-embedded vectors for intracellular partitioning, endosomal escape, and exocytosis of nanoparticles. Small. 2010;6(23):2691–700.

    PubMed  CAS  Google Scholar 

  41. Mitragotri S. In drug delivery, shape does matter. Pharm Res. 2009;26(1):232–4.

    PubMed  CAS  Google Scholar 

  42. Chiappini C, Tasciotti E, Fakhoury JR, et al. Tailored porous silicon microparticles: fabrication and properties. Chemphyschem. 2010;11(5):1029–35.

    PubMed  CAS  Google Scholar 

  43. Ananta JS, Godin B, Sethi R, et al. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotechnol. 2010;5(11):815–21.

    PubMed  CAS  Google Scholar 

  44. Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2007;28(18):2915–22.

    PubMed  CAS  Google Scholar 

  45. Decuzzi P, Ferrari M. Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials. 2008;29(3):377–84.

    PubMed  CAS  Google Scholar 

  46. Decuzzi P, Godin B, Tanaka T, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release. 2010;141(3):320–7.

    PubMed  CAS  Google Scholar 

  47. Decuzzi P, Lee S, Decuzzi M, Ferrari M. Adhesion of microfabricated particles on vascular endothelium: a parametric analysis. Ann Biomed Eng. 2004;32:793–802.

    PubMed  Google Scholar 

  48. Lee SY, Ferrari M, Decuzzi P. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology. 2009;20(49):495101.

    PubMed  Google Scholar 

  49. Lee SY, Ferrari M, Decuzzi P. Design of bio-mimetic particles with enhanced vascular interaction. J Biomech. 2009;42(12):1885–90.

    PubMed  Google Scholar 

  50. Serda RE, Ferrati S, Godin B, Tasciotti E, Liu X, Ferrari M. Mitotic partitioning of silicon microparticles. Nanoscale. 2009;1(2):250–9.

    PubMed  CAS  Google Scholar 

  51. Serda RE, Gu J, Bhavane RC, et al. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials. 2009;30(13):2440–8.

    PubMed  CAS  Google Scholar 

  52. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A. 2006;103(13):4930–4.

    PubMed  CAS  Google Scholar 

  53. Muro S, Garnacho C, Champion JA, et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther. 2008;16(8):1450–8.

    PubMed  CAS  Google Scholar 

  54. Doshi N, Mitragotri S. Needle-shaped polymeric particles induce transient disruption of cell membranes. J R Soc Interface. 2010;7 Suppl 4:S403–10.

    PubMed  Google Scholar 

  55. Ferrari M. Nanogeometry: beyond drug delivery. Nat Nanotechnol. 2008;3(3):131–2.

    PubMed  CAS  Google Scholar 

  56. Ferrati S, Mack A, Chiappini C, et al. Intracellular trafficking of silicon particles and logic-embedded vectors. Nanoscale. 2010.

    Google Scholar 

  57. Zimmerberg J, Kozlov MM. How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol. 2006;7(1):9–19.

    PubMed  CAS  Google Scholar 

  58. Reynwar BJ, Illya G, Harmandaris VA, Muller MM, Kremer K, Deserno M. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature. 2007;447(7143):461–4.

    PubMed  CAS  Google Scholar 

  59. Koval M, Preiter K, Adles C, Stahl PD, Steinberg TH. Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res. 1998;242(1):265–73.

    PubMed  CAS  Google Scholar 

  60. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377(Pt 1):159–69.

    PubMed  CAS  Google Scholar 

  61. Jin H, Heller DA, Sharma R, Strano MS. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano. 2009;3(1):149–58.

    PubMed  CAS  Google Scholar 

  62. Caldorera-Moore M, Guimard N, Shi L, Roy K. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv. 2010;7(4):479–95.

    PubMed  CAS  Google Scholar 

  63. Yoo JW, Mitragotri S. Polymer particles that switch shape in response to a stimulus. Proc Natl Acad Sci U S A. 2010;107(25):11205–10.

    PubMed  CAS  Google Scholar 

  64. Decuzzi P, Ferrari M. The receptor-mediated endocytosis of nonspherical particles. Biophys J. 2008;94(10):3790–7.

    PubMed  CAS  Google Scholar 

  65. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    PubMed  CAS  Google Scholar 

  66. Danenberg HD, Fishbein I, Gao J, et al. Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation. 2002;106(5):599–605.

    PubMed  CAS  Google Scholar 

  67. Stephan D, Gasser B, San H, Schubnel M, Nabel GJ, Nabel EG. Direct gene transfer in the rat kidney in vivo. Arch Mal Coeur Vaiss. 1997;90(8):1127–30.

    PubMed  CAS  Google Scholar 

  68. Hedman M, Hartikainen J, Syvanne M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation. 2003;107(21):2677–83.

    PubMed  CAS  Google Scholar 

  69. Lanza GM, Winter PM, Caruthers SD, et al. Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles. Nanomedicine. 2006;1(3):321–9.

    PubMed  CAS  Google Scholar 

  70. Jaffer FA, Libby P, Weissleder R. Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29(7):1017–24.

    PubMed  CAS  Google Scholar 

  71. Yin X, Fu Y, Yutani C, Ikeda Y, Enjyoji K, Kato H. HVJ-AVE liposome-mediated tissue factor pathway inhibitor (TFPI) gene transfer with recombinant TFPI (rTFPI) irrigation attenuates restenosis in atherosclerotic arteries. Int J Cardiol. 2009;135(2):245–8.

    PubMed  Google Scholar 

  72. Lanza GM, Winter PM, Caruthers SD, et al. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions. Angiogenesis. 2010;13(2):189–202.

    PubMed  CAS  Google Scholar 

  73. Fishbein I, Waltenberger J, Banai S, et al. Local delivery of platelet-derived growth factor receptor-specific tyrphostin inhibits neointimal formation in rats. Arterioscler Thromb Vasc Biol. 2000;20(3):667–76.

    PubMed  CAS  Google Scholar 

  74. Banai S, Chorny M, Gertz SD, et al. Locally delivered nanoencapsulated tyrphostin (AGL-2043) reduces neointima formation in balloon-injured rat carotid and stented porcine coronary arteries. Biomaterials. 2005;26(4):451–61.

    PubMed  CAS  Google Scholar 

  75. Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci. 2010;31(5):199–205.

    PubMed  CAS  Google Scholar 

  76. Heroux J, Gharib AM, Danthi NS, Cecchini S, Ohayon J, Pettigrew RI. High-affinity alphavbeta3 integrin targeted optical probe as a new imaging biomarker for early atherosclerosis: initial studies in Watanabe rabbits. Mol Imaging Biol. 2010;12(1):2–8.

    PubMed  Google Scholar 

  77. Bielinski SJ, Pankow JS, Li N, et al. ICAM1 and VCAM1 polymorphisms, coronary artery calcium, and circulating levels of soluble ICAM-1: the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2008;201(2):339–44.

    PubMed  CAS  Google Scholar 

  78. Jun HW, West J. Development of a YIGSR-peptide-modified polyurethaneurea to enhance endothelialization. J Biomater Sci Polym Ed. 2004;15(1):73–94.

    PubMed  CAS  Google Scholar 

  79. Li JM, Newburger PE, Gounis MJ, Dargon P, Zhang X, Messina LM. Local arterial nanoparticle delivery of siRNA for NOX2 knockdown to prevent restenosis in an atherosclerotic rat model. Gene Ther. 2010;17(10):1279–87.

    PubMed  CAS  Google Scholar 

  80. Gu Z, Rolfe BE, Xu ZP, Thomas AC, Campbell JH, Lu GQ. Enhanced effects of low molecular weight heparin intercalated with layered double hydroxide nanoparticles on rat vascular smooth muscle cells. Biomaterials. 2010;31(20):5455–62.

    PubMed  CAS  Google Scholar 

  81. Reddy MK, Vasir JK, Sahoo SK, Jain TK, Yallapu MM, Labhasetwar V. Inhibition of apoptosis through localized delivery of rapamycin-loaded nanoparticles prevented neointimal hyperplasia and reendothelialized injured artery. Circ Cardiovasc Interv. 2008;1(3):209–16.

    PubMed  Google Scholar 

  82. Fishbein I, Chorny M, Banai S, et al. Formulation and delivery mode affect disposition and activity of tyrphostin-loaded nanoparticles in the rat carotid model. Arterioscler Thromb Vasc Biol. 2001;21(9):1434–9.

    PubMed  CAS  Google Scholar 

  83. Calin MV, Manduteanu I, Dragomir E, et al. Effect of depletion of monocytes/macrophages on early aortic valve lesion in experimental hyperlipidemia. Cell Tissue Res. 2009;336(2):237–48.

    PubMed  CAS  Google Scholar 

  84. Luderer F, Lobler M, Rohm HW, et al. Biodegradable sirolimus-loaded poly(lactide) nanoparticles as drug delivery system for the prevention of in-stent restenosis in coronary stent application. J Biomater Appl. 2011;25(8):851–75.

    PubMed  CAS  Google Scholar 

  85. Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging. 2008;1(5):624–34.

    PubMed  Google Scholar 

  86. Hartner WC, Verma DD, Levchenko TS, Bernstein EA, Torchilin VP. ATP-loaded liposomes for treatment of myocardial ischemia. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):530–9.

    PubMed  CAS  Google Scholar 

  87. Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58(14):1471–504.

    PubMed  CAS  Google Scholar 

  88. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman Jr JR. Advanced multiplexed analysis with the FlowMetrixTM system. Clin Chem. 1997;43(9):1749–56.

    PubMed  CAS  Google Scholar 

  89. Cheung VG, Morley M, Aguilar F, Massimi A, Kucherlapati R, Childs G. Making and reading microarrays. Nat Genet. 1999;21:15–9.

    PubMed  CAS  Google Scholar 

  90. Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996;14(13):1675–80.

    PubMed  CAS  Google Scholar 

  91. Chen BPC, Li Y-S, Zhao Y, et al. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics. 2001;7(1):55–63.

    PubMed  CAS  Google Scholar 

  92. Ni C-W, Qiu H, Rezvan A, et al. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood. 2010;116(15):e66–73.

    PubMed  CAS  Google Scholar 

  93. Hamik A, Jain MK. Shear stress: devil’s in the details. Blood. 2010;116(15):2625–6.

    PubMed  CAS  Google Scholar 

  94. Kruse JJ, te Poele JA, Russell NS, Boersma LJ, Stewart FA. Microarray analysis to identify molecular mechanisms of radiation-induced microvascular damage in normal tissues. Int J Radiat Oncol Biol Phys. 2004;58(2):420–6.

    PubMed  CAS  Google Scholar 

  95. Nam J-M, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301(5641):1884–6.

    PubMed  CAS  Google Scholar 

  96. Thaxton CS, Hill HD, Georganopoulou DG, Stoeva SI, Mirkin CA. A bio-bar-code assay based upon dithiothreitol-induced oligonucleotide release. Anal Chem. 2005;77(24):8174–8.

    PubMed  CAS  Google Scholar 

  97. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382(6592):607–9.

    PubMed  CAS  Google Scholar 

  98. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078–81.

    PubMed  CAS  Google Scholar 

  99. Georganopoulou DG, Chang L, Nam J-M, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2005;102(7):2273–6.

    PubMed  CAS  Google Scholar 

  100. Milewicz DM, Seidman CE. Genetics of cardiovascular disease. Circulation. 2000;102 Suppl 4:IV-103–11.

    CAS  Google Scholar 

  101. Dabek J, Owczarek A, Gasior Z, et al. Oligonucleotide microarray analysis of genes regulating apoptosis in chronically ischemic and postinfarction myocardium. Biochem Genet. 2008;46(5–6):241–7.

    PubMed  CAS  Google Scholar 

  102. Dorn GW, Matkovich SJ. Put your chips on transcriptomics. Circulation. 2008;118(3):216–8.

    PubMed  Google Scholar 

  103. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819–23.

    PubMed  CAS  Google Scholar 

  104. Heidecker B, Kasper EK, Wittstein IS, et al. Transcriptomic biomarkers for individual risk assessment in new-onset heart failure. Circulation. 2008;118(3):238–46.

    PubMed  CAS  Google Scholar 

  105. Goluch ED, Nam J-M, Georganopoulou DG, et al. A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip. 2006;6(10):1293–9.

    PubMed  CAS  Google Scholar 

  106. Kao CY, Hoffman EA, Beck KC, Bellamkonda RV, Annapragada AV. Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acad Radiol. 2003;10(5):475–83.

    PubMed  Google Scholar 

  107. Mukundan Jr S, Ghaghada KB, Badea CT, et al. A liposomal nanoscale contrast agent for preclinical CT in mice. AJR Am J Roentgenol. 2006;186(2):300–7.

    PubMed  Google Scholar 

  108. Pan D, Williams TA, Senpan A, et al. Detecting vascular biosignatures with a colloidal, radio-opaque polymeric nanoparticle. J Am Chem Soc. 2009;131(42):15522–7.

    PubMed  CAS  Google Scholar 

  109. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103(3):415–22.

    PubMed  CAS  Google Scholar 

  110. Cyrus T, Winter PM, Caruthers SD, Wickline SA, Lanza GM. Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy. Expert Rev Cardiovasc Ther. 2005;3(4):705–15.

    CAS  Google Scholar 

  111. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.

    PubMed  CAS  Google Scholar 

  112. Schoenhagen P, Conyers JL. Nanotechnology and atherosclerosis imaging: emerging diagnostic and therapeutic applications. Recent Pat Cardiovasc Drug Discov. 2008;3(2):98–104.

    PubMed  CAS  Google Scholar 

  113. Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med. 2005;53(5):999–1005.

    PubMed  CAS  Google Scholar 

  114. Pan D, Senpan A, Caruthers SD, et al. Sensitive and efficient detection of thrombus with fibrin-specific manganese nanocolloids. Chem Commun. 2009;22:3234–6.

    Google Scholar 

  115. Pan D, Caruthers SD, Hu G, et al. Ligand-directed nanobialys as theranostic agent for drug delivery and manganese-based magnetic resonance imaging of vascular targets. J Am Chem Soc. 2008;130(29):9186–7.

    PubMed  CAS  Google Scholar 

  116. Amirbekian V, Lipinski MJ, Briley-Saebo KC, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A. 2007;104(3):961–6.

    PubMed  CAS  Google Scholar 

  117. Botnar RM, Buecker A, Wiethoff AJ, et al. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation. 2004;110(11):1463–6.

    PubMed  Google Scholar 

  118. Cyrus T, Abendschein DR, Caruthers SD, et al. MR three-dimensional molecular imaging of intramural biomarkers with targeted nanoparticles. J Cardiovasc Magn Reson. 2006;8(3):535–41.

    PubMed  Google Scholar 

  119. Morawski AM, Winter PM, Crowder KC, et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med. 2004;51(3):480–6.

    PubMed  CAS  Google Scholar 

  120. Winter PM, Morawski AM, Caruthers SD, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108(18):2270–4.

    PubMed  CAS  Google Scholar 

  121. Chen W, Vucic E, Leupold E, et al. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media Mol Imaging. 2008;3(6):233–42.

    PubMed  CAS  Google Scholar 

  122. Nahrendorf M, Jaffer FA, Kelly KA, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114(14):1504–11.

    PubMed  CAS  Google Scholar 

  123. Wickline SA, Lanza GM. Molecular imaging, targeted therapeutics, and nanoscience. J Cell Biochem. 2002;87(S39):90–7.

    Google Scholar 

  124. Nahrendorf M, Zhang H, Hembrador S, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117(3):379–87.

    PubMed  CAS  Google Scholar 

  125. Anderson CJ, Dehdashti F, Cutler PD, et al. 64Cu-TETA-octreotide as a pet imaging agent for patients with neuroendocrine tumors. J Nucl Med. 2001;42(2):213–21.

    PubMed  CAS  Google Scholar 

  126. Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem. 2009;20(2):397–401.

    PubMed  CAS  Google Scholar 

  127. Mulder WJM, Koole R, Brandwijk RJ, et al. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett. 2005;6(1):1–6.

    Google Scholar 

  128. Serruys PW, Unger F, Sousa JE, et al. Comparison of coronary-artery bypass surgery and stenting for the treatment of multivessel disease. N Engl J Med. 2001;344(15):1117–24.

    PubMed  CAS  Google Scholar 

  129. Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med. 1994;331(8):496–501.

    PubMed  CAS  Google Scholar 

  130. Babapulle MN, Joseph L, Bélisle P, Brophy JM, Eisenberg MJ. A hierarchical Bayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet. 2004;364(9434):583–91.

    PubMed  CAS  Google Scholar 

  131. Liu D-M, Yang Q, Troczynski T. Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials. 2002;23(3):691–8.

    PubMed  CAS  Google Scholar 

  132. Areva S, Paldan H, Peltola T, Närhi T, Jokinen M, Lindén M. Use of sol–gel-derived titania coating for direct soft tissue attachment. J Biomed Mater Res A. 2004;70A(2):169–78.

    CAS  Google Scholar 

  133. Gultepe E, Nagesha D, Sridhar S, Amiji M. Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev. 2010;62(3):305–15.

    PubMed  CAS  Google Scholar 

  134. Gultepe E, Nagesha D, Casse BDF, et al. Sustained drug release from non-eroding nanoporous templates. Small. 2010;6(2):213–6.

    PubMed  CAS  Google Scholar 

  135. Meng J, Kong H, Xu HY, Song L, Wang CY, Xie SS. Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery. J Biomed Mater Res A. 2005;74A(2):208–14.

    CAS  Google Scholar 

  136. Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation. 2006;113(19):2335–62.

    PubMed  Google Scholar 

  137. Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350(14):1387–97.

    PubMed  CAS  Google Scholar 

  138. Wang TJ, Larson MG, Levy D, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350(7):655–63.

    PubMed  CAS  Google Scholar 

  139. Danesh J, Lewington S, Thompson SG, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005;294(14):1799–809.

    PubMed  CAS  Google Scholar 

  140. Cushman M, Lemaitre RN, Kuller LH, et al. Fibrinolytic activation markers predict myocardial infarction in the elderly. The Cardiovascular Health Study. Arterioscler Thromb Vasc Biol. 1999;19(3):493–8.

    PubMed  CAS  Google Scholar 

  141. Mangoni AA, Jackson SH. Homocysteine and cardiovascular disease: current evidence and future prospects. Am J Med. 2002;112(7):556–65.

    PubMed  CAS  Google Scholar 

  142. Wang TJ, Gona P, Larson MG, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355(25):2631–9.

    PubMed  CAS  Google Scholar 

  143. Gaspari M, Ming-Cheng Cheng M, Terracciano R, et al. Nanoporous surfaces as harvesting agents for mass spectrometric analysis of peptides in human plasma. J Proteome Res. 2006;5(5):1261–6.

    PubMed  CAS  Google Scholar 

  144. Luchini A, Geho DH, Bishop B, et al. Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett. 2008;8(1):350–61.

    PubMed  CAS  Google Scholar 

  145. McMurray AA, Ali Z, Kyselovik J, et al. A novel point of care diagnostic device: impedimetric detection of a biomarker in whole blood. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:115–8.

    PubMed  Google Scholar 

  146. Jaffe AS, Ravkilde J, Roberts R, et al. It’s time for a change to a troponin standard. Circulation. 2000;102(11):1216–20.

    PubMed  CAS  Google Scholar 

  147. Wilson SR, Sabatine MS, Braunwald E, Sloan S, Murphy SA, Morrow DA. Detection of myocardial injury in patients with unstable angina using a novel nanoparticle cardiac troponin I assay: observations from the PROTECT-TIMI 30 trial. Am Heart J. 2009;158(3):386–91.

    PubMed  CAS  Google Scholar 

  148. Park JS, Cho MK, Lee EJ, et al. A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nat Nanotechnol. 2009;4(4):259–64.

    PubMed  CAS  Google Scholar 

  149. Januzzi JL, Bamberg F, Lee H, et al. High-sensitivity troponin T concentrations in acute chest pain patients evaluated with cardiac computed tomography. Circulation. 2010;121(10):1227–34.

    PubMed  CAS  Google Scholar 

  150. Mulder WJM, Cormode DP, Hak S, Lobatto ME, Silvera S, Fayad ZA. Multimodality nanotracers for cardiovascular applications. Nat Clin Pract Cardiovasc Med. 2008;5:S103–11.

    PubMed  CAS  Google Scholar 

  151. Chang TMS. Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):418–30.

    PubMed  CAS  Google Scholar 

  152. Freitas RJ. Current status of nanomedicine and medical nanorobotics. J Comput Theor Nanosci. 2005;2:1–25.

    CAS  Google Scholar 

Download references

Acknowledgments

BG and MF acknowledge a financial support from the following sources: NIH U54CA143837 (CTO, PSOC), NIH 1U54CA151668-01 (TCCN, CCNE), DODW81XWH-09-1-0212, DODW81XWH-07-2-0101.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biana Godin MSc. Phram., PhD or Mauro Ferrari PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Godin, B., Hu, Y., La Francesca, S., Ferrari, M. (2012). Cardiovascular Nanomedicine: Challenges and Opportunities. In: Homeister, J., Willis, M. (eds) Molecular and Translational Vascular Medicine. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-906-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-906-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-905-1

  • Online ISBN: 978-1-61779-906-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics