Skip to main content

Vitamin D: Genetics and Genomic Effects

  • Chapter
  • First Online:
Vitamin D and the Lung

Part of the book series: Respiratory Medicine ((RM,volume 3))

Abstract

Vitamin D is normally thought of as an environmental factor. However, even when all the factors known to influence vitamin D concentrations, as measured by 25-OH vitamin D (25(OH)D), are taken into account, there is substantial interindividual variability in vitamin D levels. While it is possible that other, undefined, environmental factors contribute to the large interindividual variability noted with 25(OH)D levels, perhaps a more likely explanation for these differences lies in genetics. Indeed, recent studies have demonstrated that 25(OH)D levels are heritable and strongly influenced by variants in key vitamin D regulatory genes. In this chapter, we will review the evidence that supports circulating vitamin D levels as being heritable, discuss the candidate gene studies demonstrating an association of vitamin D pathway genes with 25(OH)D levels, detail the genome-wide association studies (GWAS) performed to date, and relate the significance of data generated via ChIP-Seq methods to interindividual variation in response to vitamin D. Following this overview of the genetic determinants of vitamin D level/activity, we will review the salient studies relating genetic variation within the vitamin D pathway to specific respiratory disease outcomes. While these latter studies are in their relative infancy, they reflect the potential for vitamin D, in combination with genetic variation, to influence pulmonary disease susceptibility and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. 2011;86:50–60.

    Article  PubMed  CAS  Google Scholar 

  2. Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003;77:204–10.

    PubMed  CAS  Google Scholar 

  3. Hollis BW, Wagner CL, Drezner MK, Binkley NC. Circulating vitamin D3 and 25-hydroxyvitamin D in humans: An important tool to define adequate nutritional vitamin D status. J Steroid Biochem Mol Biol. 2007;103:631–4.

    Article  PubMed  CAS  Google Scholar 

  4. Livshits G, Karasik D, Seibel MJ. Statistical genetic analysis of plasma levels of vitamin D: familial study. Ann Hum Genet. 1999;63:429–39.

    Article  PubMed  CAS  Google Scholar 

  5. Wang JT, Lin CJ, Burridge SM, et al. Genetics of vitamin D 1alpha-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63:1694–702.

    Article  PubMed  CAS  Google Scholar 

  6. Kitanaka S, Takeyama K, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338:653–61.

    Article  PubMed  CAS  Google Scholar 

  7. Wjst M, Altmuller J, Braig C, Bahnweg M, Andre E. A genome-wide linkage scan for 25-OH-D(3) and 1,25-(OH)2-D3 serum levels in asthma families. J Steroid Biochem Mol Biol. 2007;103:799–802.

    Article  PubMed  CAS  Google Scholar 

  8. Shea MK, Benjamin EJ, Dupuis J, et al. Genetic and non-genetic correlates of vitamins K and D. Eur J Clin Nutr. 2009;63:458–64.

    Article  PubMed  CAS  Google Scholar 

  9. Benjamin EJ, Dupuis J, Larson MG, et al. Genome-wide association with select biomarker traits in the Framingham Heart Study. BMC Med Genet. 2007;8 Suppl 1:S11.

    Article  PubMed  Google Scholar 

  10. Orton SM, Morris AP, Herrera BM, et al. Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. Am J Clin Nutr. 2008;88:441–7.

    PubMed  CAS  Google Scholar 

  11. Arguelles LM, Langman CB, Ariza AJ, et al. Heritability and environmental factors affecting vitamin D status in rural Chinese adolescent twins. J Clin Endocrinol Metab. 2009;94:3273–81.

    Article  PubMed  CAS  Google Scholar 

  12. Snellman G, Melhus H, Gedeborg R, et al. Seasonal genetic influence on serum 25-hydroxyvitamin D levels: a twin study. PLoS One. 2009;4:e7747.

    Article  PubMed  Google Scholar 

  13. Karohl C, Su S, Kumari M, et al. Heritability and seasonal variability of vitamin D concentrations in male twins. Am J Clin Nutr. 2010;92:1393–8.

    Article  PubMed  CAS  Google Scholar 

  14. Signorello LB, Williams SM, Zheng W, et al. Blood vitamin D levels in relation to genetic estimation of African ancestry. Cancer Epidemiol Biomarkers Prev [A publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology]. 2010;19:2325–31.

    Article  CAS  Google Scholar 

  15. Plum LA, DeLuca HF. The functional metabolism and molecular biology of vitamin D action. In: Holick MF, editor. Vitamin D: physiology, molecular biology, and clinical applications. 2nd ed. New York: Humana Press; 2010. p. 1038.

    Google Scholar 

  16. Caniggia A, Lore F, di Cairano G, Nuti R. Main endocrine modulators of vitamin D hydroxylases in human pathophysiology. J Steroid Biochem. 1987;27:815–24.

    Article  PubMed  CAS  Google Scholar 

  17. Christakos S, Ajibade DV, Dhawan P, Fechner AJ, Mady LJ. Vitamin D: metabolism. Endocrinol Metab Clin North Am. 2010;39:243–53 [table of contents].

    Article  PubMed  CAS  Google Scholar 

  18. Mizwicki MT, Norman AW. The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling. Sci Signal. 2009;2:re4.

    Article  PubMed  Google Scholar 

  19. Berry D, Hypponen E. Determinants of vitamin D status: focus on genetic variations. Curr Opin Nephrol Hypertens. 2011;20:331–6.

    Article  PubMed  CAS  Google Scholar 

  20. Bu FX, Armas L, Lappe J, et al. Comprehensive association analysis of nine candidate genes with serum 25-hydroxy vitamin D levels among healthy Caucasian subjects. Hum Genet. 2010;128:549–56.

    Article  PubMed  CAS  Google Scholar 

  21. McGrath JJ, Saha S, Burne TH, Eyles DW. A systematic review of the association between common single nucleotide polymorphisms and 25-hydroxyvitamin D concentrations. J Steroid Biochem Mol Biol. 2010;121:471–7.

    Article  PubMed  CAS  Google Scholar 

  22. Ahn J, Albanes D, Berndt SI, et al. Vitamin D-related genes, serum vitamin D concentrations and prostate cancer risk. Carcinogenesis. 2009;30:769–76.

    Article  PubMed  CAS  Google Scholar 

  23. Engelman CD, Fingerlin TE, Langefeld CD, et al. Genetic and environmental determinants of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels in Hispanic and African Americans. J Clin Endocrinol Metab. 2008;93:3381–8.

    Article  PubMed  CAS  Google Scholar 

  24. Fang Y, van Meurs JB, Arp P, et al. Vitamin D binding protein genotype and osteoporosis. Calcif Tissue Int. 2009;85:85–93.

    Article  PubMed  CAS  Google Scholar 

  25. Fu L, Yun F, Oczak M, Wong BY, Vieth R, Cole DE. Common genetic variants of the vitamin D binding protein (DBP) predict differences in response of serum 25-hydroxyvitamin D [25(OH)D] to vitamin D supplementation. Clin Biochem. 2009;42:1174–7.

    Article  PubMed  CAS  Google Scholar 

  26. Kurylowicz A, Ramos-Lopez E, Bednarczuk T, Badenhoop K. Vitamin D-binding protein (DBP) gene polymorphism is associated with Graves’ disease and the vitamin D status in a Polish population study. Exp Clin Endocrinol Diabetes. 2006;114:329–35.

    Article  PubMed  CAS  Google Scholar 

  27. Sinotte M, Diorio C, Berube S, Pollak M, Brisson J. Genetic polymorphisms of the vitamin D binding protein and plasma concentrations of 25-hydroxyvitamin D in premenopausal women. Am J Clin Nutr. 2009;89:634–40.

    Article  PubMed  CAS  Google Scholar 

  28. Cooper JD, Smyth DJ, Walker NM, et al. Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes. 2011;60:1624–31.

    Article  PubMed  CAS  Google Scholar 

  29. Smolders J, Damoiseaux J, Menheere P, Tervaert JW, Hupperts R. Fok-I vitamin D receptor gene polymorphism (rs10735810) and vitamin D metabolism in multiple sclerosis. J Neuroimmunol. 2009;207:117–21.

    Article  PubMed  CAS  Google Scholar 

  30. Ramos-Lopez E, Bruck P, Jansen T, Herwig J, Badenhoop K. CYP2R1 (vitamin D 25-hydroxylase) gene is associated with susceptibility to type 1 diabetes and vitamin D levels in Germans. Diabetes Metab Res Rev. 2007;23:631–6.

    Article  PubMed  CAS  Google Scholar 

  31. Hypponen E, Berry DJ, Wjst M, Power C. Serum 25-hydroxyvitamin D and IgE—a significant but nonlinear relationship. Allergy. 2009;64:613–20.

    Article  PubMed  CAS  Google Scholar 

  32. Ramos-Lopez E, Kahles H, Weber S, et al. Gestational diabetes mellitus and vitamin D deficiency: genetic contribution of CYP27B1 and CYP2R1 polymorphisms. Diabetes Obes Metab. 2008;10:683–5.

    Article  PubMed  CAS  Google Scholar 

  33. Wjst M, Altmuller J, Faus-Kessler T, Braig C, Bahnweg M, Andre E. Asthma families show transmission disequilibrium of gene variants in the vitamin D metabolism and signalling pathway. Respir Res. 2006;7:60.

    Article  PubMed  Google Scholar 

  34. Engelman CD, Meyers KJ, Ziegler JT, et al. Genome-wide association study of vitamin D concentrations in Hispanic Americans: the IRAS family study. J Steroid Biochem Mol Biol. 2010;122:186–92.

    Article  PubMed  CAS  Google Scholar 

  35. Ahn J, Yu K, Stolzenberg-Solomon R, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19:2739–45.

    Article  PubMed  CAS  Google Scholar 

  36. Wang TJ, Zhang F, Richards JB, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376:180–8.

    Article  PubMed  CAS  Google Scholar 

  37. Speeckaert M, Huang G, Delanghe JR, Taes YE. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta. 2006;372:33–42.

    Article  PubMed  CAS  Google Scholar 

  38. Pike JW, Meyer MB, Martowicz ML, et al. Emerging regulatory paradigms for control of gene expression by 1,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol. 2010;121:130–5.

    Article  PubMed  CAS  Google Scholar 

  39. Meyer MB, Goetsch PD, Pike JW. Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone. J Steroid Biochem Mol Biol. 2010;121:136–41.

    Article  PubMed  CAS  Google Scholar 

  40. Zella LA, Meyer MB, Nerenz RD, Lee SM, Martowicz ML, Pike JW. Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription. Mol Endocrinol. 2010;24:128–47.

    Article  PubMed  CAS  Google Scholar 

  41. Fujiki R, Kim MS, Sasaki Y, Yoshimura K, Kitagawa H, Kato S. Ligand-induced transrepression by VDR through association of WSTF with acetylated histones. EMBO J. 2005;24:3881–94.

    Article  PubMed  CAS  Google Scholar 

  42. Karlic H, Varga F. Impact of vitamin D metabolism on clinical epigenetics. Clin Epigenet. 2011;2:55–61.

    Article  CAS  Google Scholar 

  43. Sundar IK, Rahman I. Vitamin D and susceptibility of chronic lung diseases: role of epigenetics. Front Pharmacol. 2011;2:50.

    Article  PubMed  Google Scholar 

  44. Ramagopalan SV, Heger A, Berlanga AJ, et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 2010;20:1352–60.

    Article  PubMed  CAS  Google Scholar 

  45. Wilkinson RJ, Llewelyn M, Toossi Z, et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet. 2000;355:618–21.

    Article  PubMed  CAS  Google Scholar 

  46. Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis. 1978;117:621–4.

    PubMed  CAS  Google Scholar 

  47. van der Eijk EA, van de Vosse E, Vandenbroucke JP, van Dissel JT. Heredity versus environment in tuberculosis in twins: the 1950s United Kingdom Prophit Survey Simonds and Comstock revisited. Am J Respir Crit Care Med. 2007;176:1281–8.

    Article  PubMed  Google Scholar 

  48. Gross C, Krishnan AV, Malloy PJ, Eccleshall TR, Zhao XY, Feldman D. The vitamin D receptor gene start codon polymorphism: a functional analysis of FokI variants. J Bone Min Res: Off J Am Soc Bone Miner Res. 1998;13:1691–9.

    Article  CAS  Google Scholar 

  49. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature. 1994;367:284–7.

    Article  PubMed  CAS  Google Scholar 

  50. Gross C, Musiol IM, Eccleshall TR, Malloy PJ, Feldman D. Vitamin D receptor gene polymorphisms: analysis of ligand binding and hormone responsiveness in cultured skin fibroblasts. Biochem Biophys Res Commun. 1998;242:467–73.

    Article  PubMed  CAS  Google Scholar 

  51. Langdahl BL, Gravholt CH, Brixen K, Eriksen EF. Polymorphisms in the vitamin D receptor gene and bone mass, bone turnover and osteoporotic fractures. Eur J Clin Invest. 2000;30:608–17.

    Article  PubMed  CAS  Google Scholar 

  52. Bellamy R, Ruwende C, Corrah T, et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis. 1999;179:721–4.

    Article  PubMed  CAS  Google Scholar 

  53. Sharma PR, Singh S, Jena M, et al. Coding and non-coding polymorphisms in VDR gene and susceptibility to pulmonary tuberculosis in tribes, castes and Muslims of Central India. Infect Genet Evol. 2011;11(6):1456–61 [Epub 27 May 2011].

    Article  PubMed  CAS  Google Scholar 

  54. Ates O, Dolek B, Dalyan L, Musellim B, Ongen G, Topal-Sarikaya A. The association between BsmI variant of vitamin D receptor gene and susceptibility to tuberculosis. Mol Biol Rep. 2011;38:2633–6.

    Article  PubMed  CAS  Google Scholar 

  55. Motsinger-Reif AA, Antas PR, Oki NO, Levy S, Holland SM, Sterling TR. Polymorphisms in IL-1beta, vitamin D receptor Fok1, and Toll-like receptor 2 are associated with extrapulmonary tuberculosis. BMC Med Genet. 2010;11:37.

    Article  PubMed  Google Scholar 

  56. Olesen R, Wejse C, Velez DR, et al. DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun. 2007;8:456–67.

    Article  PubMed  CAS  Google Scholar 

  57. Babb C, van der Merwe L, Beyers N, et al. Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. Tuberculosis (Edinb). 2007;87:295–302.

    Article  CAS  Google Scholar 

  58. Bornman L, Campbell SJ, Fielding K, et al. Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study. J Infect Dis. 2004;190:1631–41.

    Article  PubMed  CAS  Google Scholar 

  59. Roth DE, Soto G, Arenas F, et al. Association between vitamin D receptor gene polymorphisms and response to treatment of pulmonary tuberculosis. J Infect Dis. 2004;190:920–7.

    Article  PubMed  CAS  Google Scholar 

  60. Liu W, Cao WC, Zhang CY, et al. VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case-control study. Int J Tuberc Lung Dis. 2004;8:428–34.

    PubMed  CAS  Google Scholar 

  61. Delgado JC, Baena A, Thim S, Goldfeld AE. Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis. 2002;186:1463–8.

    Article  PubMed  CAS  Google Scholar 

  62. Fitness J, Floyd S, Warndorff DK, et al. Large-scale candidate gene study of tuberculosis susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg. 2004;71:341–9.

    PubMed  CAS  Google Scholar 

  63. Lewis SJ, Baker I, Davey Smith G. Meta-analysis of vitamin D receptor polymorphisms and pulmonary tuberculosis risk. Int J Tuberc Lung Dis. 2005;9:1174–7.

    PubMed  CAS  Google Scholar 

  64. Gao L, Tao Y, Zhang L, Jin Q. Vitamin D receptor genetic polymorphisms and tuberculosis: updated systematic review and meta-analysis. Int J Tuberc Lung Dis. 2010;14:15–23.

    PubMed  CAS  Google Scholar 

  65. A genome-wide search for asthma susceptibility loci in ethnically diverse populations. The Collaborative Study on the Genetics of Asthma (CSGA). Nat Genet. 1997;15:389–92.

    Google Scholar 

  66. Barnes KC, Freidhoff LR, Nickel R, et al. Dense mapping of chromosome 12q13.12-q23.3 and linkage to asthma and atopy. J Allergy Clin Immunol. 1999;104:485–91.

    Article  PubMed  CAS  Google Scholar 

  67. Brasch-Andersen C, Tan Q, Borglum AD, et al. Significant linkage to chromosome 12q24.32-q24.33 and identification of SFRS8 as a possible asthma susceptibility gene. Thorax. 2006;61:874–9.

    Article  PubMed  CAS  Google Scholar 

  68. Celedon JC, Soto-Quiros ME, Avila L, et al. Significant linkage to airway responsiveness on chromosome 12q24 in families of children with asthma in Costa Rica. Hum Genet. 2007;120:691–9.

    Article  PubMed  Google Scholar 

  69. Dizier MH, Quesneville H, Besse-Schmittler C, et al. Indication of linkage and genetic heterogeneity for asthma and atopy on chromosomes 8p and 12q in 107 French EGEA families. Eur J Hum Genet. 2003;11:590–6.

    Article  PubMed  CAS  Google Scholar 

  70. Malerba G, Lauciello MC, Scherpbier T, et al. Linkage analysis of chromosome 12 markers in Italian families with atopic asthmatic children. Am J Respir Crit Care Med. 2000;162:1587–90.

    PubMed  CAS  Google Scholar 

  71. Pillai SG, Chiano MN, White NJ, et al. A genome-wide search for linkage to asthma phenotypes in the genetics of asthma international network families: evidence for a major susceptibility locus on chromosome 2p. Eur J Hum Genet. 2006;14:307–16.

    Article  PubMed  CAS  Google Scholar 

  72. Raby BA, Silverman EK, Lazarus R, Lange C, Kwiatkowski DJ, Weiss ST. Chromosome 12q harbors multiple genetic loci related to asthma and asthma-related phenotypes. Hum Mol Genet. 2003;12:1973–9.

    Article  PubMed  CAS  Google Scholar 

  73. Shao C, Suzuki Y, Kamada F, et al. Linkage and association of childhood asthma with the chromosome 12 genes. J Hum Genet. 2004;49:115–22.

    Article  PubMed  CAS  Google Scholar 

  74. Xu J, Postma DS, Howard TD, et al. Major genes regulating total serum immunoglobulin E levels in families with asthma. Am J Hum Genet. 2000;67:1163–73.

    Article  PubMed  CAS  Google Scholar 

  75. Saadi A, Gao G, Li H, Wei C, Gong Y, Liu Q. Association study between vitamin D receptor gene polymorphisms and asthma in the Chinese Han population: a case-control study. BMC Med Genet. 2009;10:71.

    Article  PubMed  Google Scholar 

  76. Fang WL, Gao LB, Liang WB, et al. Association analysis of vitamin D receptor gene polymorphisms in Chinese population with asthma. Iran J Allergy Asthma Immunol. 2009;8:141–7.

    PubMed  CAS  Google Scholar 

  77. Pillai DK, Iqbal SF, Benton AS, et al. Associations between genetic variants in vitamin D metabolism and asthma characteristics in young African Americans: a pilot study. J Investig Med. 2011;59(6):938–46.

    PubMed  CAS  Google Scholar 

  78. Bosse Y, Lemire M, Poon AH, et al. Asthma and genes encoding components of the vitamin D pathway. Respir Res. 2009;10:98.

    Article  PubMed  Google Scholar 

  79. Wjst M. Variants in the vitamin D receptor gene and asthma. BMC Genet. 2005;6:2.

    Article  PubMed  Google Scholar 

  80. Vollmert C, Illig T, Altmuller J, et al. Single nucleotide polymorphism screening and association analysis—exclusion of integrin beta 7 and vitamin D receptor (chromosome 12q) as candidate genes for asthma. Clin Exp Allergy. 2004;34:1841–50.

    Article  PubMed  CAS  Google Scholar 

  81. Raby BA, Lazarus R, Silverman EK, et al. Association of vitamin D receptor gene polymorphisms with childhood and adult asthma. Am J Respir Crit Care Med. 2004;170:1057–65.

    Article  PubMed  Google Scholar 

  82. Poon AH, Laprise C, Lemire M, et al. Association of vitamin D receptor genetic variants with susceptibility to asthma and atopy. Am J Respir Crit Care Med. 2004;170:967–73.

    Article  PubMed  Google Scholar 

  83. Du R, Litonjua AA, Tantisira K, et al. Genome-wide association study reveals CRTAM variants interact with vitamin D levels to affect asthma exacerbations. J Allergy Clin Immunol (in press).

    Google Scholar 

  84. Brehm JM, Celedon JC, Soto-Quiros ME, et al. Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica. Am J Respir Crit Care Med. 2009;179:765–71.

    Article  PubMed  CAS  Google Scholar 

  85. Brehm JM, Schuemann B, Fuhlbrigge AL, et al. Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. J Allergy Clin Immunol. 2010;126:52–8 (e5).

    Article  PubMed  CAS  Google Scholar 

  86. Shen LH, Zhang XM, Su DJ, et al. Association of vitamin D binding protein variants with susceptibility to chronic obstructive pulmonary disease. J Int Med Res. 2010;38:1093–8.

    PubMed  CAS  Google Scholar 

  87. Wood AM, Bassford C, Webster D, et al. Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. Thorax. 2011;66:205–10.

    Article  PubMed  CAS  Google Scholar 

  88. Viau M, Constans J, Debray H, Montreuil J. Isolation and characterization of the O-glycan chain of the human vitamin-D binding protein. Biochem Biophys Res Commun. 1983;117:324–31.

    Article  PubMed  CAS  Google Scholar 

  89. Janssens W, Bouillon R, Claes B, et al. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax. 2010;65:215–20.

    Article  PubMed  Google Scholar 

  90. Ito I, Nagai S, Hoshino Y, et al. Risk and severity of COPD is associated with the group-specific component of serum globulin 1 F allele. Chest. 2004;125:63–70.

    Article  PubMed  CAS  Google Scholar 

  91. Schellenberg D, Pare PD, Weir TD, Spinelli JJ, Walker BA, Sandford AJ. Vitamin D binding protein variants and the risk of COPD. Am J Respir Crit Care Med. 1998;157:957–61.

    PubMed  CAS  Google Scholar 

  92. Horne SL, Cockcroft DW, Dosman JA. Possible protective effect against chronic obstructive airways disease by the GC2 allele. Hum Hered. 1990;40:173–6.

    Article  PubMed  CAS  Google Scholar 

  93. Kueppers F, Miller RD, Gordon H, Hepper NG, Offord K. Familial prevalence of chronic obstructive pulmonary disease in a matched pair study. Am J Med. 1977;63:336–42.

    Article  PubMed  CAS  Google Scholar 

  94. Dogan I, Onen HI, Yurdakul AS, et al. Polymorphisms in the vitamin D receptor gene and risk of lung cancer. Med Sci Monit. 2009;15:BR232–42.

    PubMed  CAS  Google Scholar 

  95. Heist RS, Zhou W, Wang Z, et al. Circulating 25-hydroxyvitamin D, VDR polymorphisms, and survival in advanced non-small-cell lung cancer. J Clin Oncol. 2008;26:5596–602.

    Article  PubMed  CAS  Google Scholar 

  96. Zhou W, Heist RS, Liu G, et al. Polymorphisms of vitamin D receptor and survival in early-stage non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev. 2006;15:2239–45.

    Article  PubMed  CAS  Google Scholar 

  97. Srinivasan M, Parwani AV, Hershberger PA, Lenzner DE, Weissfeld JL. Nuclear vitamin D receptor expression is associated with improved survival in non-small cell lung cancer. J Steroid Biochem Mol Biol. 2011;123:30–6.

    Article  PubMed  CAS  Google Scholar 

  98. Chen G, Kim SH, King AN, et al. CYP24A1 is an independent prognostic marker of survival in patients with lung adenocarcinoma. Clin Cancer Res. 2011;17:817–26.

    Article  PubMed  CAS  Google Scholar 

  99. McNally P, Coughlan C, Bergsson G, et al. Vitamin D receptor agonists inhibit pro-inflammatory cytokine production from the respiratory epithelium in cystic fibrosis. J Cyst Fibros. 2011 [Epub ahead of print].

    Google Scholar 

  100. Roth DE, Jones AB, Prosser C, Robinson JL, Vohra S. Vitamin D receptor polymorphisms and the risk of acute lower respiratory tract infection in early childhood. J Infect Dis. 2008;197:676–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelan G. Tantisira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tantisira, K.G. (2012). Vitamin D: Genetics and Genomic Effects. In: Litonjua, A. (eds) Vitamin D and the Lung. Respiratory Medicine, vol 3. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-888-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-888-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-887-0

  • Online ISBN: 978-1-61779-888-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics