Skip to main content

Novel Approaches to Deliver Molecular Therapeutics in Cardiac Disease Using Adeno-Associated Virus Vectors

  • Chapter
  • First Online:
Translational Cardiology

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Cardiac diseases are the leading cause of mortality in the Western World. Despite significant process in the treatment of cardiovascular diseases, curative treatments remain elusive. In recent years, gene therapy for the treatment of cardiac diseases has emerged as a promising and conceptually novel treatment paradigm. Of all the vectors used for cardiac gene delivery, adeno-associated virus (AAV)-based vectors are the most promising. This is due in part to their nonpathogenic nature, the comparatively low immunogenicity, and their ability to transduce efficiently many of the cell types of the cardiovascular system, in particular cardiomyocytes, resulting in long-term, high-level transgene expression.

Here we review the recent development in the field of AAV gene delivery for cardiac diseases. We will discuss the tropism of the naturally occurring AAV serotypes as well as approaches to drive expression exclusively in specific tissues and cell types using transductional, transcriptional, and posttranscriptional approaches. We will examine the recent advances in large-scale AAV vector production and discuss the immune responses against both the vector and the transgene and what challenges this poses for the successful use of AAV vectors in cardiac gene therapy. We will compare the different approaches to deliver AAV vectors to the heart and will assess the potential of promising gene targets for the treatment of cardiac diseases. Finally, we will describe the status of the promising clinical trials that are currently ongoing in the field of cardiac gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics-2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–6.

    PubMed  Google Scholar 

  2. Abate E, Sartor R, Ceconi C, Boffa GM. Pharmacological treatment of chronic systolic heart failure: are we scraping the bottom of the barrel? J Cardiovasc Med (Hagerstown). 2010;11:893–905.

    Google Scholar 

  3. Dixon JA, Spinale FG. Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail. 2009;2(3):262–71.

    PubMed  Google Scholar 

  4. Gene Therapy Clinical Trials Worldwide. 2010; http://www.wiley.com/legacy/wileychi/genmed/clinical/. Accessed October 5, 2010, 2010.

  5. Gray SJ, Samulski RJ. Optimizing gene delivery vectors for the treatment of heart disease. Expert Opin Biol Ther. 2008;8(7):911–22.

    PubMed  CAS  Google Scholar 

  6. Conwell CC, Huang L. Recent advances in non-viral gene delivery. Adv Genet. 2005;53PA:1–18.

    PubMed  Google Scholar 

  7. Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 2002;9(24):1647–52.

    PubMed  CAS  Google Scholar 

  8. Freitas SS, Azzoni AR, Santos JA, Monteiro GA, Prazeres DM. On the stability of plasmid DNA vectors during cell culture and purification. Mol Biotechnol. 2007;36(2):151–8.

    PubMed  CAS  Google Scholar 

  9. Lyon AR, Sato M, Hajjar RJ, Samulski RJ, Harding SE. Gene therapy: targeting the myocardium. Heart. 2008;94(1):89–99.

    PubMed  CAS  Google Scholar 

  10. Muller OJ, Katus HA, Bekeredjian R. Targeting the heart with gene therapy-optimized gene delivery methods. Cardiovasc Res. 2007;73(3):453–62.

    PubMed  Google Scholar 

  11. Ruponen M, Honkakoski P, Ronkko S, Pelkonen J, Tammi M, Urtti A. Extracellular and intracellular barriers in non-viral gene delivery. J Control Release. 2003;93(2):213–7.

    PubMed  CAS  Google Scholar 

  12. Davis J, Westfall MV, Townsend D, et al. Designing heart performance by gene transfer. Physiol Rev. 2008;88(4):1567–651.

    PubMed  CAS  Google Scholar 

  13. Melo LG, Pachori AS, Gnecchi M, Dzau VJ. Genetic therapies for cardiovascular diseases. Trends Mol Med. 2005;11(5):240–50.

    PubMed  CAS  Google Scholar 

  14. Ruponen M, Hyvonen Z, Urtti A, Yla-Herttuala S. Nonviral gene delivery methods in cardiovascular diseases. Methods Mol Med. 2005;108:315–28.

    PubMed  CAS  Google Scholar 

  15. Douglas JT. Adenoviral vectors for gene therapy. Mol Biotechnol. 2007;36(1):71–80.

    PubMed  CAS  Google Scholar 

  16. Volpers C, Kochanek S. Adenoviral vectors for gene transfer and therapy. J Gene Med. 2004;6 Suppl 1:S164–171.

    PubMed  CAS  Google Scholar 

  17. Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol. 2009;19(3):165–78.

    PubMed  CAS  Google Scholar 

  18. Koizumi N, Mizuguchi H, Sakurai F, Yamaguchi T, Watanabe Y, Hayakawa T. Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination with both CAR- and alphav integrin-binding ablation. J Virol. 2003;77(24):13062–72.

    PubMed  CAS  Google Scholar 

  19. Toivonen R, Mayranpaa MI, Kovanen PT, Savontaus M. Dilated cardiomyopathy alters the expression patterns of CAR and other adenoviral receptors in human heart. Histochem Cell Biol. 2010;133(3):349–57.

    PubMed  CAS  Google Scholar 

  20. Yla-Herttuala S. An update on angiogenic gene therapy: vascular endothelial growth factor and other directions. Curr Opin Mol Ther. 2006;8(4):295–300.

    PubMed  CAS  Google Scholar 

  21. Boecker W, Bernecker OY, Wu JC, et al. Cardiac-specific gene expression facilitated by an enhanced myosin light chain promoter. Mol Imaging. 2004;3(2):69–75.

    PubMed  CAS  Google Scholar 

  22. del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ. Targeting phospholamban by gene transfer in human heart failure. Circulation. 2002;105(8):904–7.

    PubMed  Google Scholar 

  23. del Monte F, Williams E, Lebeche D, et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation. 2001;104(12):1424–9.

    PubMed  Google Scholar 

  24. Zaiss AK, Machado HB, Herschman HR. The influence of innate and pre-existing immunity on adenovirus therapy. J Cell Biochem. 2009;108(4):778–90.

    PubMed  CAS  Google Scholar 

  25. Yarborough M, Sharp RR. Public trust and research a decade later: what have we learned since Jesse Gelsinger’s death? Mol Genet Metab. 2009;97(1):4–5.

    PubMed  CAS  Google Scholar 

  26. Wilson JM. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab. 2009;96(4):151–7.

    PubMed  CAS  Google Scholar 

  27. Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58.

    PubMed  CAS  Google Scholar 

  28. Alba R, Bosch A, Chillon M. Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther. 2005;12 Suppl 1:S18–27.

    PubMed  CAS  Google Scholar 

  29. Xiong W, Goverdhana S, Sciascia SA, et al. Regulatable gutless adenovirus vectors sustain inducible transgene expression in the brain in the presence of an immune response against adenoviruses. J Virol. 2006;80(1):27–37.

    PubMed  CAS  Google Scholar 

  30. Barcia C, Jimenez-Dalmaroni M, Kroeger KM, et al. One-year expression from high-­capacity adenoviral vectors in the brains of animals with pre-existing anti-adenoviral immunity: clinical implications. Mol Ther. 2007;15(12):2154–63.

    PubMed  CAS  Google Scholar 

  31. Muruve DA. The innate immune response to adenovirus vectors. Hum Gene Ther. 2004;15(12):1157–66.

    PubMed  CAS  Google Scholar 

  32. Muruve DA, Cotter MJ, Zaiss AK, et al. Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol. 2004; 78(11):5966–72.

    PubMed  CAS  Google Scholar 

  33. Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther. 2004;15(1):35–46.

    PubMed  CAS  Google Scholar 

  34. McCaffrey AP, Fawcett P, Nakai H, et al. The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. Mol Ther. 2008;16(5):931–41.

    PubMed  CAS  Google Scholar 

  35. Hinkel R, Trenkwalder T, Kupatt C. Gene therapy for ischemic heart disease. Expert Opin Biol Ther. 2011;11(6):723–37.

    PubMed  CAS  Google Scholar 

  36. Weiss RA. How does HIV cause AIDS? Science. 1993;260(5112):1273–9.

    PubMed  CAS  Google Scholar 

  37. Cronin J, Zhang XY, Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther. 2005;5(4):387–98.

    PubMed  CAS  Google Scholar 

  38. Marino MP, Luce MJ, Reiser J. Small- to large-scale production of lentivirus vectors. Methods Mol Biol. 2003;229:43–55.

    PubMed  CAS  Google Scholar 

  39. Peng KW, Pham L, Ye H, et al. Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Ther. 2001;8(19):1456–63.

    PubMed  CAS  Google Scholar 

  40. Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM. A packaging cell line for lentivirus vectors. J Virol. 1999;73(1):576–84.

    PubMed  CAS  Google Scholar 

  41. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM. Development of a self-inactivating lentivirus vector. J Virol. 1998;72(10):8150–7.

    PubMed  CAS  Google Scholar 

  42. Pauwels K, Gijsbers R, Toelen J, et al. State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations. Curr Gene Ther. 2009;9(6):459–74.

    PubMed  CAS  Google Scholar 

  43. Bonci D, Cittadini A, Latronico MV, et al. “Advanced” generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther. 2003;10(8):630–6.

    PubMed  CAS  Google Scholar 

  44. Nightingale SJ, Hollis RP, Pepper KA, et al. Transient gene expression by nonintegrating lentiviral vectors. Mol Ther. 2006;13(6):1121–32.

    PubMed  CAS  Google Scholar 

  45. Higuchi K, Ayach B, Sato T, et al. Direct injection of kit ligand-2 lentivirus improves cardiac repair and rescues mice post-myocardial infarction. Mol Ther. 2009;17(2):262–8.

    PubMed  CAS  Google Scholar 

  46. Niwano K, Arai M, Koitabashi N, et al. Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol Ther. 2008;16(6):1026–32.

    PubMed  CAS  Google Scholar 

  47. Fleury S, Simeoni E, Zuppinger C, et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation. 2003;107(18):2375–82.

    PubMed  CAS  Google Scholar 

  48. Zhao J, Pettigrew GJ, Thomas J, et al. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol. 2002;97(5):3 48–58.

    PubMed  CAS  Google Scholar 

  49. Yoshimitsu M, Higuchi K, Dawood F, et al. Correction of cardiac abnormalities in fabry mice by direct intraventricular injection of a recombinant lentiviral vector that engineers expression of alpha-galactosidase A. Circ J. 2006;70(11):1503–8.

    PubMed  CAS  Google Scholar 

  50. Heine HL, Leong HS, Rossi FM, McManus BM, Podor TJ. Strategies of conditional gene expression in myocardium: an overview. Methods Mol Med. 2005;112:109–54.

    PubMed  CAS  Google Scholar 

  51. Blomer U, Gruh I, Witschel H, Haverich A, Martin U. Shuttle of lentiviral vectors via transplanted cells in vivo. Gene Ther. 2005;12(1):67–74.

    PubMed  CAS  Google Scholar 

  52. Cao F, Lin S, Xie X, et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation. 2006;113(7):1005–14.

    PubMed  Google Scholar 

  53. Coppola V, Galli C, Musumeci M, Bonci D. Manipulating the cell differentiation through lentiviral vectors. Methods Mol Biol. 2010;614:149–60.

    PubMed  CAS  Google Scholar 

  54. Fan L, Lin C, Zhuo S, et al. Transplantation with survivin-engineered mesenchymal stem cells results in better prognosis in a rat model of myocardial infarction. Eur J Heart Fail. 2009;11(11):1023–30.

    PubMed  CAS  Google Scholar 

  55. Gallo P, Grimaldi S, Latronico MV, et al. A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells. Gene Ther. 2008;15(3):161–70.

    PubMed  CAS  Google Scholar 

  56. Gyongyosi M, Blanco J, Marian T, et al. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging. 2008;1(2):94–103.

    PubMed  Google Scholar 

  57. Hanazono Y, Asano T, Ueda Y, Ozawa K. Genetic manipulation of primate embryonic and hematopoietic stem cells with simian lentivirus vectors. Trends Cardiovasc Med. 2003;13(3):106–10.

    PubMed  CAS  Google Scholar 

  58. Hematti P. Modeling human hematopoietic stem cell gene therapy in nonhuman primates. Curr Hematol Rep. 2004;3(4):282–9.

    PubMed  Google Scholar 

  59. Orban TI, Apati A, Nemeth A, et al. Applying a “double-feature” promoter to identify cardiomyocytes differentiated from human embryonic stem cells following transposon-based gene delivery. Stem Cells. 2009;27(5):1077–87.

    PubMed  CAS  Google Scholar 

  60. Wu JC, Spin JM, Cao F, et al. Transcriptional profiling of reporter genes used for molecular imaging of embryonic stem cell transplantation. Physiol Genomics. 2006;25(1):29–38.

    PubMed  Google Scholar 

  61. Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149:754–6.

    PubMed  CAS  Google Scholar 

  62. Hoggan MD, Blacklow NR, Rowe WP. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci USA. 1966;55(6):1467–74.

    PubMed  CAS  Google Scholar 

  63. Carter BJ. Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther. 2004;10(6):981–9.

    PubMed  CAS  Google Scholar 

  64. Fields BN, Knipe DM, Howley PM. Fields’ virology. 5th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  65. Kerr JR. Parvoviruses. London; New York: Hodder Arnold; 2006. Distributed in the USA. by Oxford University Press.

    Google Scholar 

  66. Sonntag F, Kother K, Schmidt K, et al. The assembly activating protein (AAP) promotes capsid assembly of different AAV serotypes. J Virol. 2011;85:12688–97.

    Google Scholar 

  67. Sonntag F, Schmidt K, Kleinschmidt JA. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci USA. 2010;107(22):10220–5.

    PubMed  CAS  Google Scholar 

  68. Blacklow NR, Hoggan MD, Kapikian AZ, Austin JB, Rowe WP. Epidemiology of adenovirus-associated virus infection in a nursery population. Am J Epidemiol. 1968;88(3):368–78.

    PubMed  CAS  Google Scholar 

  69. Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14(3):316–27.

    PubMed  CAS  Google Scholar 

  70. Gao G, Vandenberghe LH, Alvira MR, et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol. 2004;78(12):6381–8.

    PubMed  CAS  Google Scholar 

  71. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA. 2002;99(18):11854–9.

    PubMed  CAS  Google Scholar 

  72. Schmidt M, Grot E, Cervenka P, Wainer S, Buck C, Chiorini JA. Identification and characterization of novel adeno-associated virus isolates in ATCC virus stocks. J Virol. 2006;80(10): 5082–5.

    PubMed  CAS  Google Scholar 

  73. Schmidt M, Voutetakis A, Afione S, Zheng C, Mandikian D, Chiorini JA. Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity. J Virol. 2008;82(3):1399–406.

    PubMed  CAS  Google Scholar 

  74. Lochrie MA, Tatsuno GP, Arbetman AE, et al. Adeno-associated virus (AAV) capsid genes isolated from rat and mouse liver genomic DNA define two new AAV species distantly related to AAV-5. Virology. 2006;353(1):68–82.

    PubMed  CAS  Google Scholar 

  75. Mori S, Wang L, Takeuchi T, Kanda T. Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology. 2004;330(2): 375–83.

    PubMed  CAS  Google Scholar 

  76. Buning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M. Recent developments in adeno-associated virus vector technology. J Gene Med. 2008;10(7):717–33.

    PubMed  Google Scholar 

  77. Michelfelder S, Trepel M. Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv Genet. 2009;67:29–60.

    PubMed  CAS  Google Scholar 

  78. Choi VW, McCarty DM, Samulski RJ. AAV hybrid serotypes: improved vectors for gene delivery. Curr Gene Ther. 2005;5(3):299–310.

    PubMed  CAS  Google Scholar 

  79. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199(3):381–90.

    PubMed  Google Scholar 

  80. Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA. 1984;81(20):6466–70.

    PubMed  CAS  Google Scholar 

  81. Samulski RJ, Berns KI, Tan M, Muzyczka N. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA. 1982;79(6):2077–81.

    PubMed  CAS  Google Scholar 

  82. Samulski RJ, Chang LS, Shenk T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol. 1987;61(10):3096–101.

    PubMed  CAS  Google Scholar 

  83. Flotte T, Carter B, Conrad C, et al. A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther. 1996;7(9):1145–59.

    PubMed  CAS  Google Scholar 

  84. Kawase Y, Ladage D, Hajjar RJ. Rescuing the failing heart by targeted gene transfer. J Am Coll Cardiol. 2011;57(10):1169–80.

    PubMed  Google Scholar 

  85. Rapti K, Chaanine AH, Hajjar RJ. Targeted gene therapy for the treatment of heart failure. Can J Cardiol. 2011;27(3):265–83.

    PubMed  CAS  Google Scholar 

  86. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16(6):1073–80.

    PubMed  CAS  Google Scholar 

  87. Inagaki K, Fuess S, Storm TA, et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther. 2006;14(1):45–53.

    PubMed  CAS  Google Scholar 

  88. Pacak CA, Mah CS, Thattaliyath BD, et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res. 2006;99(4):e3–9.

    PubMed  CAS  Google Scholar 

  89. Prasad KM, Xu Y, Yang Z, Acton ST, French BA. Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution. Gene Ther. 2011;18(1):43–52.

    PubMed  CAS  Google Scholar 

  90. Bish LT, Morine K, Sleeper MM, et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther. 2008;19(12):1359–68.

    PubMed  CAS  Google Scholar 

  91. Wang L, Louboutin JP, Bell P, et al. Muscle-directed gene therapy for hemophilia B with more efficient and less immunogenic AAV vectors. J Thromb Haemost. 2011;9(10):2009–19.

    PubMed  CAS  Google Scholar 

  92. Du L, Kido M, Lee DV, et al. Differential myocardial gene delivery by recombinant serotype-specific adeno-associated viral vectors. Mol Ther. 2004;10(3):604–8.

    PubMed  CAS  Google Scholar 

  93. Gregorevic P, Allen JM, Minami E, et al. rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med. 2006;12(7):787–9.

    PubMed  CAS  Google Scholar 

  94. Gregorevic P, Blankinship MJ, Allen JM, et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med. 2004;10(8):828–34.

    PubMed  CAS  Google Scholar 

  95. Blankinship MJ, Gregorevic P, Allen JM, et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther. 2004;10(4):671–8.

    PubMed  CAS  Google Scholar 

  96. Odom GL, Gregorevic P, Allen JM, Chamberlain JS. Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6. Mol Ther. 2011;19(1):36–45.

    PubMed  CAS  Google Scholar 

  97. Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE. Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci. 2010;3(3):81–9.

    PubMed  CAS  Google Scholar 

  98. Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995;108(Pt 6):2369–79.

    PubMed  CAS  Google Scholar 

  99. Vandendriessche T, Thorrez L, Acosta-Sanchez A, et al. Efficacy and safety of adeno-­associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost. 2007;5(1):16–24.

    PubMed  CAS  Google Scholar 

  100. Di Pasquale G, Chiorini JA. AAV transcytosis through barrier epithelia and endothelium. Mol Ther. 2006;13(3):506–16.

    PubMed  Google Scholar 

  101. Bish LT, Sleeper MM, Sweeney HL. Percutaneous transendocardial delivery of self-­complementary adeno-associated virus 6 in the canine. Methods Mol Biol. 2011;709:369–78.

    PubMed  CAS  Google Scholar 

  102. Fechner H, Sipo I, Westermann D, et al. Cardiac-targeted RNA interference mediated by an AAV9 vector improves cardiac function in coxsackievirus B3 cardiomyopathy. J Mol Med. 2008;86(9):987–97.

    PubMed  CAS  Google Scholar 

  103. Sipo I, Fechner H, Pinkert S, et al. Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction. Gene Ther. 2007;14(18):1319–29.

    PubMed  CAS  Google Scholar 

  104. Manfredsson FP, Rising AC, Mandel RJ. AAV9: a potential blood-brain barrier buster. Mol Ther. 2009;17(3):403–5.

    PubMed  CAS  Google Scholar 

  105. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 2009;27(1):59–65.

    PubMed  CAS  Google Scholar 

  106. Raake PW, Hinkel R, Muller S, et al. Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Ther. 2008;15(1):12–7.

    PubMed  CAS  Google Scholar 

  107. Wang Z, Zhu T, Qiao C, et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol. 2005;23(3):321–8.

    PubMed  CAS  Google Scholar 

  108. Miyagi N, Rao VP, Ricci D, et al. Efficient and durable gene transfer to transplanted heart using adeno-associated virus 9 vector. J Heart Lung Transplant. 2008;27(5):554–60.

    PubMed  Google Scholar 

  109. Xiaofeng J, Burdorf L, Hinkel R, et al. Optimization of delivery of adeno-associated virus mediated gene transfer to a transplanted heart in a rat model. Exp Clin Transplant. 2009;7(3):184–7.

    PubMed  Google Scholar 

  110. Schirmer JM, Miyagi N, Rao VP, et al. Recombinant adeno-associated virus vector for gene transfer to the transplanted rat heart. Transpl Int. 2007;20(6):550–7.

    PubMed  CAS  Google Scholar 

  111. Kawamoto S, Shi Q, Nitta Y, Miyazaki J, Allen MD. Widespread and early myocardial gene expression by adeno-associated virus vector type 6 with a beta-actin hybrid promoter. Mol Ther. 2005;11(6):980–5.

    PubMed  CAS  Google Scholar 

  112. Nonaka-Sarukawa M, Okada T, Ito T, et al. Adeno-associated virus vector-mediated systemic interleukin-10 expression ameliorates hypertensive organ damage in Dahl salt-sensitive rats. J Gene Med. 2008;10(4):368–74.

    PubMed  Google Scholar 

  113. Sakata S, Lebeche D, Sakata N, et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol Cell Cardiol. 2007;42(4):852–61.

    PubMed  CAS  Google Scholar 

  114. Palomeque J, Chemaly ER, Colosi P, et al. Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo. Gene Ther. 2007;14(13):989–97.

    PubMed  CAS  Google Scholar 

  115. Wang Z, Allen JM, Riddell SR, et al. Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther. 2007;18(1):18–26.

    PubMed  Google Scholar 

  116. Wang Z, Kuhr CS, Allen JM, et al. Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther. 2007;15(6):1160–6.

    PubMed  CAS  Google Scholar 

  117. Wang Z, Storb R, Lee D, et al. Immune responses to AAV in canine muscle monitored by cellular assays and noninvasive imaging. Mol Ther. 2010;18(3):617–24.

    PubMed  CAS  Google Scholar 

  118. Herzog RW, Fields PA, Arruda VR, et al. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy. Hum Gene Ther. 2002;13(11):1281–91.

    PubMed  CAS  Google Scholar 

  119. Wang Z, Tapscott SJ, Storb R. Local gene delivery and methods to control immune responses in muscles of normal and dystrophic dogs. Methods Mol Biol. 2011;709:265–75.

    PubMed  CAS  Google Scholar 

  120. Yue Y, Ghosh A, Long C, et al. A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther. 2008;16(12):1944–52.

    PubMed  CAS  Google Scholar 

  121. Sabatino DE, Mackenzie TC, Peranteau W, et al. Persistent expression of hF.IX After tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther. 2007;15(9):1677–85.

    PubMed  CAS  Google Scholar 

  122. Bish LT, Sleeper MM, Brainard B, et al. Percutaneous transendocardial delivery of self-­complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther. 2008;16(12):1953–9.

    PubMed  CAS  Google Scholar 

  123. Pepe M, Mamdani M, Zentilin L, et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res. 2010;106(12):1893–903.

    PubMed  CAS  Google Scholar 

  124. Kaspar BK, Roth DM, Lai NC, et al. Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus. J Gene Med. 2005;7(3):316–24.

    PubMed  CAS  Google Scholar 

  125. Jacquier A, Higgins CB, Martin AJ, Do L, Saloner D, Saeed M. Injection of adeno-associated viral vector encoding vascular endothelial growth factor gene in infarcted swine myocardium: MR measurements of left ventricular function and strain. Radiology. 2007;245(1):196–205.

    PubMed  Google Scholar 

  126. Su H, Yeghiazarians Y, Lee A, et al. AAV serotype 1 mediates more efficient gene transfer to pig myocardium than AAV serotype 2 and plasmid. J Gene Med. 2008;10(1):33–41.

    PubMed  CAS  Google Scholar 

  127. Hadri L, Bobe R, Kawase Y, et al. SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells. Mol Ther. 2010;18(7):1284–92.

    PubMed  CAS  Google Scholar 

  128. Kawase Y, Ly HQ, Prunier F, et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol. 2008;51(11):1112–9.

    PubMed  CAS  Google Scholar 

  129. Tao Z, Chen B, Tan X, et al. Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci USA. 2011;108(5):2064–9.

    PubMed  CAS  Google Scholar 

  130. Pleger ST, Shan C, Ksienzyk J, et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med. 2011;3(92): 92ra64.

    PubMed  CAS  Google Scholar 

  131. White JD, Thesier DM, Swain JB, et al. Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo. Gene Ther. 2011;18(6):546–52.

    PubMed  CAS  Google Scholar 

  132. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM. Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther. 2008;15(23):1550–7.

    PubMed  CAS  Google Scholar 

  133. Mariani JA, Smolic A, Preovolos A, Byrne MJ, Power JM, Kaye DM. Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1-SERCA2a gene delivery in experimental heart failure. Eur J Heart Fail. 2011;13(3):247–53.

    PubMed  CAS  Google Scholar 

  134. Beeri R, Chaput M, Guerrero JL, et al. Gene delivery of sarcoplasmic reticulum calcium ATPase inhibits ventricular remodeling in ischemic mitral regurgitation. Circ Heart Fail. 2010;3(5):627–34.

    PubMed  CAS  Google Scholar 

  135. McTiernan CF, Mathier MA, Zhu X, et al. Myocarditis following adeno-associated viral gene expression of human soluble TNF receptor (TNFRII-Fc) in baboon hearts. Gene Ther. 2007;14(23):1613–22.

    PubMed  CAS  Google Scholar 

  136. Gao G, Bish LT, Sleeper MM, et al. Transendocardial delivery of AAV6 results in highly efficient and global cardiac gene transfer in Rhesus Macaques. Hum Gene Ther. 2011;22(8): 979–84.

    PubMed  CAS  Google Scholar 

  137. Nonnenmacher M, Weber T. Adeno-associated Virus 2 Infection Requires Endocytosis through the CLIC/GEEC Pathway. Cell Host Microbe. 2011;10(6):563–76.

    Google Scholar 

  138. Johnson JS, Li C, DiPrimio N, Weinberg MS, McCown TJ, Samulski RJ. Mutagenesis of adeno-associated virus type 2 capsid protein VP1 uncovers new roles for basic amino acids in trafficking and cell-specific transduction. J Virol. 2010;84(17):8888–902.

    PubMed  CAS  Google Scholar 

  139. Pajusola K, Gruchala M, Joch H, Luscher TF, Yla-Herttuala S, Bueler H. Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells. J Virol. 2002;76(22):11530–40.

    PubMed  CAS  Google Scholar 

  140. Bantel-Schaal U, Hub B, Kartenbeck J. Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment. J Virol. 2002;76(5):2340–9.

    PubMed  CAS  Google Scholar 

  141. Ding W, Zhang L, Yan Z, Engelhardt JF. Intracellular trafficking of adeno-associated viral vectors. Gene Ther. 2005;12(11):873–80.

    PubMed  CAS  Google Scholar 

  142. Ziello JE, Huang Y, Jovin IS. Cellular endocytosis and gene delivery. Mol Med. 2010;16(5–6): 222–9.

    PubMed  CAS  Google Scholar 

  143. Summerford C, Samulski RJ. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 1998;72(2):1438–45.

    PubMed  CAS  Google Scholar 

  144. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med. 1999;5(1): 71–7.

    PubMed  CAS  Google Scholar 

  145. Summerford C, Bartlett JS, Samulski RJ. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med. 1999;5(1):78–82.

    PubMed  CAS  Google Scholar 

  146. Kashiwakura Y, Tamayose K, Iwabuchi K, et al. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol. 2005;79(1):609–14.

    PubMed  CAS  Google Scholar 

  147. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol. 2006;80(19): 9831–6.

    PubMed  CAS  Google Scholar 

  148. Qiu J, Brown KE. Integrin alphaVbeta5 is not involved in adeno-associated virus type 2 (AAV2) infection. Virology. 1999;264(2):436–40.

    PubMed  CAS  Google Scholar 

  149. Qiu J, Mizukami H, Brown KE. Adeno-associated virus 2 co-receptors? Nat Med. 1999;5(5):467–8.

    PubMed  CAS  Google Scholar 

  150. Wallen AJ, Barker GA, Fein DE, Jing H, Diamond SL. Enhancers of adeno-associated virus AAV2 transduction via high throughput siRNA screening. Mol Ther. 2011;19(6):1152–60.

    PubMed  CAS  Google Scholar 

  151. Ng R, Govindasamy L, Gurda BL, et al. Structural characterization of the dual glycan binding adeno-associated virus serotype 6. J Virol. 2010;84(24):12945–57.

    PubMed  CAS  Google Scholar 

  152. Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ. Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol. 2006;80(18):9093–103.

    PubMed  CAS  Google Scholar 

  153. Weller ML, Amornphimoltham P, Schmidt M, Wilson PA, Gutkind JS, Chiorini JA. Epidermal growth factor receptor is a co-receptor for adeno-associated virus serotype 6. Nat Med. 2010;16(6):662–4.

    PubMed  CAS  Google Scholar 

  154. Halbert CL, Allen JM, Miller AD. Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol. 2001;75(14):6615–24.

    PubMed  CAS  Google Scholar 

  155. Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol. 2006;80(22):11393–7.

    PubMed  CAS  Google Scholar 

  156. Handa A, Muramatsu S, Qiu J, Mizukami H, Brown KE. Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J Gen Virol. 2000;81(Pt 8):2077–84.

    PubMed  CAS  Google Scholar 

  157. Lerch TF, Xie Q, Chapman MS. The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion. Virology. 2010;403(1): 26–36.

    PubMed  CAS  Google Scholar 

  158. Ling C, Lu Y, Kalsi JK, et al. Human hepatocyte growth factor receptor is a cellular coreceptor for adeno-associated virus serotype 3. Hum Gene Ther. 2010;21(12):1741–7.

    PubMed  CAS  Google Scholar 

  159. Walters RW, Pilewski JM, Chiorini JA, Zabner J. Secreted and transmembrane mucins inhibit gene transfer with AAV4 more efficiently than AAV5. J Biol Chem. 2002;277(26): 23709–13.

    PubMed  CAS  Google Scholar 

  160. Walters RW, Yi SM, Keshavjee S, et al. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem. 2001;276(23):20610–6.

    PubMed  CAS  Google Scholar 

  161. Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol. 2001;75(15):6884–93.

    PubMed  CAS  Google Scholar 

  162. Seiler MP, Miller AD, Zabner J, Halbert CL. Adeno-associated virus types 5 and 6 use distinct receptors for cell entry. Hum Gene Ther. 2006;17(1):10–9.

    PubMed  CAS  Google Scholar 

  163. Di Pasquale G, Davidson BL, Stein CS, et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med. 2003;9(10):1306–12.

    PubMed  Google Scholar 

  164. Shen S, Bryant KD, Brown SM, Randell SH, Asokan A. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem. 2011;286(15):13532–40.

    PubMed  CAS  Google Scholar 

  165. Bell CL, Vandenberghe LH, Bell P, et al. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest. 2011;121(6):2427–35.

    PubMed  CAS  Google Scholar 

  166. Ghosh A, Yue Y, Shin JH, Duan D. Systemic Trans-splicing adeno-associated viral delivery efficiently transduces the heart of adult mdx mouse, a model for duchenne muscular dystrophy. Hum Gene Ther. 2009;20(11):1319–28.

    PubMed  CAS  Google Scholar 

  167. Pulicherla N, Shen S, Yadav S, et al. Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Mol Ther. 2011;19(6):1070–8.

    PubMed  CAS  Google Scholar 

  168. Asokan A, Conway JC, Phillips JL, et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol. 2010;28(1):79–82.

    PubMed  CAS  Google Scholar 

  169. Li W, Asokan A, Wu Z, et al. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther. 2008;16(7):1252–60.

    PubMed  CAS  Google Scholar 

  170. Hajjar RJ, Chen J, Kawase Y, McPhee S, Samulski J, Samulski RJ. Directed evolution of cardiac specific adeno-associated vector variants Paper presented at: American Heart Association (AHA) 2008 Scientific Sessions; October 28, 2008, 2008; New Orleans, Louisiana.

    Google Scholar 

  171. Yang L, Jiang J, Drouin LM, et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci USA. 2009;106(10):3946–51.

    PubMed  CAS  Google Scholar 

  172. Kwon I, Schaffer DV. Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res. 2008;25(3):489–99.

    PubMed  CAS  Google Scholar 

  173. Girod A, Ried M, Wobus C, et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med. 1999;5(9):1052–6.

    PubMed  CAS  Google Scholar 

  174. White SJ, Nicklin SA, Buning H, et al. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation. 2004;109(4):513–9.

    PubMed  CAS  Google Scholar 

  175. Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab’gamma)2 antibody. Nat Biotechnol. 1999;17(2):181–6.

    PubMed  CAS  Google Scholar 

  176. Ponnazhagan S, Mahendra G, Kumar S, Thompson JA, Castillas Jr M. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol. 2002;76(24):12900–7.

    PubMed  CAS  Google Scholar 

  177. Gigout L, Rebollo P, Clement N, et al. Altering AAV tropism with mosaic viral capsids. Mol Ther. 2005;11(6):856–65.

    PubMed  CAS  Google Scholar 

  178. Ried MU, Girod A, Leike K, Buning H, Hallek M. Adeno-associated virus capsids displaying immunoglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J Virol. 2002;76(9):4559–66.

    PubMed  CAS  Google Scholar 

  179. Hauck B, Chen L, Xiao W. Generation and characterization of chimeric recombinant AAV vectors. Mol Ther. 2003;7(3):419–25.

    PubMed  CAS  Google Scholar 

  180. Rabinowitz JE, Bowles DE, Faust SM, Ledford JG, Cunningham SE, Samulski RJ. Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J Virol. 2004;78(9):4421–32.

    PubMed  CAS  Google Scholar 

  181. Koerber JT, Klimczak R, Jang JH, Dalkara D, Flannery JG, Schaffer DV. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol Ther. 2009;17(12):2088–95.

    PubMed  CAS  Google Scholar 

  182. Muller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-­associated virus to select for targeted gene therapy vectors. Nat Biotechnol. 2003;21(9):1040–6.

    PubMed  Google Scholar 

  183. Muller OJ, Leuchs B, Pleger ST, et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res. 2006;70(1): 70–8.

    PubMed  Google Scholar 

  184. Perabo L, Buning H, Kofler DM, et al. In vitro selection of viral vectors with modified ­tropism: the adeno-associated virus display. Mol Ther. 2003;8(1):151–7.

    PubMed  CAS  Google Scholar 

  185. Waterkamp DA, Muller OJ, Ying Y, Trepel M, Kleinschmidt JA. Isolation of targeted AAV2 vectors from novel virus display libraries. J Gene Med. 2006;8(11):1307–19.

    PubMed  CAS  Google Scholar 

  186. Ying Y, Muller OJ, Goehringer C, et al. Heart-targeted adeno-associated viral vectors selected by in vivo biopanning of a random viral display peptide library. Gene Ther. 2010;17(8):980–90.

    PubMed  CAS  Google Scholar 

  187. Adachi K, Nakai H. A new recombinant adeno-associated virus (Aav)-based random peptide display library system: infection-defective Aav1.9-3 as a novel detargeted platform for vector evolution. Gene Ther Regul. 2010;5(1):31–55.

    PubMed  CAS  Google Scholar 

  188. Michelfelder S, Varadi K, Raupp C, et al. Peptide ligands incorporated into the threefold spike capsid domain to re-direct gene transduction of AAV8 and AAV9 in vivo. PLoS One. 2011;6(8):e23101.

    PubMed  CAS  Google Scholar 

  189. Stemmer WP. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA. 1994;91(22):10747–51.

    PubMed  CAS  Google Scholar 

  190. Koerber JT, Jang JH, Schaffer DV. DNA shuffling of adeno-associated virus yields functionally diverse viral progeny. Mol Ther. 2008;16(10):1703–9.

    PubMed  CAS  Google Scholar 

  191. Gray SJ, Blake BL, Criswell HE, et al. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther. 2010;18(3):570–8.

    PubMed  CAS  Google Scholar 

  192. Aguinaldo AM, Arnold F. Staggered extension process (StEP) in vitro recombination. Methods Mol Biol. 2002;192:235–9.

    PubMed  CAS  Google Scholar 

  193. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol. 2006;24(2):198–204.

    PubMed  CAS  Google Scholar 

  194. Hauck B, Xiao W. Characterization of tissue tropism determinants of adeno-associated virus type 1. J Virol. 2003;77(4):2768–74.

    PubMed  CAS  Google Scholar 

  195. Nakai H, Herzog RW, Hagstrom JN, et al. Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood. 1998;91(12):4600–7.

    PubMed  CAS  Google Scholar 

  196. Franz WM, Rothmann T, Frey N, Katus HA. Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovasc Res. 1997;35(3):560–6.

    PubMed  CAS  Google Scholar 

  197. Rothmann T, Katus HA, Hartong R, Perricaudet M, Franz WM. Heart muscle-specific gene expression using replication defective recombinant adenovirus. Gene Ther. 1996;3(10):919–26.

    PubMed  CAS  Google Scholar 

  198. Phillips MI, Tang Y, Schmidt-Ott K, Qian K, Kagiyama S. Vigilant vector: heart-specific promoter in an adeno-associated virus vector for cardioprotection. Hypertension. 2002;39(2 Pt 2):651–5.

    PubMed  CAS  Google Scholar 

  199. Su H, Huang Y, Takagawa J, et al. AAV serotype-1 mediates early onset of gene expression in mouse hearts and results in better therapeutic effect. Gene Ther. 2006;13(21):1495–502.

    PubMed  CAS  Google Scholar 

  200. Subramaniam A, Jones WK, Gulick J, Wert S, Neumann J, Robbins J. Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J Biol Chem. 1991;266(36):24613–20.

    PubMed  CAS  Google Scholar 

  201. Molkentin JD, Jobe SM, Markham BE. Alpha-myosin heavy chain gene regulation: delineation and characterization of the cardiac muscle-specific enhancer and muscle-specific promoter. J Mol Cell Cardiol. 1996;28(6):1211–25.

    PubMed  CAS  Google Scholar 

  202. Pacak CA, Sakai Y, Thattaliyath BD, Mah CS, Byrne BJ. Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. Genet Vaccines Ther. 2008;6:13.

    PubMed  Google Scholar 

  203. Salva MZ, Himeda CL, Tai PW, et al. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther. 2007;15(2):320–9.

    PubMed  CAS  Google Scholar 

  204. Prasad KM, Xu Y, Yang Z, Acton ST, French BA. Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a poisson distribution. Gene Ther. 2010;18:43–52.

    PubMed  Google Scholar 

  205. Pleger ST, Most P, Boucher M, et al. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation. 2007;115(19):2506–15.

    PubMed  CAS  Google Scholar 

  206. Chen IY, Gheysens O, Ray S, et al. Indirect imaging of cardiac-specific transgene expression using a bidirectional two-step transcriptional amplification strategy. Gene Ther. 2010;17(7):827–38.

    PubMed  CAS  Google Scholar 

  207. Liu B, Paton JF, Kasparov S. Viral vectors based on bidirectional cell-specific mammalian promoters and transcriptional amplification strategy for use in vitro and in vivo. BMC Biotechnol. 2008;8:49.

    PubMed  Google Scholar 

  208. Keogh MC, Chen D, Schmitt JF, Dennehy U, Kakkar VV, Lemoine NR. Design of a muscle cell-specific expression vector utilising human vascular smooth muscle alpha-actin regulatory elements. Gene Ther. 1999;6(4):616–28.

    PubMed  CAS  Google Scholar 

  209. Cordier L, Gao GP, Hack AA, et al. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum Gene Ther. 2001;12(2):205–15.

    PubMed  CAS  Google Scholar 

  210. Frauli M, Ribault S, Neuville P, Auge F, Calenda V. Adenoviral-mediated skeletal muscle transcriptional targeting using chimeric tissue-specific promoters. Med Sci Monit. 2003;9(2): BR78–84.

    PubMed  CAS  Google Scholar 

  211. Yue Y, Li Z, Harper SQ, Davisson RL, Chamberlain JS, Duan D. Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation. 2003;108(13):1626–32.

    PubMed  CAS  Google Scholar 

  212. Melo LG, Gnecchi M, Pachori AS, et al. Endothelium-targeted gene and cell-based therapies for cardiovascular disease. Arterioscler Thromb Vasc Biol. 2004;24(10):1761–74.

    PubMed  CAS  Google Scholar 

  213. Nicklin SA, Reynolds PN, Brosnan MJ, et al. Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension. 2001;38(1):65–70.

    PubMed  CAS  Google Scholar 

  214. Brown BD, Gentner B, Cantore A, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol. 2007;25(12):1457–67.

    PubMed  CAS  Google Scholar 

  215. Ying SY, Lin SL. Intron-mediated RNA interference and microRNA biogenesis. Methods Mol Biol. 2009;487:387–413.

    PubMed  CAS  Google Scholar 

  216. Kelly EJ, Russell SJ. MicroRNAs and the regulation of vector tropism. Mol Ther. 2009;17(3):409–16.

    PubMed  CAS  Google Scholar 

  217. Suzuki T, Sakurai F, Nakamura S, et al. miR-122a-regulated expression of a suicide gene prevents hepatotoxicity without altering antitumor effects in suicide gene therapy. Mol Ther. 2008;16(10):1719–26.

    PubMed  CAS  Google Scholar 

  218. Geisler A, Jungmann A, Kurreck J, et al. microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Ther. 2011;18(2):199–209.

    PubMed  CAS  Google Scholar 

  219. Qiao C, Yuan Z, Li J, et al. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Ther. 2011;18:403–10.

    PubMed  CAS  Google Scholar 

  220. Bohl D, Salvetti A, Moullier P, Heard JM. Control of erythropoietin delivery by doxycycline in mice after intramuscular injection of adeno-associated vector. Blood. 1998;92(5):1512–7.

    PubMed  CAS  Google Scholar 

  221. Rendahl KG, Leff SE, Otten GR, et al. Regulation of gene expression in vivo following transduction by two separate rAAV vectors. Nat Biotechnol. 1998;16(8):757–61.

    PubMed  CAS  Google Scholar 

  222. Szymanski P, Kretschmer PJ, Bauzon M, et al. Development and validation of a robust and versatile one-plasmid regulated gene expression system. Mol Ther. 2007;15(7):1340–7.

    PubMed  CAS  Google Scholar 

  223. Rivera VM, Ye X, Courage NL, et al. Long-term regulated expression of growth hormone in mice after intramuscular gene transfer. Proc Natl Acad Sci USA. 1999;96(15):8657–62.

    PubMed  CAS  Google Scholar 

  224. Ye X, Rivera VM, Zoltick P, et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science. 1999;283(5398):88–91.

    PubMed  CAS  Google Scholar 

  225. Yen L, Svendsen J, Lee JS, et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature. 2004;431(7007):471–6.

    PubMed  CAS  Google Scholar 

  226. Tang Y, Jackson M, Qian K, Phillips MI. Hypoxia inducible double plasmid system for myocardial ischemia gene therapy. Hypertension. 2002;39(2 Pt 2):695–8.

    PubMed  CAS  Google Scholar 

  227. Tang YL, Tang Y, Zhang YC, et al. A hypoxia-inducible vigilant vector system for activating therapeutic genes in ischemia. Gene Ther. 2005;12(15):1163–70.

    PubMed  CAS  Google Scholar 

  228. Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI. Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system. Hypertension. 2004;43(4):746–51.

    PubMed  CAS  Google Scholar 

  229. Tang Y, Schmitt-Ott K, Qian K, Kagiyama S, Phillips MI. Vigilant vectors: adeno-associated virus with a biosensor to switch on amplified therapeutic genes in specific tissues in life-threatening diseases. Methods. 2002;28(2):259–66.

    PubMed  CAS  Google Scholar 

  230. Casto BC, Atchison RW, Hammon WM. Studies on the relationship between adeno-associated virus type I (AAV-1) and adenoviruses. I. Replication of AAV-1 in certain cell cultures and its effect on helper adenovirus. Virology. 1967;32(1):52–9.

    PubMed  CAS  Google Scholar 

  231. Mayor HD, Ito M, Jordan LE, Melnick L. Morphological studies on the replication of a defective satellite virus and its helper adenovirus. J Natl Cancer Inst. 1967;38(6):805–20.

    PubMed  CAS  Google Scholar 

  232. Parks WP, Melnick JL, Rongey R, Mayor HD. Physical assay and growth cycle studies of a defective adeno-satellite virus. J Virol. 1967;1(1):171–80.

    PubMed  CAS  Google Scholar 

  233. Buller RM, Janik JE, Sebring ED, Rose JA. Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J Virol. 1981;40(1):241–7.

    PubMed  CAS  Google Scholar 

  234. Handa H, Carter BJ. Adeno-associated virus DNA replication complexes in herpes simplex virus or adenovirus-infected cells. J Biol Chem. 1979;254(14):6603–10.

    PubMed  CAS  Google Scholar 

  235. Mayor HD, Drake S, Jordan LE. Chemical and physical properties of adeno-associated satellite virus DNA produced during coinfection with herpes simplex virus. Nucleic Acids Res. 1974;1(10):1279–85.

    PubMed  CAS  Google Scholar 

  236. Meyers C, Alam S, Mane M, Hermonat PL. Altered biology of adeno-associated virus type 2 and human papillomavirus during dual infection of natural host tissue. Virology. 2001;287(1):30–9.

    PubMed  CAS  Google Scholar 

  237. Ogston P, Raj K, Beard P. Productive replication of adeno-associated virus can occur in human papillomavirus type 16 (HPV-16) episome-containing keratinocytes and is augmented by the HPV-16 E2 protein. J Virol. 2000;74(8):3494–504.

    PubMed  CAS  Google Scholar 

  238. Lebkowski JS, McNally MM, Okarma TB, Lerch LB. Adeno-associated virus: a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Mol Cell Biol. 1988;8(10):3988–96.

    PubMed  CAS  Google Scholar 

  239. Samulski RJ, Chang LS, Shenk T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. 1989;63(9):3822–8.

    PubMed  CAS  Google Scholar 

  240. Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 1998;72(3):2224–32.

    PubMed  CAS  Google Scholar 

  241. Grimm D, Kern A, Rittner K, Kleinschmidt JA. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther. 1998;9(18):2745–60.

    PubMed  CAS  Google Scholar 

  242. Conway JE, Zolotukhin S, Muzyczka N, Hayward GS, Byrne BJ. Recombinant adeno-­associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap. J Virol. 1997;71(11):8780–9.

    PubMed  CAS  Google Scholar 

  243. Schleiss MR. Persistent and recurring viral infections: the human herpesviruses. Curr Probl Pediatr Adolesc Health Care. 2009;39(1):7–23.

    PubMed  Google Scholar 

  244. Durocher Y, Pham PL, St-Laurent G, et al. Scalable serum-free production of recombinant adeno-associated virus type 2 by transfection of 293 suspension cells. J Virol Methods. 2007;144(1–2):32–40.

    PubMed  CAS  Google Scholar 

  245. Park JY, Lim BP, Lee K, Kim YG, Jo EC. Scalable production of adeno-associated virus type 2 vectors via suspension transfection. Biotechnol Bioeng. 2006;94(3):416–30.

    PubMed  CAS  Google Scholar 

  246. Thomas DL, Wang L, Niamke J, et al. Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells. Hum Gene Ther. 2009;20(8):861–70.

    PubMed  CAS  Google Scholar 

  247. Even MS, Sandusky CB, Barnard ND. Serum-free hybridoma culture: ethical, scientific and safety considerations. Trends Biotechnol. 2006;24(3):105–8.

    PubMed  CAS  Google Scholar 

  248. Wessman SJ, Levings RL. Benefits and risks due to animal serum used in cell culture production. Dev Biol Stand. 1999;99:3–8.

    PubMed  CAS  Google Scholar 

  249. Hildinger M, Baldi L, Stettler M, Wurm FM. High-titer, serum-free production of adeno-associated virus vectors by polyethyleneimine-mediated plasmid transfection in mammalian suspension cells. Biotechnol Lett. 2007;29(11):1713–21.

    PubMed  CAS  Google Scholar 

  250. Aucoin MG, Perrier M, Kamen AA. Critical assessment of current adeno-associated viral vector production and quantification methods. Biotechnol Adv. 2008;26(1):73–88.

    PubMed  CAS  Google Scholar 

  251. Urabe M, Ding C, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther. 2002;13(16):1935–43.

    PubMed  CAS  Google Scholar 

  252. Aucoin MG, Perrier M, Kamen AA. Production of adeno-associated viral vectors in insect cells using triple infection: optimization of baculovirus concentration ratios. Biotechnol Bioeng. 2006;95(6):1081–92.

    PubMed  CAS  Google Scholar 

  253. Kohlbrenner E, Aslanidi G, Nash K, et al. Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system. Mol Ther. 2005;12(6):1217–25.

    PubMed  CAS  Google Scholar 

  254. Smith RH, Levy JR, Kotin RM. A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol Ther. 2009;17(11):1888–96.

    PubMed  CAS  Google Scholar 

  255. Virag T, Cecchini S, Kotin RM. Producing recombinant adeno-associated virus in foster cells: overcoming production limitations using a baculovirus-insect cell expression strategy. Hum Gene Ther. 2009;20(8):807–17.

    PubMed  CAS  Google Scholar 

  256. Negrete A, Yang LC, Mendez AF, Levy JR, Kotin RM. Economized large-scale production of high yield of rAAV for gene therapy applications exploiting baculovirus expression system. J Gene Med. 2007;9(11):938–48.

    PubMed  CAS  Google Scholar 

  257. Aslanidi G, Lamb K, Zolotukhin S. An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells. Proc Natl Acad Sci USA. 2009;106(13):5059–64.

    PubMed  CAS  Google Scholar 

  258. Cecchini S, Negrete A, Kotin RM. Toward exascale production of recombinant adeno-associated virus for gene transfer applications. Gene Ther. 2008;15(11):823–30.

    PubMed  CAS  Google Scholar 

  259. Grieger JC, Choi VW, Samulski RJ. Production and characterization of adeno-associated viral vectors. Nat Protoc. 2006;1(3):1412–28.

    PubMed  CAS  Google Scholar 

  260. Ayuso E, Mingozzi F, Montane J, et al. High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency. Gene Ther. 2010;17(4):503–10.

    PubMed  CAS  Google Scholar 

  261. Van Vliet KM, Blouin V, Brument N, Agbandje-McKenna M, Snyder RO. The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol. 2008;437:51–91.

    PubMed  Google Scholar 

  262. Wang L, Wang H, Bell P, et al. Systematic evaluation of AAV vectors for liver directed gene transfer in murine models. Mol Ther. 2010;18(1):118–25.

    PubMed  CAS  Google Scholar 

  263. Choi VW, Asokan A, Haberman RA, Samulski RJ. Production of recombinant adeno-associated viral vectors for in vitro and in vivo use. Curr Protoc Mol Biol. 2007;Chapter 16:Unit 16 25.

    Google Scholar 

  264. Zolotukhin S, Potter M, Zolotukhin I, et al. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods. 2002;28(2):158–67.

    PubMed  CAS  Google Scholar 

  265. Grimm D, Kay MA. From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther. 2003;3(4):281–304.

    PubMed  CAS  Google Scholar 

  266. Sen S, Conroy S, Hynes SO, et al. Gene delivery to the vasculature mediated by low-titre adeno-associated virus serotypes 1 and 5. J Gene Med. 2008;10(2):143–51.

    PubMed  CAS  Google Scholar 

  267. Hermens WT, ter Brake O, Dijkhuizen PA, et al. Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system. Hum Gene Ther. 1999;10(11):1885–91.

    PubMed  CAS  Google Scholar 

  268. Zolotukhin S, Byrne BJ, Mason E, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 1999;6(6):973–85.

    PubMed  CAS  Google Scholar 

  269. Hirosue S, Senn K, Clement N, et al. Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction. Virology. 2007;367(1):10–8.

    PubMed  CAS  Google Scholar 

  270. Zeltner N, Kohlbrenner E, Clement N, Weber T, Linden RM. Near-perfect infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV vectors. Gene Ther. 2010;17(7):872–9.

    PubMed  CAS  Google Scholar 

  271. Gao G, Qu G, Burnham MS, et al. Purification of recombinant adeno-associated virus vectors by column chromatography and its performance in vivo. Hum Gene Ther. 2000;11(15):2079–91.

    PubMed  CAS  Google Scholar 

  272. Anderson R, Macdonald I, Corbett T, Whiteway A, Prentice HG. A method for the preparation of highly purified adeno-associated virus using affinity column chromatography, protease digestion and solvent extraction. J Virol Methods. 2000;85(1–2):23–34.

    PubMed  CAS  Google Scholar 

  273. Clark KR, Liu X, McGrath JP, Johnson PR. Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther. 1999;10(6):1031–9.

    PubMed  CAS  Google Scholar 

  274. Auricchio A, Hildinger M, O’Connor E, Gao GP, Wilson JM. Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum Gene Ther. 2001;12(1):71–6.

    PubMed  CAS  Google Scholar 

  275. Rabinowitz JE, Rolling F, Li C, et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol. 2002;76(2):791–801.

    PubMed  CAS  Google Scholar 

  276. Davidoff AM, Ng CY, Sleep S, et al. Purification of recombinant adeno-associated virus type 8 vectors by ion exchange chromatography generates clinical grade vector stock. J Virol Methods. 2004;121(2):209–15.

    PubMed  CAS  Google Scholar 

  277. Kaludov N, Handelman B, Chiorini JA. Scalable purification of adeno-associated virus type 2, 4, or 5 using ion-exchange chromatography. Hum Gene Ther. 2002;13(10):1235–43.

    PubMed  CAS  Google Scholar 

  278. Smith RH, Ding C, Kotin RM. Serum-free production and column purification of adeno-associated virus type 5. J Virol Methods. 2003;114(2):115–24.

    PubMed  CAS  Google Scholar 

  279. O’Riordan CR, Lachapelle AL, Vincent KA, Wadsworth SC. Scaleable chromatographic purification process for recombinant adeno-associated virus (rAAV). J Gene Med. 2000;2(6):444–54.

    PubMed  Google Scholar 

  280. Okada T, Nonaka-Sarukawa M, Uchibori R, et al. Scalable purification of adeno-associated virus serotype 1 (AAV1) and AAV8 vectors, using dual ion-exchange adsorptive membranes. Hum Gene Ther. 2009;20(9):1013–21.

    PubMed  CAS  Google Scholar 

  281. Smith RH, Yang L, Kotin RM. Chromatography-based purification of adeno-associated virus. Methods Mol Biol. 2008;434:37–54.

    PubMed  CAS  Google Scholar 

  282. Wright JF, Zelenaia O. Vector characterization methods for quality control testing of recombinant adeno-associated viruses. Methods Mol Biol. 2011;737:247–78.

    PubMed  CAS  Google Scholar 

  283. Dong JY, Fan PD, Frizzell RA. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther. 1996;7(17):2101–12.

    PubMed  CAS  Google Scholar 

  284. Wiemann S, Bechtel S, Bannasch D, Pepperkok R, Poustka A. The German cDNA network: cDNAs, functional genomics and proteomics. J Struct Funct Genomics. 2003;4(2–3):87–96.

    PubMed  CAS  Google Scholar 

  285. Kunkel LM. 2004 William Allan Award address. Cloning of the DMD gene. Am J Hum Genet. 2005;76(2):205–14.

    PubMed  CAS  Google Scholar 

  286. Wang B, Li J, Fu FH, Xiao X. Systemic human minidystrophin gene transfer improves functions and life span of dystrophin and dystrophin/utrophin-deficient mice. J Orthop Res. 2009;27(4):421–6.

    PubMed  Google Scholar 

  287. Duan D, Yue Y, Engelhardt JF. Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther. 2001;4(4):383–91.

    PubMed  CAS  Google Scholar 

  288. Byrne BJ. Innovative vector design: cross-packaged, self-complementary and now trans-splicing AAV vectors. Hum Gene Ther. 2009;20(11):1224–5.

    PubMed  CAS  Google Scholar 

  289. Lai Y, Yue Y, Liu M, et al. Efficient in vivo gene expression by trans-splicing adeno-­associated viral vectors. Nat Biotechnol. 2005;23(11):1435–9.

    PubMed  CAS  Google Scholar 

  290. Sun L, Li J, Xiao X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med. 2000;6(5):599–602.

    PubMed  CAS  Google Scholar 

  291. Lai Y, Li D, Yue Y, Duan D. Design of trans-splicing adeno-associated viral vectors for Duchenne muscular dystrophy gene therapy. Methods Mol Biol. 2008;433:259–75.

    PubMed  CAS  Google Scholar 

  292. Song Y, Lou HH, Boyer JL, et al. Functional cystic fibrosis transmembrane conductance regulator expression in cystic fibrosis airway epithelial cells by AAV6.2-mediated segmental trans-splicing. Hum Gene Ther. 2009;20(3):267–81.

    PubMed  CAS  Google Scholar 

  293. Champion HC, Georgakopoulos D, Haldar S, Wang L, Wang Y, Kass DA. Robust adenoviral and adeno-associated viral gene transfer to the in vivo murine heart: application to study of phospholamban physiology. Circulation. 2003;108(22):2790–7.

    PubMed  CAS  Google Scholar 

  294. Chu D, Sullivan CC, Weitzman MD, et al. Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors. J Thorac Cardiovasc Surg. 2003;126(3):671–9.

    PubMed  CAS  Google Scholar 

  295. Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol. 1996;70(5):3227–34.

    PubMed  CAS  Google Scholar 

  296. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol. 1996;70(1):520–32.

    PubMed  CAS  Google Scholar 

  297. McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther. 2008;16(10):1648–56.

    PubMed  CAS  Google Scholar 

  298. McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-­associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8(16):1248–54.

    PubMed  CAS  Google Scholar 

  299. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther. 2003;10(26):2105–11.

    PubMed  CAS  Google Scholar 

  300. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 2003;10(26):2112–8.

    PubMed  CAS  Google Scholar 

  301. Bieniasz PD. Intrinsic immunity: a front-line defense against viral attack. Nat Immunol. 2004;5(11):1109–15.

    PubMed  CAS  Google Scholar 

  302. Chen H, Lilley CE, Yu Q, et al. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol. 2006;16(5):480–5.

    PubMed  CAS  Google Scholar 

  303. Narvaiza I, Linfesty DC, Greener BN, et al. Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase. PLoS Pathog. 2009;5(5):e1000439.

    PubMed  Google Scholar 

  304. Bulliard Y, Narvaiza I, Bertero A, et al. Structure-function analyses point to a polynucleotide-accommodating groove essential for APOBEC3A restriction activities. J Virol. 2011;85(4):1765–76.

    PubMed  CAS  Google Scholar 

  305. Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 2010;17(3):295–304.

    PubMed  CAS  Google Scholar 

  306. Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol. 2002;76(9):4580–90.

    PubMed  CAS  Google Scholar 

  307. Zhu J, Huang X, Yang Y. The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. J Clin Invest. 2009;119(8):2388–98.

    PubMed  CAS  Google Scholar 

  308. Hosel M, Broxtermann M, Janicki H, et al. TLR2-mediated innate immune response in human non-parenchymal liver cells towards adeno-associated viral (AAV) vectors. Hepatology. 2011;55:287–97.

    Google Scholar 

  309. Tergaonkar V. NFkappaB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol. 2006;38(10):1647–53.

    PubMed  CAS  Google Scholar 

  310. Jayandharan GR, Aslanidi G, Martino AT, et al. Activation of the NF-{kappa}B pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy. Proc Natl Acad Sci USA. 2011;108(9):3743–8.

    PubMed  CAS  Google Scholar 

  311. Martino AT, Suzuki M, Markusic DM, et al. The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9-dependent innate immune responses in the liver. Blood. 2011;117(24):6459–68.

    PubMed  CAS  Google Scholar 

  312. Rogers GL, Martino AT, Aslanidi GV, Jayandharan GR, Srivastava A, Herzog RW. Innate immune responses to AAV vectors. Front Microbiol. 2011;2:194.

    PubMed  Google Scholar 

  313. Zaiss AK, Cotter MJ, White LR, et al. Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol. 2008;82(6):2727–40.

    PubMed  CAS  Google Scholar 

  314. Lutz HU, Jelezarova E. Complement amplification revisited. Mol Immunol. 2006;43(1–2):2–12.

    PubMed  CAS  Google Scholar 

  315. Janeway C. Immunobiology 5: the immune system in health and disease, 5th ed, vol. xviii. New York: Garland Pub; 2001. p. 732.

    Google Scholar 

  316. Zaiss AK, Muruve DA. Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Ther. 2008;15(11):808–16.

    PubMed  CAS  Google Scholar 

  317. Mitchell AM, Nicolson SC, Warischalk JK, Samulski RJ. AAV’s anatomy: roadmap for optimizing vectors for translational success. Curr Gene Ther. 2010;10(5):319–40.

    PubMed  CAS  Google Scholar 

  318. Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–7.

    PubMed  CAS  Google Scholar 

  319. Hajjar RJ, Zsebo K, Deckelbaum L, et al. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail. 2008;14(5):355–67.

    PubMed  CAS  Google Scholar 

  320. Jaski BE, Jessup ML, Mancini DM, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail. 2009;15(3):171–81.

    PubMed  CAS  Google Scholar 

  321. Corporation C. Efficacy and Safety Study of Genetically Targeted Enzyme Replacement Therapy for Advanced Heart Failure (CUPID). 2007; http://clinicaltrials.gov/ct2/show/NCT00454818. Accessed March 30, 2011, 2011.

  322. Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet. 2007;369(9579):2097–105.

    PubMed  CAS  Google Scholar 

  323. Jiang H, Couto LB, Patarroyo-White S, et al. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood. 2006;108(10):3321–8.

    PubMed  CAS  Google Scholar 

  324. Manno CS, Chew AJ, Hutchison S, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101(8):2963–72.

    PubMed  CAS  Google Scholar 

  325. Li H, Lin SW, Giles-Davis W, et al. A preclinical animal model to assess the effect of pre-existing immunity on AAV-mediated gene transfer. Mol Ther. 2009;17(7):1215–24.

    PubMed  CAS  Google Scholar 

  326. Scallan CD, Jiang H, Liu T, et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood. 2006;107(5):1810–7.

    PubMed  CAS  Google Scholar 

  327. Rapti K, Louis-Jeune V, Kohlbrenner E, et al. Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol Ther. 2012;20:73–83.

    PubMed  Google Scholar 

  328. Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12.

    PubMed  CAS  Google Scholar 

  329. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999;6(9):1574–83.

    PubMed  CAS  Google Scholar 

  330. Halbert CL, Miller AD, McNamara S, et al. Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: Implications for gene therapy using AAV vectors. Hum Gene Ther. 2006;17(4):440–7.

    PubMed  CAS  Google Scholar 

  331. Ito T, Yamamoto S, Hayashi T, et al. A convenient enzyme-linked immunosorbent assay for rapid screening of anti-adeno-associated virus neutralizing antibodies. Ann Clin Biochem. 2009;46(Pt 6):508–10.

    PubMed  CAS  Google Scholar 

  332. Moss RB, Rodman D, Spencer LT, et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest. 2004;125(2):509–21.

    PubMed  Google Scholar 

  333. Murphy SL, Li H, Mingozzi F, et al. Diverse IgG subclass responses to adeno-associated virus infection and vector administration. J Med Virol. 2009;81(1):65–74.

    PubMed  Google Scholar 

  334. Parks WP, Boucher DW, Melnick JL, Taber LH, Yow MD. Seroepidemiological and ecological studies of the adenovirus-associated satellite viruses. Infect Immun. 1970;2(6):716–22.

    PubMed  CAS  Google Scholar 

  335. Wagner JA, Nepomuceno IB, Messner AH, et al. A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies. Hum Gene Ther. 2002;13(11):1349–59.

    PubMed  CAS  Google Scholar 

  336. Erles K, Sebokova P, Schlehofer JR. Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol. 1999;59(3):406–11.

    PubMed  CAS  Google Scholar 

  337. Calcedo R, Morizono H, Wang L, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol. 2011;18(9):1586–8.

    PubMed  CAS  Google Scholar 

  338. Halbert CL, Rutledge EA, Allen JM, Russell DW, Miller AD. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol. 2000;74(3):1524–32.

    PubMed  CAS  Google Scholar 

  339. Riviere C, Danos O, Douar AM. Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Ther. 2006;13(17):1300–8.

    PubMed  CAS  Google Scholar 

  340. Xiao W, Chirmule N, Berta SC, McCullough B, Gao G, Wilson JM. Gene therapy vectors based on adeno-associated virus type 1. J Virol. 1999;73(5):3994–4003.

    PubMed  CAS  Google Scholar 

  341. Chirmule N, Xiao W, Truneh A, et al. Humoral immunity to adeno-associated virus type 2 vectors following administration to murine and nonhuman primate muscle. J Virol. 2000;74(5):2420–5.

    PubMed  CAS  Google Scholar 

  342. Nathwani AC, Gray JT, McIntosh J, et al. Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood. 2007;109(4):1414–21.

    PubMed  CAS  Google Scholar 

  343. Nathwani AC, Gray JT, Ng CY, et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood. 2006;107(7):2653–61.

    PubMed  CAS  Google Scholar 

  344. Gao G, Lu Y, Calcedo R, et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther. 2006;13(1):77–87.

    PubMed  CAS  Google Scholar 

  345. Wang L, Calcedo R, Bell P, et al. Impact of pre-existing immunity on gene transfer to nonhuman primate liver with adeno-associated virus 8 vectors. Hum Gene Ther. 2011;22:1389–401.

    PubMed  CAS  Google Scholar 

  346. Wang L, Calcedo R, Wang H, et al. The pleiotropic effects of natural AAV infections on liver-directed gene transfer in macaques. Mol Ther. 2010;18(1):126–34.

    PubMed  CAS  Google Scholar 

  347. Monteilhet V, Saheb S, Boutin S, et al. A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) Types 1, 2, 6, and 8. Mol Ther. 2011;19:2084–91.

    PubMed  CAS  Google Scholar 

  348. Mingozzi F, High KA. Immune responses to AAV in clinical trials. Curr Gene Ther. 2007;7(5):316–24.

    PubMed  CAS  Google Scholar 

  349. Hasbrouck NC, High KA. AAV-mediated gene transfer for the treatment of hemophilia B: problems and prospects. Gene Ther. 2008;15(11):870–5.

    PubMed  CAS  Google Scholar 

  350. Kay MA, Manno CS, Ragni MV, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet. 2000;24(3):257–61.

    PubMed  CAS  Google Scholar 

  351. Jiang H, Pierce GF, Ozelo MC, et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther. 2006;14(3):452–5.

    PubMed  CAS  Google Scholar 

  352. Snyder RO, Miao CH, Patijn GA, et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet. 1997;16(3):270–6.

    PubMed  CAS  Google Scholar 

  353. Mount JD, Herzog RW, Tillson DM, et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood. 2002;99(8):2670–6.

    PubMed  CAS  Google Scholar 

  354. Mingozzi F, Liu YL, Dobrzynski E, et al. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest. 2003;111(9):1347–56.

    PubMed  CAS  Google Scholar 

  355. Herzog RW. Immune responses to AAV capsid: are mice not humans after all? Mol Ther. 2007;15(4):649–50.

    PubMed  CAS  Google Scholar 

  356. Hauck B, Murphy SL, Smith PH, et al. Undetectable transcription of cap in a clinical AAV vector: implications for preformed capsid in immune responses. Mol Ther. 2009;17(1):144–52.

    PubMed  CAS  Google Scholar 

  357. Pien GC, Basner-Tschakarjan E, Hui DJ, et al. Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors. J Clin Invest. 2009;119(6):1688–95.

    PubMed  CAS  Google Scholar 

  358. Li CW, Hirsch M, DiPrimio N, et al. Cytotoxic-T-lymphocyte-mediated elimination of target cells transduced with engineered adeno-associated virus type 2 vector in vivo. J Virol. 2009;83(13):6817–24.

    PubMed  CAS  Google Scholar 

  359. Mingozzi F, Maus MV, Hui DJ, et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med. 2007;13(4):419–22.

    PubMed  CAS  Google Scholar 

  360. Li H, Murphy SL, Giles-Davis W, et al. Pre-existing AAV capsid-specific CD8+ T cells are unable to eliminate AAV-transduced hepatocytes. Mol Ther. 2007;15(4):792–800.

    PubMed  CAS  Google Scholar 

  361. Wang L, Figueredo J, Calcedo R, Lin J, Wilson JM. Cross-presentation of adeno-associated virus serotype 2 capsids activates cytotoxic T cells but does not render hepatocytes effective cytolytic targets. Hum Gene Ther. 2007;18(3):185–94.

    PubMed  CAS  Google Scholar 

  362. Li H, Lasaro MO, Jia B, et al. Capsid-specific T-cell responses to natural infections with adeno-associated viruses in humans differ from those of nonhuman primates. Mol Ther. 2011;19:2021–30.

    PubMed  CAS  Google Scholar 

  363. Mays LE, Vandenberghe LH, Xiao R, et al. Adeno-associated virus capsid structure drives CD4-dependent CD8+ T cell response to vector encoded proteins. J Immunol. 2009;182(10):6051–60.

    PubMed  CAS  Google Scholar 

  364. Mays LE, Wilson JM. Identification of the murine AAVrh32.33 capsid-specific CD8+ T cell epitopes. J Gene Med. 2009;11(12):1095–102.

    PubMed  CAS  Google Scholar 

  365. Chen J, Wu Q, Yang P, Hsu HC, Mountz JD. Determination of specific CD4 and CD8 T cell epitopes after AAV2- and AAV8-hF.IX gene therapy. Mol Ther. 2006;13(2):260–9.

    PubMed  Google Scholar 

  366. Moskalenko M, Chen LL, van Roey M, et al. Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: Implications for gene therapy and virus structure. J Virol. 2000;74(4):1761–6.

    PubMed  CAS  Google Scholar 

  367. Sabatino DE, Mingozzi F, Hui DJ, et al. Identification of mouse AAV capsid-specific CD8+ T cell epitopes. Mol Ther. 2005;12(6):1023–33.

    PubMed  CAS  Google Scholar 

  368. Madsen D, Cantwell ER, O’Brien T, Johnson PA, Mahon BP. Adeno-associated virus serotype 2 induces cell-mediated immune responses directed against multiple epitopes of the capsid protein VP1. J Gen Virol. 2009;90(Pt 11):2622–33.

    PubMed  CAS  Google Scholar 

  369. Lipskaia L, Chemaly ER, Hadri L, Lompre AM, Hajjar RJ. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther. 2010;10(1):29–41.

    PubMed  CAS  Google Scholar 

  370. Aldrich WA, Ren C, White AF, et al. Enhanced transduction of mouse bone marrow-derived dendritic cells by repetitive infection with self-complementary adeno-associated virus 6 combined with immunostimulatory ligands. Gene Ther. 2006;13(1):29–39.

    PubMed  CAS  Google Scholar 

  371. Xin KQ, Mizukami H, Urabe M, et al. Induction of robust immune responses against human immunodeficiency virus is supported by the inherent tropism of adeno-associated virus type 5 for dendritic cells. J Virol. 2006;80(24):11899–910.

    PubMed  CAS  Google Scholar 

  372. Shin O, Kim SJ, Lee WI, Kim JY, Lee H. Effective transduction by self-complementary adeno-associated viruses of human dendritic cells with no alteration of their natural characteristics. J Gene Med. 2008;10(7):762–9.

    PubMed  CAS  Google Scholar 

  373. Ussher JE, Taylor JA. Optimized transduction of human monocyte-derived dendritic cells by recombinant adeno-associated virus serotype 6. Hum Gene Ther. 2010;21(12):1675–86.

    PubMed  CAS  Google Scholar 

  374. Sack BK, Herzog RW. Evading the immune response upon in vivo gene therapy with viral vectors. Curr Opin Mol Ther. 2009;11(5):493–503.

    PubMed  CAS  Google Scholar 

  375. Katz MG, Swain JD, White JD, Low D, Stedman H, Bridges CR. Cardiac gene therapy: optimization of gene delivery techniques in vivo. Hum Gene Ther. 2010;21(4):371–80.

    PubMed  CAS  Google Scholar 

  376. Kawase Y, Ladage D, Hajjar RJ. Method of gene delivery in large animal models of cardiovascular diseases. Methods Mol Biol. 2011;709:355–67.

    PubMed  CAS  Google Scholar 

  377. French BA, Mazur W, Geske RS, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation. 1994;90(5):2414–24.

    PubMed  CAS  Google Scholar 

  378. Grossman PM, Han Z, Palasis M, Barry JJ, Lederman RJ. Incomplete retention after direct myocardial injection. Catheter Cardiovasc Interv. 2002;55(3):392–7.

    PubMed  Google Scholar 

  379. Schwarz ER, Speakman MT, Patterson M, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat–angiogenesis and angioma formation. J Am Coll Cardiol. 2000;35(5):1323–30.

    PubMed  CAS  Google Scholar 

  380. Wright MJ, Wightman LM, Latchman DS, Marber MS. In vivo myocardial gene transfer: optimization and evaluation of intracoronary gene delivery in vivo. Gene Ther. 2001;8(24):1833–9.

    PubMed  CAS  Google Scholar 

  381. Magovern CJ, Mack CA, Zhang J, et al. Direct in vivo gene transfer to canine myocardium using a replication-deficient adenovirus vector. Ann Thorac Surg. 1996;62(2):425–33. ­discussion 433–424.

    PubMed  CAS  Google Scholar 

  382. Laham RJ, Post M, Rezaee M, et al. Transendocardial and transepicardial intramyocardial fibroblast growth factor-2 administration: myocardial and tissue distribution. Drug Metab Dispos. 2005;33(8):1101–7.

    PubMed  CAS  Google Scholar 

  383. Hoshino K, Kimura T, De Grand AM, et al. Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres. Gene Ther. 2006;13(18):1320–7.

    PubMed  CAS  Google Scholar 

  384. Kornowski R, Fuchs S. Catheter-based transendocardial gene delivery for therapeutic myocardial angiogenesis. Int J Cardiovasc Intervent. 2000;3(2):67–70.

    PubMed  Google Scholar 

  385. Kornowski R, Leon MB, Fuchs S, et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol. 2000;35(4):1031–9.

    PubMed  CAS  Google Scholar 

  386. Smits PC, van Langenhove G, Schaar M, et al. Efficacy of percutaneous intramyocardial injections using a nonfluoroscopic 3-D mapping based catheter system. Cardiovasc Drugs Ther. 2002;16(6):527–33.

    PubMed  CAS  Google Scholar 

  387. O’Donnell JM, Lewandowski ED. Efficient, cardiac-specific adenoviral gene transfer in rat heart by isolated retrograde perfusion in vivo. Gene Ther. 2005;12(12):958–64.

    PubMed  Google Scholar 

  388. Ohshima S, Shin JH, Yuasa K, et al. Transduction efficiency and immune response associated with the administration of AAV8 vector into dog skeletal muscle. Mol Ther. 2009;17(1):73–80.

    PubMed  CAS  Google Scholar 

  389. Grines CL, Watkins MW, Helmer G, et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation. 2002;105(11):1291–7.

    PubMed  CAS  Google Scholar 

  390. Gyongyosi M, Khorsand A, Zamini S, et al. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation. 2005;112(9 Suppl):I157–165.

    PubMed  Google Scholar 

  391. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation. 1998;98(25):2800–4.

    PubMed  CAS  Google Scholar 

  392. Donahue JK, Heldman AW, Fraser H, et al. Focal modification of electrical conduction in the heart by viral gene transfer. Nat Med. 2000;6(12):1395–8.

    PubMed  CAS  Google Scholar 

  393. Hajjar RJ, Schmidt U, Matsui T, et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA. 1998;95(9):5251–6.

    PubMed  CAS  Google Scholar 

  394. Ikeda Y, Gu Y, Iwanaga Y, et al. Restoration of deficient membrane proteins in the cardiomyopathic hamster by in vivo cardiac gene transfer. Circulation. 2002;105(4):502–8.

    PubMed  CAS  Google Scholar 

  395. Roth DM, Lai NC, Gao MH, et al. Nitroprusside increases gene transfer associated with intracoronary delivery of adenovirus. Hum Gene Ther. 2004;15(10):989–94.

    PubMed  CAS  Google Scholar 

  396. Bridges CR, Gopal K, Holt DE, et al. Efficient myocyte gene delivery with complete cardiac surgical isolation in situ. J Thorac Cardiovasc Surg. 2005;130(5):1364.

    PubMed  Google Scholar 

  397. Davidson MJ, Jones JM, Emani SM, et al. Cardiac gene delivery with cardiopulmonary bypass. Circulation. 2001;104(2):131–3.

    PubMed  CAS  Google Scholar 

  398. Jones JM, Wilson KH, Koch WJ, Milano CA. Adenoviral gene transfer to the heart during cardiopulmonary bypass: effect of myocardial protection technique on transgene expression. Eur J Cardiothorac Surg. 2002;21(5):847–52.

    PubMed  CAS  Google Scholar 

  399. Jones JM, Petrofski JA, Wilson KH, Steenbergen C, Koch WJ, Milano CA. beta2 adrenoceptor gene therapy ameliorates left ventricular dysfunction following cardiac surgery. Eur J Cardiothorac Surg. 2004;26(6):1161–8.

    PubMed  Google Scholar 

  400. Katz MG, Swain JD, Fargnoli AS, Bridges CR. Gene therapy during cardiac surgery: role of surgical technique to minimize collateral organ gene expression. Interact Cardiovasc Thorac Surg. 2010;11(6):727–31.

    PubMed  Google Scholar 

  401. Swain JD, Katz MG, White JD, et al. A translatable, closed recirculation system for AAV6 vector-mediated myocardial gene delivery in the large animal. Methods Mol Biol. 2011;709:331–54.

    PubMed  CAS  Google Scholar 

  402. Katz MG, Swain JD, Tomasulo CE, Sumaroka M, Fargnoli A, Bridges CR. Current strategies for myocardial gene delivery. J Mol Cell Cardiol. 2010;50:766–76.

    PubMed  Google Scholar 

  403. Logeart D, Hatem SN, Heimburger M, Le Roux A, Michel JB, Mercadier JJ. How to optimize in vivo gene transfer to cardiac myocytes: mechanical or pharmacological procedures? Hum Gene Ther. 2001;12(13):1601–10.

    PubMed  CAS  Google Scholar 

  404. Logeart D, Vinet L, Ragot T, et al. Percutaneous intracoronary delivery of SERCA gene increases myocardial function: a tissue Doppler imaging echocardiographic study. Am J Physiol Heart Circ Physiol. 2006;291(4):H1773–1779.

    PubMed  CAS  Google Scholar 

  405. Shah AS, White DC, Emani S, et al. In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation. 2001;103(9):1311–6.

    PubMed  CAS  Google Scholar 

  406. Emani SM, Shah AS, Bowman MK, et al. Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Mol Ther. 2003;8(2):306–13.

    PubMed  CAS  Google Scholar 

  407. Hayase M, Del Monte F, Kawase Y, et al. Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. Am J Physiol Heart Circ Physiol. 2005;288(6):H2995–3000.

    PubMed  CAS  Google Scholar 

  408. Kaye DM, Preovolos A, Marshall T, et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol. 2007;50(3):253–60.

    PubMed  CAS  Google Scholar 

  409. Jessup M, Greenberg B, Mancini D, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation. 2011;124(3):304–13.

    PubMed  CAS  Google Scholar 

  410. London IC. SERCA gene therapy trial. 2011; http://clinicaltrials.gov/ct2/show/NCT00534703. Accessed March 30, 2011.

  411. Boekstegers P, von Degenfeld G, Giehrl W, Kupatt C, Franz W, Steinbeck G. Selective pressure-regulated retroinfusion of coronary veins as an alternative access of ischemic myocardium: implications for myocardial protection, myocardial gene transfer and angiogenesis. Z Kardiol. 2000;89 Suppl 9:IX/109–112.

    CAS  Google Scholar 

  412. Raake P, von Degenfeld G, Hinkel R, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol. 2004;44(5):1124–9.

    PubMed  CAS  Google Scholar 

  413. Beeri R, Guerrero JL, Supple G, Sullivan S, Levine RA, Hajjar RJ. New efficient catheter-based system for myocardial gene delivery. Circulation. 2002;106(14):1756–9.

    PubMed  CAS  Google Scholar 

  414. Donahue JK. Gene therapy, angiogenesis, sonic hedgehog: sonic the hedgehog to the rescue? Gene Ther. 2006;13(13):998–9.

    PubMed  CAS  Google Scholar 

  415. Donahue JK, Kikkawa K, Thomas AD, Marban E, Lawrence JH. Acceleration of widespread adenoviral gene transfer to intact rabbit hearts by coronary perfusion with low calcium and serotonin. Gene Ther. 1998;5(5):630–4.

    PubMed  CAS  Google Scholar 

  416. Gregorevic P, Schultz BR, Allen JM, et al. Evaluation of vascular delivery methodologies to enhance rAAV6-mediated gene transfer to canine striated musculature. Mol Ther. 2009;17(8):1427–33.

    PubMed  CAS  Google Scholar 

  417. Wu HM, Huang Q, Yuan Y, Granger HJ. VEGF induces NO-dependent hyperpermeability in coronary venules. Am J Physiol. 1996;271(6 Pt 2):H2735–2739.

    PubMed  CAS  Google Scholar 

  418. Vassalli G, Bueler H, Dudler J, von Segesser LK, Kappenberger L. Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol. 2003;90(2–3):229–38.

    PubMed  Google Scholar 

  419. Lamping KG, Rios CD, Chun JA, Ooboshi H, Davidson BL, Heistad DD. Intrapericardial administration of adenovirus for gene transfer. Am J Physiol. 1997;272(1 Pt 2):H310–317.

    PubMed  CAS  Google Scholar 

  420. March KL, Woody M, Mehdi K, Zipes DP, Brantly M, Trapnell BC. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol. 1999;22(1 Suppl 1):I23–29.

    PubMed  CAS  Google Scholar 

  421. Fromes Y, Salmon A, Wang X, et al. Gene delivery to the myocardium by intrapericardial injection. Gene Ther. 1999;6(4):683–8.

    PubMed  CAS  Google Scholar 

  422. Ribatti D. The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br J Haematol. 2005;128(3):303–9.

    PubMed  CAS  Google Scholar 

  423. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380(6573):435–9.

    PubMed  CAS  Google Scholar 

  424. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380(6573):439–42.

    PubMed  CAS  Google Scholar 

  425. Zachary I, Morgan R. Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects. Heart. 2010;97:181–9.

    PubMed  Google Scholar 

  426. Khurana R, Simons M, Martin JF, Zachary IC. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation. 2005;112(12):1813–24.

    PubMed  Google Scholar 

  427. Zachary I, Morgan RD. Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects. Heart. 2011;97(3):181–9.

    PubMed  CAS  Google Scholar 

  428. Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996;348(9024):370–4.

    PubMed  CAS  Google Scholar 

  429. Su H, Lu R, Kan YW. Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart. Proc Natl Acad Sci USA. 2000;97(25):13801–6.

    PubMed  CAS  Google Scholar 

  430. Byun J, Heard JM, Huh JE, et al. Efficient expression of the vascular endothelial growth factor gene in vitro and in vivo, using an adeno-associated virus vector. J Mol Cell Cardiol. 2001;33(2):295–305.

    PubMed  CAS  Google Scholar 

  431. Chen HK, Hung HF, Shyu KG, et al. Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur J Clin Invest. 2005;35(11):677–86.

    PubMed  CAS  Google Scholar 

  432. Pons J, Huang Y, Takagawa J, et al. Combining angiogenic gene and stem cell therapies for myocardial infarction. J Gene Med. 2009;11(9):743–53.

    PubMed  CAS  Google Scholar 

  433. Saeed M, Saloner D, Martin A, et al. Adeno-associated viral vector-encoding vascular endothelial growth factor gene: effect on cardiovascular MR perfusion and infarct resorption measurements in swine. Radiology. 2007;243(2):451–60.

    PubMed  Google Scholar 

  434. Murakami M, Simons M. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol. 2008;15(3):215–20.

    PubMed  CAS  Google Scholar 

  435. Atluri P, Woo YJ. Pro-angiogenic cytokines as cardiovascular therapeutics: assessing the potential. BioDrugs. 2008;22(4):209–22.

    PubMed  CAS  Google Scholar 

  436. Lavu M, Gundewar S, Lefer DJ. Gene therapy for ischemic heart disease. J Mol Cell Cardiol. 2011;50:742–50.

    PubMed  CAS  Google Scholar 

  437. Wang N, Tong G, Yang J, et al. Effect of hepatocyte growth-promoting factors on myocardial ischemia during exercise in patients with severe coronary artery disease. Int Heart J. 2009;50(3):291–9.

    PubMed  CAS  Google Scholar 

  438. Yang ZJ, Chen B, Sheng Z, et al. Improvement of heart function in postinfarct heart failure swine models after hepatocyte growth factor gene transfer: comparison of low-, medium- and high-dose groups. Mol Biol Rep. 2010;37(4):2075–81.

    PubMed  CAS  Google Scholar 

  439. Yang ZJ, Xu SL, Chen B, et al. Hepatocyte growth factor plays a critical role in the regulation of cytokine production and induction of endothelial progenitor cell mobilization: a pilot gene therapy study in patients with coronary heart disease. Clin Exp Pharmacol Physiol. 2009;36(8):790–6.

    PubMed  CAS  Google Scholar 

  440. Yang ZJ, Zhang YR, Chen B, et al. Phase I clinical trial on intracoronary administration of Ad-hHGF treating severe coronary artery disease. Mol Biol Rep. 2009;36(6):1323–9.

    PubMed  CAS  Google Scholar 

  441. Henry TD, Hirsch AT, Goldman J, et al. Safety of a non-viral plasmid-encoding dual isoforms of hepatocyte growth factor in critical limb ischemia patients: a phase I study. Gene Ther. 2011;18(8):788–94.

    PubMed  CAS  Google Scholar 

  442. Gupta R, Tongers J, Losordo DW. Human studies of angiogenic gene therapy. Circ Res. 2009;105(8):724–36.

    PubMed  CAS  Google Scholar 

  443. Hedman M, Hartikainen J, Syvanne M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation. 2003;107(21):2677–83.

    PubMed  CAS  Google Scholar 

  444. Laitinen M, Hartikainen J, Hiltunen MO, et al. Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther. 2000;11(2):263–70.

    PubMed  CAS  Google Scholar 

  445. Hedman M, Muona K, Hedman A, et al. Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Ther. 2009;16(5):629–34.

    PubMed  CAS  Google Scholar 

  446. Stewart DJ, Hilton JD, Arnold JM, et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther. 2006;13(21):1503–11.

    PubMed  CAS  Google Scholar 

  447. Stewart DJ, Kutryk MJ, Fitchett D, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther. 2009;17(6):1109–15.

    PubMed  CAS  Google Scholar 

  448. Aviles RJ, Annex BH, Lederman RJ. Testing clinical therapeutic angiogenesis using basic fibroblast growth factor (FGF-2). Br J Pharmacol. 2003;140(4):637–46.

    PubMed  CAS  Google Scholar 

  449. Henry TD, Grines CL, Watkins MW, et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol. 2007;50(11):1038–46.

    PubMed  CAS  Google Scholar 

  450. Kapur NK, Rade JJ. Fibroblast growth factor 4 gene therapy for chronic ischemic heart disease. Trends Cardiovasc Med. 2008;18(4):133–41.

    PubMed  CAS  Google Scholar 

  451. Nikol S, Baumgartner I, Van Belle E, et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther. 2008;16(5):972–8.

    PubMed  CAS  Google Scholar 

  452. Morishita R. Perspective in progress of cardiovascular gene therapy. J Pharmacol Sci. 2004;95(1):1–8.

    PubMed  CAS  Google Scholar 

  453. Mayhan WG. VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Physiol. 1999;276(5 Pt 1):C1148–1153.

    PubMed  CAS  Google Scholar 

  454. Rajagopalan S, Mohler 3rd E, Lederman RJ, et al. Regional angiogenesis with vascular endothelial growth factor (VEGF) in peripheral arterial disease: design of the RAVE trial. Am Heart J. 2003;145(6):1114–8.

    PubMed  CAS  Google Scholar 

  455. Hadri L, Hajjar RJ. Calcium cycling proteins and their association with heart failure. Clin Pharmacol Ther. 2011;90(4):620–4.

    PubMed  CAS  Google Scholar 

  456. Kho C, Lee A, Jeong D, Hajjar RJ. Refilling intracellular calcium stores. Drug Discov Today Dis Mech. 2010;7(2):e145–50.

    PubMed  CAS  Google Scholar 

  457. Kranias EG, Bers DM. Calcium and cardiomyopathies. Subcell Biochem. 2007;45:523–37.

    PubMed  CAS  Google Scholar 

  458. Chu G, Haghighi K, Kranias EG. From mouse to man: understanding heart failure through genetically altered mouse models. J Card Fail. 2002;8(6 Suppl):S432–449.

    PubMed  CAS  Google Scholar 

  459. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res. 1993;72(2):463–9.

    PubMed  CAS  Google Scholar 

  460. Gwathmey JK, Copelas L, MacKinnon R, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987;61(1):70–6.

    PubMed  CAS  Google Scholar 

  461. Hasenfuss G, Reinecke H, Studer R, et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res. 1994;75(3):434–42.

    PubMed  CAS  Google Scholar 

  462. Loukianov E, Ji Y, Grupp IL, et al. Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ Res. 1998;83(9):889–97.

    PubMed  CAS  Google Scholar 

  463. Mork HK, Sjaastad I, Sande JB, Periasamy M, Sejersted OM, Louch WE. Increased cardiomyocyte function and Ca2+ transients in mice during early congestive heart failure. J Mol Cell Cardiol. 2007;43(2):177–86.

    PubMed  CAS  Google Scholar 

  464. Periasamy M, Reed TD, Liu LH, et al. Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem. 1999;274(4):2556–62.

    PubMed  CAS  Google Scholar 

  465. Schultz Jel J, Glascock BJ, Witt SA, et al. Accelerated onset of heart failure in mice during pressure overload with chronically decreased SERCA2 calcium pump activity. Am J Physiol Heart Circ Physiol. 2004;286(3):H1146–1153.

    PubMed  Google Scholar 

  466. Kho C, Lee A, Jeong D, et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature. 2011;477(7366):601–5.

    PubMed  CAS  Google Scholar 

  467. del Monte F, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation. 1999;100(23):2308–11.

    Google Scholar 

  468. Davia K, Bernobich E, Ranu HK, et al. SERCA2A overexpression decreases the incidence of aftercontractions in adult rabbit ventricular myocytes. J Mol Cell Cardiol. 2001;33(5):1005–15.

    PubMed  CAS  Google Scholar 

  469. Ito K, Yan X, Feng X, Manning WJ, Dillmann WH, Lorell BH. Transgenic expression of sarcoplasmic reticulum Ca(2+) atpase modifies the transition from hypertrophy to early heart failure. Circ Res. 2001;89(5):422–9.

    PubMed  CAS  Google Scholar 

  470. Sakata S, Lebeche D, Sakata N, et al. Targeted gene transfer increases contractility and decreases oxygen cost of contractility in normal rat hearts. Am J Physiol Heart Circ Physiol. 2007;292(5):H2356–2363.

    PubMed  CAS  Google Scholar 

  471. Sakata S, Lebeche D, Sakata Y, et al. Mechanical and metabolic rescue in a type II diabetes model of cardiomyopathy by targeted gene transfer. Mol Ther. 2006;13(5):987–96.

    PubMed  CAS  Google Scholar 

  472. Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes. 2002;51(4):1166–71.

    PubMed  CAS  Google Scholar 

  473. Kawase Y, Hajjar RJ. The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med. 2008;5(9): 554–65.

    PubMed  CAS  Google Scholar 

  474. Gwathmey JK, Yerevanian AI, Hajjar RJ. Cardiac gene therapy with SERCA2a: From bench to bedside. J Mol Cell Cardiol. 2011;50(5):803–12.

    PubMed  CAS  Google Scholar 

  475. Lipskaia L, Pinet C, Fromes Y, et al. Mutation of delta-sarcoglycan is associated with Ca(2+) -dependent vascular remodeling in the Syrian hamster. Am J Pathol. 2007;171(1):162–71.

    PubMed  CAS  Google Scholar 

  476. Vandebrouck A, Ducret T, Basset O, et al. Regulation of store-operated calcium entries and mitochondrial uptake by minidystrophin expression in cultured myotubes. FASEB J. 2006;20(1):136–8.

    PubMed  CAS  Google Scholar 

  477. Venetucci LA, Trafford AW, O’Neill SC, Eisner DA. The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovasc Res. 2008;77(2):285–92.

    PubMed  CAS  Google Scholar 

  478. Keller M, Kao JP, Egger M, Niggli E. Calcium waves driven by “sensitization” wave-fronts. Cardiovasc Res. 2007;74(1):39–45.

    PubMed  CAS  Google Scholar 

  479. Akar FG. The perfect storm: defective calcium cycling in insulated fibers with reduced repolarization reserve. Circ Res. 2007;101(10):968–70.

    PubMed  CAS  Google Scholar 

  480. Janse MJ. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res. 2004;61(2):208–17.

    PubMed  CAS  Google Scholar 

  481. Terracciano CM, Hajjar RJ, Harding SE. Overexpression of SERCA2a accelerates repolarisation in rabbit ventricular myocytes. Cell Calcium. 2002;31(6):299–305.

    PubMed  CAS  Google Scholar 

  482. Prunier F, Kawase Y, Gianni D, et al. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation. 2008;118(6):614–24.

    PubMed  CAS  Google Scholar 

  483. Sakata S, Lebeche D, Sakata Y, et al. Transcoronary gene transfer of SERCA2a increases coronary blood flow and decreases cardiomyocyte size in a type 2 diabetic rat model. Am J Physiol Heart Circ Physiol. 2007;292(2):H1204–1207.

    PubMed  CAS  Google Scholar 

  484. Lipskaia L, del Monte F, Capiod T, et al. Sarco/endoplasmic reticulum Ca2+-ATPase gene transfer reduces vascular smooth muscle cell proliferation and neointima formation in the rat. Circ Res. 2005;97(5):488–95.

    PubMed  CAS  Google Scholar 

  485. Sato J, Nair K, Hiddinga J, et al. eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis. Cardiovasc Res. 2000;47(4):697–706.

    PubMed  CAS  Google Scholar 

  486. Mi YF, Li XY, Tang LJ, Lu XC, Fu ZQ, Ye WH. Improvement in cardiac function after sarcoplasmic reticulum Ca2+-ATPase gene transfer in a beagle heart failure model. Chin Med J (Engl). 2009;122(12):1423–8.

    CAS  Google Scholar 

  487. Li J, Hu SJ, Sun J, et al. Construction of phospholamban antisense RNA recombinant adeno-associated virus vector and its effects in rat cardiomyocytes. Acta Pharmacol Sin. 2005;26(1):51–5.

    PubMed  Google Scholar 

  488. Fechner H, Suckau L, Kurreck J, et al. Highly efficient and specific modulation of cardiac calcium homeostasis by adenovector-derived short hairpin RNA targeting phospholamban. Gene Ther. 2007;14(3):211–8.

    PubMed  CAS  Google Scholar 

  489. Suckau L, Fechner H, Chemaly E, et al. Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation. 2009;119(9):1241–52.

    PubMed  CAS  Google Scholar 

  490. Watanabe A, Arai M, Yamazaki M, Koitabashi N, Wuytack F, Kurabayashi M. Phospholamban ablation by RNA interference increases Ca2+ uptake into rat cardiac myocyte sarcoplasmic reticulum. J Mol Cell Cardiol. 2004;37(3):691–8.

    PubMed  CAS  Google Scholar 

  491. Ziolo MT, Martin JL, Bossuyt J, Bers DM, Pogwizd SM. Adenoviral gene transfer of mutant phospholamban rescues contractile dysfunction in failing rabbit myocytes with relatively preserved SERCA function. Circ Res. 2005;96(8):815–7.

    PubMed  CAS  Google Scholar 

  492. Haghighi K, Kolokathis F, Pater L, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest. 2003;111(6):869–76.

    PubMed  CAS  Google Scholar 

  493. Vafiadaki E, Papalouka V, Arvanitis DA, Kranias EG, Sanoudou D. The role of SERCA2a/PLN complex, Ca(2+) homeostasis, and anti-apoptotic proteins in determining cell fate. Pflugers Arch. 2009;457(3):687–700.

    PubMed  CAS  Google Scholar 

  494. Nicolaou P, Hajjar RJ, Kranias EG. Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology. J Mol Cell Cardiol. 2009;47(3):365–71.

    PubMed  CAS  Google Scholar 

  495. Nicolaou P, Kranias EG. Role of PP1 in the regulation of Ca cycling in cardiac physiology and pathophysiology. Front Biosci. 2009;14:3571–85.

    PubMed  CAS  Google Scholar 

  496. Carr AN, Schmidt AG, Suzuki Y, et al. Type 1 phosphatase, a negative regulator of cardiac function. Mol Cell Biol. 2002;22(12):4124–35.

    PubMed  CAS  Google Scholar 

  497. Pathak A, del Monte F, Zhao W, et al. Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res. 2005;96(7):756–66.

    PubMed  CAS  Google Scholar 

  498. Nicolaou P, Rodriguez P, Ren X, et al. Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury. Circ Res. 2009;104(8):1012–20.

    PubMed  CAS  Google Scholar 

  499. Pathak A, Baldwin B, Kranias EG. Key protein alterations associated with hyperdynamic cardiac function: insights based on proteomic analysis of the protein phosphatase 1 inhibitor-1 overexpressing hearts. Hellenic J Cardiol. 2007;48(1):30–6.

    PubMed  Google Scholar 

  500. Chen G, Zhou X, Florea S, et al. Expression of active protein phosphatase 1 inhibitor-1 attenuates chronic beta-agonist-induced cardiac apoptosis. Basic Res Cardiol. 2010;105(5):573–81.

    PubMed  CAS  Google Scholar 

  501. Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003;60(6):540–51.

    PubMed  CAS  Google Scholar 

  502. Rohde D, Ritterhoff J, Voelkers M, Katus HA, Parker TG, Most P. S100A1: a multifaceted therapeutic target in cardiovascular disease. J Cardiovasc Transl Res. 2010;3(5):525–37.

    PubMed  Google Scholar 

  503. Rohde D, Brinks H, Ritterhoff J, Qui G, Ren S, Most P. S100A1 gene therapy for heart failure: a novel strategy on the verge of clinical trials. J Mol Cell Cardiol. 2011;50:777–84.

    PubMed  CAS  Google Scholar 

  504. Remppis A, Greten T, Schafer BW, et al. Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy. Biochim Biophys Acta. 1996;1313(3):253–7.

    PubMed  Google Scholar 

  505. Du XJ, Cole TJ, Tenis N, et al. Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice. Mol Cell Biol. 2002;22(8):2821–9.

    PubMed  CAS  Google Scholar 

  506. Most P, Pleger ST, Volkers M, et al. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J Clin Invest. 2004;114(11):1550–63.

    PubMed  CAS  Google Scholar 

  507. Brinks H, Rohde D, Voelkers M, et al. S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes. J Am Coll Cardiol. 2011;58(9):966–73.

    PubMed  CAS  Google Scholar 

  508. Pleger ST, Boucher M, Most P, Koch WJ. Targeting myocardial beta-adrenergic receptor ­signaling and calcium cycling for heart failure gene therapy. J Card Fail. 2007;13(5):401–14.

    PubMed  CAS  Google Scholar 

  509. El-Armouche A, Eschenhagen T. Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev. 2009;14(4):225–41.

    PubMed  CAS  Google Scholar 

  510. Sucharov CC. Beta-adrenergic pathways in human heart failure. Expert Rev Cardiovasc Ther. 2007;5(1):119–24.

    PubMed  CAS  Google Scholar 

  511. Dorn 2nd GW. GRK mythology: G-protein receptor kinases in cardiovascular disease. J Mol Med. 2009;87(5):455–63.

    PubMed  CAS  Google Scholar 

  512. Penela P, Murga C, Ribas C, Lafarga V, Mayor Jr F. The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. Br J Pharmacol. 2010;160(4):821–32.

    PubMed  CAS  Google Scholar 

  513. Keys JR, Koch WJ. The adrenergic pathway and heart failure. Recent Prog Horm Res. 2004;59:13–30.

    PubMed  CAS  Google Scholar 

  514. Dzimiri N, Muiya P, Andres E, Al-Halees Z. Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases. Eur J Pharmacol. 2004;489(3):167–77.

    PubMed  CAS  Google Scholar 

  515. Brodde OE, Bruck H, Leineweber K. Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci. 2006;100(5):323–37.

    PubMed  CAS  Google Scholar 

  516. Leineweber K, Rohe P, Beilfuss A, et al. G-protein-coupled receptor kinase activity in human heart failure: effects of beta-adrenoceptor blockade. Cardiovasc Res. 2005;66(3):512–9.

    PubMed  CAS  Google Scholar 

  517. Phan HM, Gao MH, Lai NC, Tang T, Hammond HK. New signaling pathways associated with increased cardiac adenylyl cyclase 6 expression: implications for possible congestive heart failure therapy. Trends Cardiovasc Med. 2007;17(7):215–21.

    PubMed  CAS  Google Scholar 

  518. Penela P, Murga C, Ribas C, Tutor AS, Peregrin S, Mayor Jr F. Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res. 2006;69(1):46–56.

    PubMed  CAS  Google Scholar 

  519. Du XJ, Gao XM, Jennings GL, Dart AM, Woodcock EA. Preserved ventricular contractility in infarcted mouse heart overexpressing beta(2)-adrenergic receptors. Am J Physiol Heart Circ Physiol. 2000;279(5):H2456–2463.

    PubMed  CAS  Google Scholar 

  520. Milano CA, Allen LF, Rockman HA, et al. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science. 1994;264(5158):582–6.

    PubMed  CAS  Google Scholar 

  521. Shah AS, Lilly RE, Kypson AP, et al. Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation. 2000;101(4):408–14.

    PubMed  CAS  Google Scholar 

  522. Gorre F, Vandekerckhove H. Beta-blockers: focus on mechanism of action. Which beta-blocker, when and why? Acta Cardiol. 2010;65(5):565–70.

    PubMed  Google Scholar 

  523. Satwani S, Dec GW, Narula J. Beta-adrenergic blockers in heart failure: review of mechanisms of action and clinical outcomes. J Cardiovasc Pharmacol Ther. 2004;9(4):243–55.

    PubMed  CAS  Google Scholar 

  524. Rengo G, Lymperopoulos A, Zincarelli C, et al. Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation. 2009;119(1):89–98.

    PubMed  CAS  Google Scholar 

  525. Vatner SF, Yan L, Ishikawa Y, Vatner DE, Sadoshima J. Adenylyl cyclase type 5 disruption prolongs longevity and protects the heart against stress. Circ J. 2009;73(2):195–200.

    PubMed  CAS  Google Scholar 

  526. Hammond HK. Adenylyl cyclase gene transfer in heart failure. Ann N Y Acad Sci. 2006;1080:426–36.

    PubMed  CAS  Google Scholar 

  527. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288(5466):669–72.

    PubMed  CAS  Google Scholar 

  528. Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42.

    PubMed  CAS  Google Scholar 

  529. Hacein-Bey-Abina S, Hauer J, Lim A, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2010;363(4):355–64.

    PubMed  CAS  Google Scholar 

  530. Herzog RW, Cao O, Srivastava A. Two decades of clinical gene therapy–success is finally mounting. Discov Med. 2010;9(45):105–11.

    PubMed  Google Scholar 

  531. Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118(9):3143–50.

    PubMed  CAS  Google Scholar 

  532. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.

    PubMed  CAS  Google Scholar 

  533. Bell P, Gao G, Haskins ME, et al. Evaluation of AAV vectors for liver-directed gene transfer in dogs. Hum Gene Ther. 2011;22:985–97.

    PubMed  CAS  Google Scholar 

  534. Wang L, Calcedo R, Nichols TC, et al. Sustained correction of disease in naive and AAV2-pretreated hemophilia B dogs: AAV2/8-mediated, liver-directed gene therapy. Blood. 2005;105(8):3079–86.

    PubMed  CAS  Google Scholar 

  535. Niemeyer GP, Herzog RW, Mount J, et al. Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood. 2009;113(4):797–806.

    PubMed  CAS  Google Scholar 

  536. Arruda VR, Stedman HH, Haurigot V, et al. Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B. Blood. 2010;115(23):4678–88.

    PubMed  CAS  Google Scholar 

  537. Qiao C, Li J, Zheng H, et al. Hydrodynamic limb vein injection of adeno-associated virus serotype 8 vector carrying canine myostatin propeptide gene into normal dogs enhances muscle growth. Hum Gene Ther. 2009;20(1):1–10.

    PubMed  CAS  Google Scholar 

  538. Lochrie MA, Tatsuno GP, Christie B, et al. Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization. J Virol. 2006;80(2):821–34.

    PubMed  CAS  Google Scholar 

  539. Mizukami H, Young NS, Brown KE. Adeno-associated virus type 2 binds to a 150-kilodalton cell membrane glycoprotein. Virology. 1996;217(1):124–30.

    PubMed  CAS  Google Scholar 

  540. Negishi A, Chen J, McCarty DM, Samulski RJ, Liu J, Superfine R. Analysis of the interaction between adeno-associated virus and heparan sulfate using atomic force microscopy. Glycobiology. 2004;14(11):969–77.

    PubMed  CAS  Google Scholar 

  541. Opie SR, Warrington Jr KH, Agbandje-McKenna M, Zolotukhin S, Muzyczka N. Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J Virol. 2003;77(12):6995–7006.

    PubMed  CAS  Google Scholar 

  542. Perabo L, Goldnau D, White K, et al. Heparan sulfate proteoglycan binding properties of adeno-associated virus retargeting mutants and consequences for their in vivo tropism. J Virol. 2006;80(14):7265–9.

    PubMed  CAS  Google Scholar 

  543. O’Donnell J, Taylor KA, Chapman MS. Adeno-associated virus-2 and its primary cellular receptor–Cryo-EM structure of a heparin complex. Virology. 2009;385(2):434–43.

    PubMed  Google Scholar 

  544. Walters RW, Agbandje-McKenna M, Bowman VD, et al. Structure of adeno-associated virus serotype 5. J Virol. 2004;78(7):3361–71.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs Irene Turnbull, Erietta Stelekati, and Mr. Erik Kohlbrenner for carefully reading this manuscript. This work is supported by Leducq Foundation through the Caerus network (RJH), by NIH R01 HL093183 (RJH), HL083156 (RJH), and P20HL100396 (RJH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Hajjar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rapti, K., Hajjar, R.J., Weber, T. (2012). Novel Approaches to Deliver Molecular Therapeutics in Cardiac Disease Using Adeno-Associated Virus Vectors. In: Patterson, C., Willis, M. (eds) Translational Cardiology. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-891-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-891-7_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-890-0

  • Online ISBN: 978-1-61779-891-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics