Skip to main content

Induced Regeneration of Skin and Peripheral Nerves in the Adult

  • Chapter
  • First Online:
The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

  • 2293 Accesses

Abstract

Injury to the mammalian fetus is reversible during early stages of gestation and the spontaneous wound response is capable of restoring the structure and function of the original organ, a process called regeneration. By contrast, the unimpaired response to severe injury in adult mammals is an irreversible repair process leading to closure of the injured site by contraction and formation of scar, a nonphysiological tissue. The consequences of irreversible healing at the organ scale are far-reaching: they typically result in an essentially nonfunctional organ.

Numerous approaches have been investigated to restore the loss of organ function in adults following irreversible injury. These strategies include transplantation, autografting, implantation of permanent prostheses, the use of stem cells, in vitro synthesis of the organ, and regenerative medicine (Yannas, Tissue and organ regeneration in adults. Springer; 2001). The last of these strategies is also referred to as induced organ regeneration, or the recovery of physiological structure and function of nonregenerative tissues in an organ (also known as de novo synthesis) by use of elementary reactants, such as biologically active scaffolds, either unseeded or seeded with cells.

There is accumulating evidence that the spontaneous healing process of an injured organ in the adult mammal can be modified to yield a partially or completely regenerated organ. Regenerative medicine is an emerging field of study involving the implantation of biomaterials to facilitate formation (regeneration) of tissue in vivo. This field is undergoing rapid growth at this time, as evidenced by observation of regeneration or reported progress in on-going research efforts in a wide range of organs including skin (Butler and Orgill, Adv Biochem Eng Biotechnol 94:23–41, 2005), ­conjunctiva (Hatton and Rubin, Adv Biochem Eng Biotechnol 94:125–140, 2005), peripheral nerves (Zhang and Yannas, Adv Biochem Eng Biotechnol 94:67–89, 2005), bone (Mistry and Mikos, Adv Biochem Eng Biotechnol 94:1–22, 2005), heart valves (Rabkin-Aikawa et al., Adv Biochem Eng Biotechnol 94:141–178, 2005), liver (Takimoto et al., Cell Transplant 12(4):413–421, 2003) articular cartilage (Kinner et al., Adv Biochem Eng Biotechnol 94:91–123, 2005), urological organs (Atala, Adv Biochem Eng Biotechnol 94:179–208, 2005), and the spinal cord (Verma and Fawcett, Adv Biochem Eng Biotechnol. 94:43–66, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yannas IV. Tissue and organ regeneration in adults. New York, NY: Springer; 2001.

    Google Scholar 

  2. Butler CE, Orgill DP. Simultaneous in vivo regeneration of neodermis, epidermis, and basement membrane. Adv Biochem Eng Biotechnol. 2005;94:23–41.

    PubMed  Google Scholar 

  3. Hatton MP, Rubin PAD. Conjunctival regeneration. Adv Biochem Eng Biotechnol. 2005;94:125–40.

    PubMed  Google Scholar 

  4. Zhang M, Yannas IV. Peripheral nerve regeneration. Adv Biochem Eng Biotechnol. 2005;94:67–89.

    PubMed  Google Scholar 

  5. Mistry AS, Mikos AG. Tissue engineering for bone regeneration. Adv Biochem Eng Biotechnol. 2005;94:1–22.

    PubMed  Google Scholar 

  6. Rabkin-Aikawa E, Mayer Jr JE, Schoen FJ. Heart valve regeneration. Adv Biochem Eng Biotechnol. 2005;94:141–78.

    PubMed  Google Scholar 

  7. Takimoto Y, Dixit VM, Arthur M, Gitnick G. De novo liver tissue formation in rats using a collagen-polypropylene scaffold. Cell Transplant. 2003;12(4):413–21.

    PubMed  Google Scholar 

  8. Kinner B, Capito RM, Spector M. Regeneration of articular cartilage. Adv Biochem Eng Biotechnol. 2005;94:91–123.

    PubMed  CAS  Google Scholar 

  9. Atala A. Regeneration of urologic tissues and organs. Adv Biochem Eng Biotechnol. 2005;94:179–208.

    Google Scholar 

  10. Verma P, Fawcett J. Spinal cord regeneration. Adv Biochem Eng Biotechnol. 2005;94:43–66.

    PubMed  Google Scholar 

  11. Canonico S, Campitello F, Della Corte A, Fattopace A. The use of a dermal substitute and thin skin grafts in the cure of “complex” leg ulcers. Dermatol Surg. 2009;35(2):195–200.

    PubMed  CAS  Google Scholar 

  12. Clerici G, Caminiti M, Curci V, Quarantiello A, Faglia E. The use of a dermal substitute to preserve maximal foot length in diabetic foot wounds with tendon and bone exposure following urgent surgical debridement for acute infection. Int Wound J. 2010;7:176–83.

    PubMed  Google Scholar 

  13. Clerici G, Caminiti M, Curci V, Quarantiello A, Faglia E. The use of a dermal substitute (Integra) to preserve maximal foot length in a diabetic foot wound with bone and tendon exposure following urgent surgical debridement for an acute infection. Int J Low Extrem Wounds. 2009;8:209–12.

    PubMed  Google Scholar 

  14. Silverstein G. Dermal regeneration template in the surgical management of diabetic foot ulcers: a series of five cases. J Foot Ankle Surg. 2006;45(1):28–33.

    PubMed  Google Scholar 

  15. Iorio ML, Goldstein J, Adams M, Steinberg J, Attinger C. Functional limb salvage in the diabetic patient: the use of a collagen bilayer matrix and risk factors for amputation. Plast Reconstr Surg. 2011;127(1):260–7.

    PubMed  CAS  Google Scholar 

  16. Gottlieb ME, Furman J. Successful management and surgical closure of chronic and pathological wounds using Integra®. J Burns Surg Wound Care. 2004;3(1):4.

    Google Scholar 

  17. Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to synthesise a functional extension of skin. Science. 1982;215:174–6.

    PubMed  CAS  Google Scholar 

  18. Yannas IV, Burke JF, Orgill DP, Skrabut EM. Regeneration of skin following closure of deep wounds with a biodegradable template. Trans Soc Biomater. 1982;5:24–7.

    Google Scholar 

  19. Yannas IV, Orgill DP, Skrabut EM, Burke JF. Skin regeneration with a bioreplaceable polymeric template. In: Materials P, Organs A, Gebelein CG, editors. Polymeric materials and artificial organs. Washington, DC: American Chemical Society; 1984. p. 191–7.

    Google Scholar 

  20. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF. Synthesis and characterization of a model extracellular matrix which induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A. 1989;86:933–7.

    PubMed  CAS  Google Scholar 

  21. Burke JF, Yannas IV, Quniby Jr WC, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194:413–28.

    PubMed  CAS  Google Scholar 

  22. Murphy GF, Orgill DP, Yannas IV. Partial dermal regeneration is induced by biodegradable collagen-glycosaminoglycan grafts. Lab Invest. 1990;62:305–13.

    PubMed  CAS  Google Scholar 

  23. Compton CC, Butler CE, Yannas IV, Warland G, Orgill DP. Organized skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratinocytes. J Invest Dermatol. 1998;110:908–16.

    PubMed  CAS  Google Scholar 

  24. Butler CE, Yannas IV, Compton CC, Correia CA, Orgill DP. Comparison of cultured and uncultured keratinocytes seeded into a collagen-GAG matrix for skin replacements. Br J Plast Surg. 1999;52:127–32.

    PubMed  CAS  Google Scholar 

  25. Yannas IV, Orgill DP, Silver J, Norregaard TV, Zervas NT, Schoene WC. Polymeric template facilitates regeneration of sciatic nerve across 15 mm gap. Trans Soc Biomater. 1985;8:146.

    Google Scholar 

  26. Yannas IV, Orgill DP, Silver J, Norregaard TV, Zervas NT, Schoene WC. Regeneration of sciatic nerve across 15 mm gap by use of a polymeric template. In: Gebelein CG, editor. Advances in biomedical polymers. New York, NY: Plenum; 1987. p. 1–9.

    Google Scholar 

  27. Chang A, Yannas IV, Perutz S, et al. Electrophysiological study of recovery of peripheral nerves regenerated by a collagen-glycosaminoglycan copolymer matrix. In: Dunn RL, Gebeelin CG, editors. Progress in biomedical polymers. New York, NY: Plenum; 1990. p. 107–19.

    Google Scholar 

  28. Chang AS-P, Yannas IV. Peripheral nerve regeneration. In: Smith B, Adelman G, editors. Neuroscience year. Boston, MA: Birkhauser; 1992.

    Google Scholar 

  29. Chamberlain LJ, Yannas IV, Arrizabalaga A, Hsu H-P, Norregarrd TV, Spector M. Early peripheral nerve healing in collagen and silicone tube implants: myofibroblasts and the cellular response. Biomaterials. 1998;19:1393–403.

    PubMed  CAS  Google Scholar 

  30. Chamberlain LJ, Yannas IV, Hsu H-P, Strichartz G, Spector M. Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp Neurol. 1998;154:315–29.

    PubMed  CAS  Google Scholar 

  31. Chamberlain LJ, Yannas IV, Hsu H-P, Spector M. Connective tissue response to tubular implants for peripheral nerve regeneration: the role of myofibroblasts. J Comp Neurol. 2000;417:415–30.

    PubMed  CAS  Google Scholar 

  32. Chamberlain LJ, Yannas IV, Hsu H-P, Strichartz GR, Spector M. Near-terminus axonal structure and function following rat sciatic nerve regeneration through a collagen-GAG matrix in a ten-millimeter gap. J Neurosci Res. 2000;60:666–77.

    PubMed  CAS  Google Scholar 

  33. Spilker MH. Peripheral nerve regeneration through tubular devices. PhD Thesis, Cambridge, MA: Massachusetts Institute of Technology; 2000.

    Google Scholar 

  34. Hsu WC, Spilker MH, Yannas IV, Rubin PAD. Inhibition of conjunctival scarring and contraction by a porous collagen-GAG implant. Invest Opthamol Vis Sci. 2000;41:2404–11.

    CAS  Google Scholar 

  35. Goss RJ. Regeneration versus repair. In: Cohen IK, Diegelmann RF, Lindblad WJ, editors. Wound healing: biochemical and clinical aspects. Philadelphia, PA: Saunders; 1992. p. 20–39.

    Google Scholar 

  36. Martinez-Hernandez A. Repair, regeneration, and fibrosis. In: Rubin E, Farber JL, editors. Pathology. Philadelphia, PA: JB Lippincott-Raven; 1998. p. 66–95.

    Google Scholar 

  37. Burkitt HG, Young B, Heath JW, Kilgore J. Wheater’s functional histology. 2nd ed. Edinburgh: Churchill Livingstone; 1993.

    Google Scholar 

  38. Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol. 1974;77:313–46.

    Google Scholar 

  39. Bunge RP, Bunge MB. Trends Neurosci. 1983;6:499.

    Google Scholar 

  40. Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14:67–116.

    PubMed  CAS  Google Scholar 

  41. Stenn KS, Malhotra R. Epithelialization. In: Cohen IK, Diegelmann RF, Lindblad WJ, editors. Wound healing: biochemical and clinical aspects. Philadelphia, PA: Saunders; 1992. p. 115–27.

    Google Scholar 

  42. Haber RM, Hanna W, Ramsay CA, Boxall LB. Cicatricial junctional epidermolysis bullosa. J Am Acad Dermatol. 1985;12:836–44.

    PubMed  CAS  Google Scholar 

  43. Ikeda K, Oda Y, Tomita K, Nomura S, Nakanishi I. Isolated Schwann cells can synthesize the basement membrane in vitro. J Electron Microsc (Tokyo). 1989;38:230–4.

    CAS  Google Scholar 

  44. Uitto J, Mauviel A, McGrath J. The dermal-epidermal basement membrane zone in cutaneous wound healing. In: Clark RAF, editor. The molecular and cellular biology of wound repair. 2nd ed. New York, NY: Plenum; 1996. p. 513–60.

    Google Scholar 

  45. Winter GD. Epidermal regeneration studied in the domestic pig. In: Maibach HL, Rovee DT, editors. Epidermal wound healing. Chicago, IL: Year Book Medical; 1972. p. 71–112.

    Google Scholar 

  46. De Medinacelli L, Wyatt RJ, Freed WJ. Peripheral nerve reconnection: mechanical, thermal, and ionic conditions that promote the return of function. Exp Neurol. 1983;81:469–87.

    Google Scholar 

  47. Terzis JK. Microreconstruction of nerve injuries. Philadelphia, PA: WB Saunders; 1987.

    Google Scholar 

  48. Chang A, Yannas IV, Perutz S, Loree H, Sethi RR, Krarup C, Norregaard TV, Zervas NT, Silver J. Electrophysiological study of recovery of peripheral nerves regenerated by a collagen-glycosaminoglycan copolymer matrix. In: Gebeelin CG, Dunn RL, editors. Progress in biomedical polymers. New York, NY: Plenum; 1990. p. 107–19.

    Google Scholar 

  49. Dantzer E, Queruel P, Salinier L, Palmier B, Quinot JF. Dermal regeneration template for deep hand burns: clinical utility for both early grafting and reconstructive surgery. Br J Plast Surg. 2003;56(8):764–74.

    PubMed  CAS  Google Scholar 

  50. Young RC, Burd A. Paediatric upper limb contracture release following burn injury. Burns. 2004;30(7):723–8.

    PubMed  CAS  Google Scholar 

  51. Blanco NM, Edwards J, Zamboni WA. Dermal substitute (Integra) for open nasal wounds. Plast Reconstr Surg. 2004;113(7):2224–5.

    PubMed  Google Scholar 

  52. Navsaria HA, Ojeh NO, Moiemen N, Griffiths MA, Frame JD. Reepithelialization of a full-thickness burn from stem cells of hair follicles micrografted into a tissue-engineered dermal template (Integra). Plast Reconstr Surg. 2004;113(3):978–81.

    PubMed  Google Scholar 

  53. Abai B, Thayer D, Glat PM. The use of a dermal regeneration template (Integra) for acute resurfacing and reconstruction of defects created by excision of giant hairy nevi. Plast Reconstr Surg. 2004;114(1):162–8.

    PubMed  Google Scholar 

  54. Frame JD, Still J, Lakhel-LeCoadou A, Carstens MH, Lorenz C, Orlet H, Spence R, Berger AC, Dantzer E, Burd A. Use of dermal regeneration template in contracture release procedures: a multicenter evaluation. Plast Reconstr Surg. 2004;113(5):1330–8.

    PubMed  Google Scholar 

  55. Heitland A, Piatkowski A, Noah EM, Pallua N. Update on the use of collagen/glycosaminoglycate skin substitute-six years of experiences with artificial skin in 15 German burn centers. Burns. 2004;30(5):471–5.

    PubMed  CAS  Google Scholar 

  56. Janis JE, Steinberg JS. Discussion: template for skin regeneration. Plast Reconstr Surg. 2011;127 Suppl 1:71S–4.

    PubMed  CAS  Google Scholar 

  57. Weiss P. The technology of nerve regeneration: a review. Sutureless tabulation and related methods of nerve repair. J Neurosurg. 1944;1:400–50.

    Google Scholar 

  58. Krarup C, Ibsen A, Ibsen A, Boeckstyns M, Valls-Sole J, Fores J, Navarro X, Rosen B, Lundborg G and Archibald SJ. (2011). Effects of a collagen nerve guide tube in patients with a median or ulnar nerve lesion. AAHS Conference Proceedings, January 14, 2011.

    Google Scholar 

  59. Ramirez AT, Soroff HS, Schwartz MS, Mooty J, Pearson E, Raben MS. Experimental wound healing in man. Surg Gynecol Obstet. 1969;128(2):283–93.

    PubMed  CAS  Google Scholar 

  60. Ferdman AG, Yannas IV. Scattering of light from histologic sections: a new method for analysis of connective tissue. J Invest Dermatol. 1993;100:710–6.

    PubMed  CAS  Google Scholar 

  61. Oppenheimer R, Hinman Jr F. Ureteral regeneration: contracture vs. hyperplasia of smooth muscle. J Urol. 1955;74:476–84.

    PubMed  CAS  Google Scholar 

  62. Kiviat MD, Ross R, Ansell JS. Smooth muscle regen­eration in the ureter. Am J Pathol. 1973;72:403–16.

    PubMed  CAS  Google Scholar 

  63. Bulut T, Bilsel Y, Yanar H, Yamaner S, Balik E, Solakoglu S, Koser M. The effects of beta-aminopropionitrile on colonic anastomosis in rats. J Invest Surg. 2004;17(4):211–9.

    PubMed  Google Scholar 

  64. Dahners LE, Banes AJ, Burridge KWT. The relationship of actin to ligament contraction. Clin Orthop. 1986;210:246–51.

    PubMed  CAS  Google Scholar 

  65. Wilson CJ, Dahners LE. An examination of the mechanism of ligament contracture. Clin Orthop. 1988;227:286–91.

    PubMed  CAS  Google Scholar 

  66. Unterhauser FN, Bosch U, Zeichen J, Weiler A. Alpha-smooth muscle actin containing contractile fibroblastic cells in human knee arthrofibrosis tissue. Arch Orthop Trauma Surg. 2004;124(9):585–91.

    PubMed  Google Scholar 

  67. Zeinoun T, Nammour S, Sourov N, Luomanen M. Myofibroblasts in healing laser excision wounds. Lasers Surg Med. 2001;28(1):74–9.

    PubMed  CAS  Google Scholar 

  68. Delaere PR, Hardillo J, Hermans R, Van Den Hof B. Prefabrication of composite tissue for improved tracheal reconstruction. Ann Otol Rhinol Laryngol. 2001;110(9):849–60.

    PubMed  CAS  Google Scholar 

  69. Schmidt MR, Maeng M, Kristiansen SB, Andersen HR, Falk E. The natural history of collagen and alpha-actin expression after coronary angioplasty. Cardiovasc Pathol. 2004;13(5):260–7.

    PubMed  CAS  Google Scholar 

  70. Levine D, Rockey DC, Milner TA, Breuss JM, Fallon JT, Schnapp LM. Expression of the integrin alpha8beta1 during pulmonary and hepatic fibrosis. Am J Pathol. 2000;156(6):1927–35.

    PubMed  CAS  Google Scholar 

  71. Rudolph R, Van de Berg J, Ehrlich P. Wound contraction and scar contracture. In: Cohen IK, Diegelmann RF, Lindblad WJ, editors. Wound healing: biochemical and clinical aspects. Philadelphia, PA: WB Saunders; 1992. p. 96–114.

    Google Scholar 

  72. Peacock Jr EE. Wound healing and wound care. In: Schwartz SI, Shires GT, Spencer FC, Storer EH, ­editors. Principles of surgery. New York, NY: McGraw-Hill; 1984.

    Google Scholar 

  73. Chou TD, Lee WT, Chen SL, Lee CH, Chen SG, Chen TM, Wang HJ. Split calvarial bone graft for chemical burn-associated nasal augmentation. Burns. 2004;30(4):380–5.

    PubMed  Google Scholar 

  74. Holmes W, Young JZ. Nerve regeneration after immediate and delayed suture. J Anat. 1942;77:63–96.

    PubMed  CAS  Google Scholar 

  75. Weiss P, Taylor AC. Further experimental evidence against “neurotropism” in nerve regeneration. J Exp Zool. 1944;95:233–57.

    Google Scholar 

  76. Sunderland S. The anatomy and pathology of nerve injury. Muscle Nerve. 1990;13:771–84.

    PubMed  CAS  Google Scholar 

  77. Krishnan KG, Winkler PA, Muller A, Grevers G, Steiger HJ. Closure of recurrent frontal skull base defects with vascularized flaps—a technical case report. Acta Neurochir (Wien). 2000;142(12):1353–8.

    CAS  PubMed  Google Scholar 

  78. Cornelissen AM, Maltha JC, Von den Hoff JW, Kuijpers-Jagtman AM. Local injection of IFN-gamma reduces the number of myofibroblasts and the collagen content in palatal wounds. J Dent Res. 2000;79(10):1782–8.

    PubMed  CAS  Google Scholar 

  79. Wong TTL, Daniels JT, Crowston JG, Khaw PT. MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule. Br J Ophthalmol. 2004;88(7):868–72.

    PubMed  CAS  Google Scholar 

  80. Ivarsen A, Laurberg T, Moller-Pedersen T. Characterisation of corneal fibrotic wound repair at the LASIK flap margin. Br J Ophthalmol. 2003;87(10):1272–8.

    PubMed  CAS  Google Scholar 

  81. Yannas IV, Orgill DP, Burke JF. Template for skin regeneration. Plast Reconstr Surg. 2010;127(1S):60S–70.

    Google Scholar 

  82. Greenhalgh DG, Sprugel KH, Murray MJ, Ross R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol. 1990;136:1235–46.

    PubMed  CAS  Google Scholar 

  83. Puolakkainen PA, Twardzik DR, Ranchalis JE, Pankey SC, Reed MJ, Gombotz WR. The enhancement in wound healing by transforming growth ­factor-β1 (TGF-β1) depends on the topical delivery system. J Surg Res. 1995;58:321–9.

    PubMed  CAS  Google Scholar 

  84. Billingham RE, Reynolds J. Transplantation studies on sheets of pure epidermal epithelium and epidermal cell suspensions. Br J Plast Surg. 1952;5:25–36.

    PubMed  CAS  Google Scholar 

  85. Hansbrough JF, Morgan JL, Greenleaf GE, Bartel R. Composite grafts of human keratinocytes grown on a polyglactin mesh-cultured fibroblast dermal substitute function as a bilayer skin replacement in full-thickness wounds on athymic mice. J Burn Care Rehab. 1993;14:485–94.

    CAS  Google Scholar 

  86. Cooper ML, Hansbrough JF, Spielvogel RL, Cohen R, Bartel RL, Naughton G. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials. 1991;12:243–8.

    PubMed  CAS  Google Scholar 

  87. Lorenz HP, Adzick NS. Scarless skin wound repair in the fetus. West J Med. 1993;159:350–5.

    PubMed  CAS  Google Scholar 

  88. Mast BA, Neslon JM, Krummel TM. Tissue repair in the mammalian fetus. In: Cohen IK, Diegelmann RF, Lindblad WJ, editors. Wound healing: biochemical and clinical aspects. Philadelphia, PA: WB Saunders; 1992.

    Google Scholar 

  89. Martin P. Wound healing: aiming for perfect skin regeneration. Science. 1996;276:75–81.

    Google Scholar 

  90. Stocum DL. Wound repair, regeneration and artificial tissues. Austin, TX: RG Landes; 1995.

    Google Scholar 

  91. Yannas IV, Colt J, Wai YC. Wound contraction and scar synthesis during development of the amphibian Rana catesbeiana. Wound Repair Regen. 1996;4:31–41.

    Google Scholar 

  92. Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005;13(1):7–12.

    PubMed  Google Scholar 

  93. Frangos JA, editor. Physical forces and the mammalian cell. New York: Academic; 1993.

    Google Scholar 

  94. Freyman TM, Yannas IV, Yokoo R, Gibson LJ. Fibroblast contraction of a collagen-GAG matrix. Biomaterials. 2001;22:2883–91.

    PubMed  CAS  Google Scholar 

  95. Freyman TM, Yannas IV, Pek Y-S, Yokoo R, Gibson LJ. Micromechanics of fibroblast contraction of a collagen-GAG matrix. Exp Cell Res. 2001;269:140–53.

    PubMed  CAS  Google Scholar 

  96. Harley BA, Spilker MH, Wu JW, Asano K, Hsu H-P, Spector M, Yannas IV. Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps. Cells Tissues Organs. 2004;176:153–65.

    PubMed  CAS  Google Scholar 

  97. Racine-Samson L, Rockey DC, Bissell DM. The role of alpha1beta1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary culture. J Biol Chem. 1997;272:30911–7.

    PubMed  CAS  Google Scholar 

  98. Rudolph R, Abraham J, Vecchione T, Guber S, Woodward M. Myofibroblasts and free silicon around breast implants. Plast Reconstr Surg. 1978;62:185–96.

    PubMed  CAS  Google Scholar 

  99. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue modeling. Nat Rev Mol Cell Biol. 2002;5:349–63.

    PubMed  CAS  Google Scholar 

  100. Davison SP, McCaffrey TV, Porter MN, Manders E. Improved nerve regeneration with neutralization of transforming growth factor-beta1. Laryngoscope. 1999;109:631–5.

    PubMed  CAS  Google Scholar 

  101. Ehrlich HP, Keefer KA, Myers RL, Passaniti A. Vanadate and the absence of myofibroblasts in wound contraction. Arch Surg. 1999;134:494–501.

    PubMed  CAS  Google Scholar 

  102. Ehrlich HP, Gabbiani G, Meda P. Cell coupling modulates the contraction of fibroblast-populated collagen lattices. J Cell Physiol. 2002;184:86–92.

    Google Scholar 

  103. Eyden B. Electron microscopy in the study of myofibroblastic lesions. Semin Diagn Pathol. 2003;20:13–24.

    PubMed  Google Scholar 

  104. Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science. 1997;275(5304):1308–11.

    PubMed  CAS  Google Scholar 

  105. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998;279(5350):509–14.

    PubMed  CAS  Google Scholar 

  106. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273(5272):245–8.

    PubMed  CAS  Google Scholar 

  107. Serini G, Bochaton-Piallat M-L, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol. 1998;142:873–81.

    PubMed  CAS  Google Scholar 

  108. Dugina V, Fontao L, Chaponnier C, Vasiliev J, Gabbiani G. Focal adhesion features during myofibroblast differentiation are controlled by intracellular and extracellular forces. J Cell Sci. 2001;114:3285–96.

    PubMed  CAS  Google Scholar 

  109. Hinz B, Pittet P, Smith-Clerc J, Chapponier C, Meister J-J. Myofibroblast development is characterized by specific cell-cell adherens junctions. Mol Biol Cell. 2004;15(9):4310–20.

    PubMed  CAS  Google Scholar 

  110. Yannas IV. Models of organ regeneration processes induced by templates. Ann N Y Acad Sci. 1997;831:280–93.

    PubMed  CAS  Google Scholar 

  111. Knight CG, Morton LF, Peachey AR, Tuckwell DS, Farndale RW, Barnes MJ. The collagen-binding A-domains of integrins a1b1 and a2b1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J Biol Chem. 2000;275:35–40. doi:10.1074/jbc.275.1.35.

    PubMed  CAS  Google Scholar 

  112. Yannas IV. Studies on the biological activity of the dermal regeneration template. Wound Repair Regen. 1998;6:518–24.

    PubMed  CAS  Google Scholar 

  113. Troxel K. Delay of skin wound contraction by porous collagen-GAG matrices. PhD Thesis, Cambridge, MA: Massachusetts Institute of Technology; 1994.

    Google Scholar 

  114. Yannas IV, Burke JF, Gordon PL, Huang C, Rubenstein RH. Design of an artificial skin II: control of chemical composition. J Biomed Mater Res. 1980;14:107–31.

    PubMed  CAS  Google Scholar 

  115. Butler CE, Orgill DP, Yannas IV, Compton CC. Effect of keratinocyte seeding of collagen glycosaminoglycan membranes on the regeneration of skin in a porcine model. Plast Reconstr Surg. 1998;101:1572–9.

    PubMed  CAS  Google Scholar 

  116. Yannas IV. Similarities and differences between induced organ regeneration in adults and early foetal regeneration. J R Soc Interface. 2005;2:403–17.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis V. Yannas PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Soller, E.C., Yannas, I.V. (2012). Induced Regeneration of Skin and Peripheral Nerves in the Adult. In: Veves, A., Giurini, J., LoGerfo, F. (eds) The Diabetic Foot. Contemporary Diabetes. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-791-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-791-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-790-3

  • Online ISBN: 978-1-61779-791-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics