Skip to main content

Ghrelin Regulation of Sleep, Circadian Clock, and Body Temperature

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE,volume 10))

Abstract

The regulation of sleep, body temperature, and metabolism is intertwined on functional, structural, and behavioral levels. The hypothalamus emerges as a key brain region that coordinates these functions by integrating central and peripheral signals. Increasing evidence suggests that products of the preproghrelin gene provide important contribution to this integrative function. In this review, we present evidence from human and animal studies supporting the role of ghrelin in the regulation of (1) sleep–wake activity, (2) circadian rhythms, and (3) metabolism and body temperature. Central ghrelinergic mechanisms—as part of the hypothalamic ghrelin–orexin–neuropeptide Y circuit—play a role in promoting wakefulness and feeding. Ghrelin modulates the activity of the suprachiasmatic nucleus but it is not a crucial component of or a key input signal to the food-entrainable oscillator. Products of the preproghrelin gene, particularly obestatin, are involved in maintaining normal body temperature and metabolism under conditions when increased metabolic heat production is required. Our understanding of the physiological role of the preproghrelin gene products expanded remarkably in the last decade, yet, full comprehension of their role in the regulation of vigilance, circadian clocks, and body temperature remains incomplete.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berthoud HR. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev. 2002;26:393–428.

    PubMed  Google Scholar 

  2. Cruz CR, Smith RG. The growth hormone secretagogue receptor. Vitam Horm. 2008; 77:47–88.

    CAS  PubMed  Google Scholar 

  3. Obal Jr F, Krueger JM. GHRH and sleep. Sleep Med Rev. 2004;8:367–77.

    PubMed  Google Scholar 

  4. Frieboes RM, Murck H, Maier P, Schier T, Holsboer F, Steiger A. Growth hormone-releasing peptide-6 stimulates sleep, growth hormone, ACTH and cortisol release in normal man. Neuroendocrinology. 1995;61:584–9.

    CAS  PubMed  Google Scholar 

  5. Frieboes RM, Murck H, Antonijevic IA, Steiger A. Effects of growth hormone-releasing peptide-6 on the nocturnal secretion of GH, ACTH and cortisol and on the sleep EEG in man: role of routes of administration. J Neuroendocrinol. 1999;11:473–8.

    CAS  PubMed  Google Scholar 

  6. Copinschi G, Leproult R, Van Onderbergen A, et al. Prolonged oral treatment with MK-677, a novel growth hormone secretagogue, improves sleep quality in man. Neuroendocrinology. 1997;66:278–86.

    CAS  PubMed  Google Scholar 

  7. Moreno-Reyes R, Kerkhofs M, L’Hermite-Baleriaux M, Thorner MO, Van CE, Copinschi G. Evidence against a role for the growth hormone-releasing peptide axis in human slow-wave sleep regulation. Am J Physiol. 1998;274:E779–84.

    CAS  PubMed  Google Scholar 

  8. Frieboes RM, Antonijevic IA, Held K, et al. Hexarelin decreases slow-wave sleep and stimulates the secretion of GH, ACTH, cortisol and prolactin during sleep in healthy volunteers. Psychoneuroendocrinology. 2004;29:851–60.

    CAS  PubMed  Google Scholar 

  9. Weikel JC, Wichniak A, Ising M, et al. Ghrelin promotes slow-wave sleep in humans. Am J Physiol Endocrinol Metab. 2003;284:E407–15.

    CAS  PubMed  Google Scholar 

  10. Takaya K, Ariyasu H, Kanamoto N, et al. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab. 2000;85:4908–11.

    CAS  PubMed  Google Scholar 

  11. Steiger A. Neurochemical regulation of sleep. J Psychiatr Res. 2007;41:537–52.

    PubMed  Google Scholar 

  12. Kluge M, Schussler P, Bleninger P, et al. Ghrelin alone or co-administered with GHRH or CRH increases non-REM sleep and decreases REM sleep in young males. Psychoneuroendocrinology. 2008;33:497–506.

    CAS  PubMed  Google Scholar 

  13. Kluge M, Schussler P, Zuber V, Yassouridis A, Steiger A. Ghrelin administered in the early morning increases secretion of cortisol and growth hormone without affecting sleep. Psychoneuroendocrinology. 2007;32:287–92.

    CAS  PubMed  Google Scholar 

  14. Kluge M, Schussler P, Zuber V, et al. Ghrelin enhances the nocturnal secretion of cortisol and growth hormone in young females without influencing sleep. Psychoneuroendocrinology. 2007;32:1079–85.

    CAS  PubMed  Google Scholar 

  15. Kluge M, Gazea M, Schussler P, et al. Ghrelin increases slow wave sleep and stage 2 sleep and decreases stage 1 sleep and REM sleep in elderly men but does not affect sleep in elderly women. Psychoneuroendocrinology. 2010;35:297–304.

    CAS  PubMed  Google Scholar 

  16. Kluge M, Schussler P, Dresler M, et al. Effects of ghrelin on psychopathology, sleep and secretion of cortisol and growth hormone in patients with major depression. J Psychiatr Res. 2011;45:421–6.

    PubMed  Google Scholar 

  17. Tolle V, Bassant MH, Zizzari P, et al. Ultradian rhythmicity of ghrelin secretion in relation with GH, feeding behavior, and sleep-wake patterns in rats. Endocrinology. 2002;143:1353–61.

    CAS  PubMed  Google Scholar 

  18. Jerlhag E. Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addict Biol. 2008;13:358–63.

    CAS  PubMed  Google Scholar 

  19. Carlini VP, Monzon ME, Varas MM, et al. Ghrelin increases anxiety-like behavior and memory retention in rats. Biochem Biophys Res Commun. 2002;299:739–43.

    CAS  PubMed  Google Scholar 

  20. Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol. 2006;11:45–54.

    CAS  PubMed  Google Scholar 

  21. Jászberényi M, Bujdosó E, Bagosi Z, Telegdy G. Mediation of the behavioral, endocrine and thermoregulatory actions of ghrelin. Horm Behav. 2006;50:266–73.

    PubMed  Google Scholar 

  22. Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol. 2007;12:6–16.

    CAS  PubMed  Google Scholar 

  23. Szentirmai E, Hajdu I, Obal Jr F, Krueger JM. Ghrelin-induced sleep responses in ad libitum fed and food-restricted rats. Brain Res. 2006;1088:131–40.

    CAS  PubMed  Google Scholar 

  24. Guan XM, Yu H, Palyha OC, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res. 1997;48:23–9.

    CAS  PubMed  Google Scholar 

  25. Tannenbaum GS, Bowers CY. Interactions of growth hormone secretagogues and growth hormone-releasing hormone/somatostatin. Endocrine. 2001;14:21–7.

    CAS  PubMed  Google Scholar 

  26. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494:528–48.

    CAS  PubMed  Google Scholar 

  27. McGinty D, Szymusiak R. Hypothalamic regulation of sleep and arousal. Front Biosci. 2003;8:s1074–83.

    PubMed  Google Scholar 

  28. Bernardis LL, Bellinger LL. The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci Biobehav Rev. 1993;17:141–93.

    CAS  PubMed  Google Scholar 

  29. Mitchell V, Bouret S, Beauvillain JC, et al. Comparative distribution of mRNA encoding the growth hormone secretagogue-receptor (GHS-R) in Microcebus murinus (Primate, lemurian) and rat forebrain and pituitary. J Comp Neurol. 2001;429:469–89.

    CAS  PubMed  Google Scholar 

  30. Harrold JA, Dovey T, Cai XJ, Halford JC, Pinkney J. Autoradiographic analysis of ghrelin receptors in the rat hypothalamus. Brain Res. 2008;1196:59–64.

    CAS  PubMed  Google Scholar 

  31. Toshinai K, Date Y, Murakami N, et al. Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology. 2003;144:1506–12.

    PubMed  Google Scholar 

  32. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649–61.

    CAS  PubMed  Google Scholar 

  33. Olszewski PK, Li D, Grace MK, Billington CJ, Kotz CM, Levine AS. Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides. 2003;24:597–602.

    CAS  PubMed  Google Scholar 

  34. Wren AM, Small CJ, Abbott CR, et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2001;50:2540–7.

    CAS  PubMed  Google Scholar 

  35. Szentirmai É, Kapás L, Krueger JM. Ghrelin microinjection into forebrain sites induces wakefulness and feeding in rats. Am J Physiol Regul Integr Comp Physiol. 2007;292:R575–85.

    CAS  PubMed  Google Scholar 

  36. Szentirmai E, Krueger JM. Central administration of neuropeptide Y induces wakefulness in rats. Am J Physiol Regul Integr Comp Physiol. 2006;291:R473–80.

    CAS  PubMed  Google Scholar 

  37. Hagan JJ, Leslie RA, Patel S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A. 1999;96:10911–6.

    CAS  PubMed  Google Scholar 

  38. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998; 92:573–85.

    CAS  PubMed  Google Scholar 

  39. Hou Z, Miao Y, Gao L, Pan H, Zhu S. Ghrelin-containing neuron in cerebral cortex and hypothalamus linked with the DVC of brainstem in rat. Regul Pept. 2006;134:126–31.

    CAS  PubMed  Google Scholar 

  40. Willesen MG, Kristensen P, Romer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 1999;70: 306–16.

    CAS  PubMed  Google Scholar 

  41. Mercer JG, Hoggard N, Williams LM, et al. Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J Neuroendocrinol. 1996;8:733–5.

    CAS  PubMed  Google Scholar 

  42. Kalra SP, Ueno N, Kalra PS. Stimulation of appetite by ghrelin is regulated by leptin restraint: peripheral and central sites of action. J Nutr. 2005;135:1331–5.

    CAS  PubMed  Google Scholar 

  43. Horvath TL, Diano S, van den Pol AN. Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci. 1999;19:1072–87.

    CAS  PubMed  Google Scholar 

  44. Lawrence CB, Snape AC, Baudoin FM, Luckman SM. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology. 2002;143:155–62.

    CAS  PubMed  Google Scholar 

  45. Yamanaka A, Beuckmann CT, Willie JT, et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 2003;38:701–13.

    CAS  PubMed  Google Scholar 

  46. Sakurai T, Mieda M, Tsujino N. The orexin system: roles in sleep/wake regulation. Ann N Y Acad Sci. 2010;1200:149–61.

    CAS  PubMed  Google Scholar 

  47. Peyron C, Tighe DK, van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18:9996–10015.

    CAS  PubMed  Google Scholar 

  48. Piper DC, Upton N, Smith MI, Hunter AJ. The novel brain neuropeptide, orexin-A, modulates the sleep–wake cycle of rats. Eur J Neurosci. 2000;12:726–30.

    CAS  PubMed  Google Scholar 

  49. Bourgin P, Huitron-Resendiz S, Spier AD, et al. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci. 2000;20:7760–5.

    CAS  PubMed  Google Scholar 

  50. Huang ZL, Qu WM, Li WD, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A. 2001;98:9965–70.

    CAS  PubMed  Google Scholar 

  51. Methippara MM, Alam MN, Szymusiak R, McGinty D. Effects of lateral preoptic area application of orexin-A on sleep-wakefulness. Neuroreport. 2000;11:3423–6.

    CAS  PubMed  Google Scholar 

  52. Xi MC, Morales FR, Chase MH. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res. 2001;901: 259–64.

    CAS  PubMed  Google Scholar 

  53. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450:420–4.

    CAS  PubMed  Google Scholar 

  54. Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;25:6716–20.

    CAS  PubMed  Google Scholar 

  55. Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51.

    CAS  PubMed  Google Scholar 

  56. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98:365–76.

    CAS  PubMed  Google Scholar 

  57. McCarley RW. Mechanisms and models of REM sleep control. Arch Ital Biol. 2004;142: 429–67.

    CAS  PubMed  Google Scholar 

  58. Kim J, Nakajima K, Oomura Y, Wayner MJ, Sasaki K. Orexin-A and ghrelin depolarize the same pedunculopontine tegmental neurons in rats: an in vitro study. Peptides. 2009;30:1328–35.

    CAS  PubMed  Google Scholar 

  59. Szentirmai É, Kapás L, Sun Y, Smith RG, Krueger JM. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2010;298:R467–77.

    CAS  PubMed  Google Scholar 

  60. Pfaff D, Westberg L, Kow LM. Generalized arousal of mammalian central nervous system. J Comp Neurol. 2005;493:86–91.

    CAS  PubMed  Google Scholar 

  61. Kapás L, Shibata M, Kimura M, Krueger JM. Inhibition of nitric oxide synthesis suppresses sleep in rabbits. Am J Physiol. 1994;266:R151–7.

    PubMed  Google Scholar 

  62. Morley JE, Farr SA, Sell RL, Hileman SM, Banks WA. Nitric oxide is a central component in neuropeptide regulation of appetite. Peptides. 2011;32:776–80.

    CAS  PubMed  Google Scholar 

  63. Ribeiro AC, Kapás L. Nitric oxide in the preoptic region modulates sleep. Sleep Res Online. 1999;2 Suppl 1:75.

    Google Scholar 

  64. Gaskin FS, Farr SA, Banks WA, Kumar VB, Morley JE. Ghrelin-induced feeding is dependent on nitric oxide. Peptides. 2003;24:913–8.

    CAS  PubMed  Google Scholar 

  65. Zhang JV, Ren PG, Avsian-Kretchmer O, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science. 2005;310:996–9.

    CAS  PubMed  Google Scholar 

  66. Seim I, Collet CC, Herington AC, Chopin LK. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. BMC Genomics. 2007;8:298.

    PubMed  Google Scholar 

  67. Bresciani E, Rapetti D, Dona F, et al. Obestatin inhibits feeding but does not modulate GH and corticosterone secretion in the rat. J Endocrinol Invest. 2006;29:RC16–8.

    CAS  PubMed  Google Scholar 

  68. Lagaud GJ, Young A, Acena A, Morton MF, Barrett TD, Shankley NP. Obestatin reduces food intake and suppresses body weight gain in rodents. Biochem Biophys Res Commun. 2007;357:264–9.

    CAS  PubMed  Google Scholar 

  69. Carlini VP, Schioth HB, Debarioglio SR. Obestatin improves memory performance and causes anxiolytic effects in rats. Biochem Biophys Res Commun. 2007;352:907–12.

    CAS  PubMed  Google Scholar 

  70. Szentirmai E, Krueger JM. Obestatin alters sleep in rats. Neurosci Lett. 2006;404:222–6.

    CAS  PubMed  Google Scholar 

  71. Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol. 2003;23:7973–81.

    CAS  PubMed  Google Scholar 

  72. Szentirmai É, Kapás L, Sun Y, Smith RG, Krueger JM. Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice. Am J Physiol Regul Integr Comp Physiol. 2007; 293:R510–7.

    CAS  PubMed  Google Scholar 

  73. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE. Behavioral state instability in orexin knock-out mice. J Neurosci. 2004;24:6291–300.

    CAS  PubMed  Google Scholar 

  74. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep–wake control. J Neurosci. 2002;22:7695–711.

    CAS  PubMed  Google Scholar 

  75. Esposito M, Pellinen J, Kapás L, Szentirmai É. Impaired wake-promoting mechanisms in ghrelin receptor-deficient mice. Eur J Neurosci. 2012;35:233–43.

    Google Scholar 

  76. Jerlhag E, Egecioglu E, Landgren S, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S A. 2009;106:11318–23.

    CAS  PubMed  Google Scholar 

  77. Jerlhag E, Landgren S, Egecioglu E, Dickson SL, Engel JA. The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice. Alcohol. 2011;45:341–7.

    CAS  PubMed  Google Scholar 

  78. Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal Jr F, Krueger JM. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1071–9.

    CAS  PubMed  Google Scholar 

  79. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001; 50:1714–9.

    CAS  PubMed  Google Scholar 

  80. Dzaja A, Dalal MA, Himmerich H, Uhr M, Pollmächer T, Schuld A. Sleep enhances nocturnal plasma ghrelin levels in healthy subjects. Am J Physiol Endocrinol Metab. 2004; 286:E963–7.

    CAS  PubMed  Google Scholar 

  81. Schuessler P, Uhr M, Ising M, Schmid D, Weikel J, Steiger A. Nocturnal ghrelin levels–relationship to sleep EEG, the levels of growth hormone, ACTH and cortisol–and gender differences. J Sleep Res. 2005;14:329–36.

    PubMed  Google Scholar 

  82. Mistlberger RE. Food-anticipatory circadian rhythms: concepts and methods. Eur J Neurosci. 2009;30:1718–29.

    PubMed  Google Scholar 

  83. Menyhért J, Wittmann G, Hrabovszky E, et al. Distribution of ghrelin-immunoreactive neuronal networks in the human hypothalamus. Brain Res. 2006;1125:31–6.

    PubMed  Google Scholar 

  84. Yannielli PC, Molyneux PC, Harrington ME, Golombek DA. Ghrelin effects on the circadian system of mice. J Neurosci. 2007;27:2890–5.

    CAS  PubMed  Google Scholar 

  85. Yi CX, Challet E, Pevet P, Kalsbeek A, Escobar C, Buijs RM. A circulating ghrelin mimetic attenuates light-induced phase delay of mice and light-induced Fos expression in the suprachiasmatic nucleus of rats. Eur J Neurosci. 2008;27:1965–72.

    PubMed  Google Scholar 

  86. Banks WA, Tschop M, Robinson SM, Heiman ML. Extent and direction of ghrelin transport across the blood–brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther. 2002;302:822–7.

    CAS  PubMed  Google Scholar 

  87. Diano S, Farr SA, Benoit SC, et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci. 2006;9:381–8.

    CAS  PubMed  Google Scholar 

  88. Yi CX, van der Vliet J, Dai J, Yin G, Ru L, Buijs RM. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology. 2006;147:283–94.

    CAS  PubMed  Google Scholar 

  89. Saeb-Parsy K, Lombardelli S, Khan FZ, McDowall K, Au-Yong IT, Dyball RE. Neural connections of hypothalamic neuroendocrine nuclei in the rat. J Neuroendocrinol. 2000;12: 635–48.

    CAS  PubMed  Google Scholar 

  90. Edelstein K, de la Iglesia HO, Schwartz WJ, Mrosovsky N. Behavioral arousal blocks light-induced phase advances in locomotor rhythmicity but not light-induced Per1 and Fos expression in the hamster suprachiasmatic nucleus. Neuroscience. 2003;118:253–61.

    CAS  PubMed  Google Scholar 

  91. Davidson AJ. Lesion studies targeting food-anticipatory activity. Eur J Neurosci. 2009;30: 1658–64.

    PubMed  Google Scholar 

  92. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407: 908–13.

    PubMed  Google Scholar 

  93. Drazen DL, Vahl TP, D’Alessio DA, Seeley RJ, Woods SC. Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology. 2006;147:23–30.

    CAS  PubMed  Google Scholar 

  94. Blum ID, Patterson Z, Khazall R, et al. Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience. 2009;164:351–9.

    CAS  PubMed  Google Scholar 

  95. LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R. Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc Natl Acad Sci U S A. 2009;106:13582–7.

    CAS  PubMed  Google Scholar 

  96. Asakawa A, Inui A, Kaga T, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology. 2001;120:337–45.

    CAS  PubMed  Google Scholar 

  97. Mayorov AV, Amara N, Chang JY, et al. Catalytic antibody degradation of ghrelin increases whole-body metabolic rate and reduces refeeding in fasting mice. Proc Natl Acad Sci U S A. 2008;105:17487–92.

    CAS  PubMed  Google Scholar 

  98. Salomé N, Hansson C, Taube M, et al. On the central mechanism underlying ghrelin’s chronic pro-obesity effects in rats: new insights from studies exploiting a potent ghrelin receptor antagonist. J Neuroendocrinol. 2009;21:777–85.

    PubMed  Google Scholar 

  99. Theander-Carrillo C, Wiedmer P, Cettour-Rose P, et al. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest. 2006;116:1983–93.

    CAS  PubMed  Google Scholar 

  100. Yasuda T, Masaki T, Kakuma T, Yoshimatsu H. Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats. Neurosci Lett. 2003;349:75–8.

    CAS  PubMed  Google Scholar 

  101. Gluck EF, Stephens N, Swoap SJ. Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1303–9.

    CAS  PubMed  Google Scholar 

  102. Mano-Otagiri A, Ohata H, Iwasaki-Sekino A, Nemoto T, Shibasaki T. Ghrelin suppresses noradrenaline release in the brown adipose tissue of rats. J Endocrinol. 2009;201:341–9.

    CAS  PubMed  Google Scholar 

  103. Tsubone T, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H. Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice. Regul Pept. 2005;130:97–103.

    CAS  PubMed  Google Scholar 

  104. Lindqvist A, de la Cour CD, Hakanson R, Erlanson-Albertsson C. Ghrelin affects gastrectomy-induced decrease in UCP1 and beta3-AR mRNA expression in mice. Regul Pept. 2007;142:24–8.

    CAS  PubMed  Google Scholar 

  105. Sun Y, Butte NF, Garcia JM, Smith RG. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance. Endocrinology. 2008;149:843–50.

    CAS  PubMed  Google Scholar 

  106. Pfluger PT, Kirchner H, Günnel S, et al. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. Am J Physiol Gastrointest Liver Physiol. 2008;294:G610–8.

    CAS  PubMed  Google Scholar 

  107. Longo KA, Charoenthongtrakul S, Giuliana DJ, et al. Improved insulin sensitivity and metabolic flexibility in ghrelin receptor knockout mice. Regul Pept. 2008;150:55–61.

    CAS  PubMed  Google Scholar 

  108. Wortley KE, Anderson KD, Garcia K, et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci U S A. 2004;101: 8227–32.

    CAS  PubMed  Google Scholar 

  109. Wortley KE, del Rincon JP, Murray JD, et al. Absence of ghrelin protects against early-onset obesity. J Clin Invest. 2005;115:3573–8.

    CAS  PubMed  Google Scholar 

  110. De Smet B, Depoortere I, Moechars D, et al. Energy homeostasis and gastric emptying in ghrelin knockout mice. J Pharmacol Exp Ther. 2006;316:431–9.

    PubMed  Google Scholar 

  111. Szentirmai É, Kapás L, Sun Y, Smith RG, Krueger JM. The preproghrelin gene is required for the normal integration of thermoregulation and sleep in mice. Proc Natl Acad Sci U S A. 2009;106:14069–74.

    CAS  PubMed  Google Scholar 

  112. Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Obes Res. 1997;5:650–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éva Szentirmai M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Szentirmai, É., Kapás, L. (2012). Ghrelin Regulation of Sleep, Circadian Clock, and Body Temperature. In: Smith, R., Thorner, M. (eds) Ghrelin in Health and Disease. Contemporary Endocrinology, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-903-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-903-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-902-0

  • Online ISBN: 978-1-61779-903-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics