Skip to main content

The Kinesin Superfamily

  • Chapter
  • First Online:

Abstract

The mammalian genome possesses 45 unique genes that code for kinesins. Kinesins are motor molecules, ATPases, which are specialized for the transport of cellular materials along the surface of cellular microtubules. Microtubules consist of linear polymers of repeating 8-nm-long tubulin dimers, each of which comprises one binding site for the kinesin motor domain. Kinesins “walk” from one binding site to the next, hydrolyzing one ATP with every step. In addition to their transport roles, these enzymes also remodel microtubules, engineer mitotic spindle assembly, and assist with chromosome segregation in dividing cells. Thus far, kinesins have been identified to operate in every conceivable microtubule-based process in the cell. Their diversity has enabled researchers to study disparate microtubule-based processes in isolation by selective disruption of individual kinesin motors. Functional characterization of microtubule-dependent activities with such high precision would not be possible using microtubule drugs, most of which globally disrupt all microtubule processes simultaneously. For this reason, kinesins have recently become attractive targets for the development of chemotherapeutic drugs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476

    Article  PubMed  CAS  Google Scholar 

  2. Kull FJ, Vale RD, Fletterick RJ (1998) The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J Muscle Res Cell Motil 19:877–886

    Article  PubMed  CAS  Google Scholar 

  3. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696

    Article  PubMed  CAS  Google Scholar 

  4. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC et al (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22

    Article  PubMed  CAS  Google Scholar 

  5. Wagenbach M, Domnitz S, Wordeman L, Cooper J (2008) A kinesin-13 mutant catalytically depolymerizes microtubules in ADP. J Cell Biol 183:617–623

    Article  PubMed  CAS  Google Scholar 

  6. Moore JD, Endow SA (1996) Kinesin proteins: a phylum of motors for microtubule-based motility. Bioessays 18:207–219

    Article  PubMed  CAS  Google Scholar 

  7. Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A 98:7004–7011

    Article  PubMed  CAS  Google Scholar 

  8. Lawrence CJ, Malmberg RL, Muszynski MG, Dawe RK (2002) Maximum likelihood methods reveal conservation of function among closely related kinesin families. J Mol Evol 54:42–53

    Article  PubMed  CAS  Google Scholar 

  9. Kim AJ, Endow SA (2000) A kinesin family tree. J Cell Sci 113(Pt 21):3681–3682

    PubMed  CAS  Google Scholar 

  10. Dagenbach EM, Endow SA (2004) A new kinesin tree. J Cell Sci 117:3–7

    Article  PubMed  CAS  Google Scholar 

  11. Ferenz NP, Gable A, Wadsworth P (2010) Mitotic functions of kinesin-5. Semin Cell Dev Biol 21:255–259

    Article  PubMed  CAS  Google Scholar 

  12. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  PubMed  CAS  Google Scholar 

  13. Miki H, Setou M, Hirokawa N (2003) Kinesin superfamily proteins (KIFs) in the mouse transcriptome. Genome Res 13:1455–1465

    Article  PubMed  CAS  Google Scholar 

  14. Wordeman L, Wagenbach M, von Dassow G (2007) MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J Cell Biol 179:869–879

    Article  PubMed  CAS  Google Scholar 

  15. Bakhoum SF, Thompson SL, Manning AL, Compton DA (2009) Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11:27–35

    Article  PubMed  CAS  Google Scholar 

  16. Homma N, Takei Y, Tanaka Y, Nakata T, Terada S et al (2003) Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114:229–239

    Article  PubMed  CAS  Google Scholar 

  17. Kull FJ, Sablin EP, Lau R, Fletterick RJ, Vale RD (1996) Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380:550–555

    Article  PubMed  CAS  Google Scholar 

  18. Schnitzer MJ, Block SM (1997) Kinesin hydrolyses one ATP per 8-nm step. Nature 388:386–390

    Article  PubMed  CAS  Google Scholar 

  19. Coy DL, Wagenbach M, Howard J (1999) Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J Biol Chem 274:3667–3671

    Article  PubMed  CAS  Google Scholar 

  20. Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    Article  PubMed  CAS  Google Scholar 

  21. Crevel IM, Lockhart A, Cross RA (1997) Kinetic evidence for low chemical processivity in ncd and Eg5. J Mol Biol 273:160–170

    Article  PubMed  CAS  Google Scholar 

  22. de Castro MJ, Ho CH, Stewart RJ (1999) Motility of dimeric ncd on a metal-chelating surfactant: evidence that ncd is not processive. Biochemistry 38:5076–5081

    Article  CAS  Google Scholar 

  23. Allingham JS, Sproul LR, Rayment I, Gilbert SP (2007) Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Cell 128:1161–1172

    Article  PubMed  CAS  Google Scholar 

  24. Fink G, Hajdo L, Skowronek KJ, Reuther C, Kasprzak AA et al (2009) The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat Cell Biol 11:717–723

    Article  PubMed  CAS  Google Scholar 

  25. Cooper JR, Wordeman L (2009) The diffusive interaction of microtubule binding proteins. Curr Opin Cell Biol 21:68–73

    Article  PubMed  CAS  Google Scholar 

  26. Ogawa T, Nitta R, Okada Y, Hirokawa N (2004) A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116:591–602

    Article  PubMed  CAS  Google Scholar 

  27. Moores CA, Yu M, Guo J, Beraud C, Sakowicz R et al (2002) A mechanism for microtubule depolymerization by KinI kinesins. Mol Cell 9:903–909

    Article  PubMed  CAS  Google Scholar 

  28. Tran PT, Joshi P, Salmon ED (1997) How tubulin subunits are lost from the shortening ends of microtubules. J Struct Biol 118:107–118

    Article  PubMed  CAS  Google Scholar 

  29. Muller-Reichert T, Chretien D, Severin F, Hyman AA (1998) Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha, beta)methylenediphosphonate. Proc Natl Acad Sci U S A 95:3661–3666

    Article  PubMed  CAS  Google Scholar 

  30. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  31. Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    Article  PubMed  CAS  Google Scholar 

  32. McDonald HB, Stewart RJ, Goldstein LS (1990) The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63:1159–1165

    Article  PubMed  CAS  Google Scholar 

  33. Endow SA, Henikoff S, Soler-Niedziela L (1990) Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature 345:81–83

    Article  PubMed  CAS  Google Scholar 

  34. Wong YL, Rice SE (2010) Kinesin’s light chains inhibit the head- and microtubule-binding activity of its tail. Proc Natl Acad Sci U S A 107:11781–11786

    Article  PubMed  CAS  Google Scholar 

  35. Yamada KH, Hanada T, Chishti AH (2007) The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B. Biochemistry 46:10039–10045

    Article  PubMed  CAS  Google Scholar 

  36. Imanishi M, Endres NF, Gennerich A, Vale RD (2006) Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3. J Cell Biol 174:931–937

    CAS  Google Scholar 

  37. Hammond JW, Cai D, Blasius TL, Li Z, Jiang Y et al (2009) Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol 7:e72

    Article  PubMed  CAS  Google Scholar 

  38. Hammond JW, Blasius TL, Soppina V, Cai D, Verhey KJ (2010) Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. J Cell Biol 189:1013–1025

    Article  PubMed  CAS  Google Scholar 

  39. Espeut J, Gaussen A, Bieling P, Morin V, Prieto S et al (2008) Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell 29:637–643

    Article  PubMed  CAS  Google Scholar 

  40. Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T et al (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105:587–597

    Article  PubMed  CAS  Google Scholar 

  41. Kijima K, Numakura C, Izumino H, Umetsu K, Nezu A et al (2005) Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum Genet 116:23–27

    Article  PubMed  CAS  Google Scholar 

  42. Bolis A, Coviello S, Visigalli I, Taveggia C, Bachi A et al (2009) Dlg1, Sec8, and Mtmr2 regulate membrane homeostasis in Schwann cell myelination. J Neurosci 29:8858–8870

    Article  PubMed  CAS  Google Scholar 

  43. Pigino G, Morfini G, Atagi Y, Deshpande A, Yu C et al (2009) Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci U S A 106:5907–5912

    Article  PubMed  CAS  Google Scholar 

  44. Gunawardena S, Goldstein LS (2001) Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32:389–401

    Article  PubMed  CAS  Google Scholar 

  45. Saxton WM, Hicks J, Goldstein LS, Raff EC (1991) Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis. Cell 64:1093–1102

    Article  PubMed  CAS  Google Scholar 

  46. Snow JJ, Ou G, Gunnarson AL, Walker MR, Zhou HM et al (2004) Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol 6:1109–1113

    Article  PubMed  CAS  Google Scholar 

  47. Insinna C, Pathak N, Perkins B, Drummond I, Besharse JC (2008) The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev Biol 316:160–170

    Article  PubMed  CAS  Google Scholar 

  48. Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS et al (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A 100:5286–5291

    Article  PubMed  CAS  Google Scholar 

  49. Shiba D, Takamatsu T, Yokoyama T (2005) Primary cilia of inv/inv mouse renal epithelial cells sense physiological fluid flow: bending of primary cilia and Ca2 + influx. Cell Struct Funct 30:93–100

    Article  PubMed  CAS  Google Scholar 

  50. Yu Y, Feng YM (2010) The role of kinesin family proteins in tumorigenesis and progression: potential biomarkers and molecular targets for cancer therapy. Cancer 116:5150–5160

    Article  PubMed  CAS  Google Scholar 

  51. Zhang Y, Xu W (2008) Progress on kinesin spindle protein inhibitors as anti-cancer agents. Anticancer Agents Med Chem 8:698–704

    Article  PubMed  CAS  Google Scholar 

  52. Mooberry SL (2007) Strategies for the development of novel Taxol-like agents. Methods Mol Med 137:289–302

    Article  PubMed  CAS  Google Scholar 

  53. Hadfield JA, Ducki S, Hirst N, McGown AT (2003) Tubulin and microtubules as targets for anticancer drugs. Prog Cell Cycle Res 5:309–325

    PubMed  Google Scholar 

  54. Harrison MR, Holen KD, Liu G (2009) Beyond taxanes: a review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin Adv Hematol Oncol 7:54–64

    PubMed  Google Scholar 

  55. Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96:69–78

    Article  PubMed  CAS  Google Scholar 

  56. Ginkel LM, Wordeman L (2000) Expression and partial characterization of kinesin-related proteins in differentiating and adult skeletal muscle. Mol Biol Cell 11:4143–4158

    PubMed  CAS  Google Scholar 

  57. Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19:1937–1942

    Article  PubMed  CAS  Google Scholar 

  58. Shimo A, Tanikawa C, Nishidate T, Lin ML, Matsuda K et al (2008) Involvement of kinesin family member 2 C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci 99:62–70

    PubMed  CAS  Google Scholar 

  59. Ishikawa K, Kamohara Y, Tanaka F, Haraguchi N, Mimori K et al (2008) Mitotic centromere-associated kinesin is a novel marker for prognosis and lymph node metastasis in colorectal cancer. Br J Cancer 98:1824–1829

    Article  PubMed  CAS  Google Scholar 

  60. Scanlan MJ, Welt S, Gordon CM, Chen YT, Gure AO et al (2002) Cancer-related serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets. Cancer Res 62:4041–4047

    PubMed  CAS  Google Scholar 

  61. Varga V, Leduc C, Bormuth V, Diez S, Howard J (2009) Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138:1174–1183

    Article  PubMed  CAS  Google Scholar 

  62. Varga V, Helenius J, Tanaka K, Hyman AA, Tanaka TU et al (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8:957–962

    Article  PubMed  CAS  Google Scholar 

  63. Gupta ML, Jr, Carvalho P, Roof DM, Pellman D (2006) Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol 8:913–923

    Article  PubMed  CAS  Google Scholar 

  64. Stumpff J, von Dassow G, Wagenbach M, Asbury C, Wordeman L (2008) The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev Cell 14:252–262

    Article  PubMed  CAS  Google Scholar 

  65. Du Y, English CA, Ohi R (2010) The kinesin-8 Kif18A dampens microtubule plus-end dynamics. Curr Biol 20:374–380

    Article  PubMed  CAS  Google Scholar 

  66. Zhang C, Zhu C, Chen H, Li L, Guo L et al (2010) Kif18A is involved in human breast carcinogenesis. Carcinogenesis 31:1676–1684

    Article  PubMed  CAS  Google Scholar 

  67. De S, Cipriano R, Jackson MW, Stark GR (2009) Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. Cancer Res 69:8035–8042

    Article  PubMed  CAS  Google Scholar 

  68. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL et al (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974

    Article  PubMed  CAS  Google Scholar 

  69. Gartner M, Sunder-Plassmann N, Seiler J, Utz M, Vernos I et al (2005) Development and biological evaluation of potent and specific inhibitors of mitotic Kinesin Eg5. Chembiochem 6:1173–1177

    Article  PubMed  CAS  Google Scholar 

  70. Sarli V, Giannis A (2008) Targeting the kinesin spindle protein: basic principles and clinical implications. Clin Cancer Res 14:7583–7587

    Article  PubMed  CAS  Google Scholar 

  71. Blagden SP, Molife LR, Seebaran A, Payne M, Reid AH et al (2008) A phase I trial of ispinesib, a kinesin spindle protein inhibitor, with docetaxel in patients with advanced solid tumours. Br J Cancer 98:894–899

    Article  PubMed  CAS  Google Scholar 

  72. Valensin S, Ghiron C, Lamanna C, Kremer A, Rossi M et al (2009) KIF11 inhibition for glioblastoma treatment: reason to hope or a struggle with the brain? BMC Cancer 9:196

    Article  PubMed  CAS  Google Scholar 

  73. Carol H, Lock R, Houghton PJ, Morton CL, Kolb EA et al (2009) Initial testing (stage 1) of the kinesin spindle protein inhibitor ispinesib by the pediatric preclinical testing program. Pediatr Blood Cancer 53:1255–1263

    Article  PubMed  Google Scholar 

  74. Purcell JW, Davis J, Reddy M, Martin S, Samayoa K et al (2010) Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer. Clin Cancer Res 16:566–576

    Article  PubMed  CAS  Google Scholar 

  75. Bruzzoni-Giovanelli H, Fernandez P, Veiga L, Podgorniak MP, Powell DJ et al (2010) Distinct expression patterns of the E3 ligase SIAH-1 and its partner Kid/KIF22 in normal tissues and in the breast tumoral processes. J Exp Clin Cancer Res 29:10

    Article  PubMed  CAS  Google Scholar 

  76. Madhavan J, Mitra M, Mallikarjuna K, Pranav O, Srinivasan R et al (2009) KIF14 and E2F3 mRNA expression in human retinoblastoma and its phenotype association. Mol Vis 15:235–240

    PubMed  CAS  Google Scholar 

  77. Taniwaki M, Takano A, Ishikawa N, Yasui W, Inai K et al (2007) Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res 13:6624–6631

    Article  PubMed  CAS  Google Scholar 

  78. Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36

    Article  PubMed  CAS  Google Scholar 

  79. Tanenbaum ME, Macurek L, Janssen A, Geers EF, Alvarez-Fernandez M et al (2009) Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 19:1703–1711

    Article  PubMed  CAS  Google Scholar 

  80. Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414:643–648

    Article  PubMed  CAS  Google Scholar 

  81. Batut J, Howell M, Hill CS (2007) Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-beta ligands. Dev Cell 12:261–274

    Article  PubMed  CAS  Google Scholar 

  82. Byrd DT, Kawasaki M, Walcoff M, Hisamoto N, Matsumoto K et al (2001) UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32:787–800

    Article  PubMed  CAS  Google Scholar 

  83. Morfini GA, You YM, Pollema SL, Kaminska A, Liu K et al (2009) Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci 12:864–871

    Article  PubMed  CAS  Google Scholar 

  84. Cole DG, Chinn SW, Wedaman KP, Hall K, Vuong T et al (1993) Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366:268–270

    Article  PubMed  CAS  Google Scholar 

  85. Marszalek JR, Liu X, Roberts EA, Chui D, Marth JD et al (2000) Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102:175–187

    Article  PubMed  CAS  Google Scholar 

  86. Kovacs JJ, Whalen EJ, Liu R, Xiao K, Kim J et al (2008) Beta-arrestin-mediated localization of smoothened to the primary cilium. Science 320:1777–1781

    Article  PubMed  CAS  Google Scholar 

  87. Gu C, Zhou W, Puthenveedu MA, Xu M, Jan YN et al (2006) The microtubule plus-end tracking protein EB1 is required for Kv1 voltage-gated K + channel axonal targeting. Neuron 52:803–816

    Article  PubMed  CAS  Google Scholar 

  88. Tomishige M, Klopfenstein DR, Vale RD (2002) Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297:2263–2267

    Article  PubMed  CAS  Google Scholar 

  89. Hall DH, Hedgecock EM (1991) Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65:837–847

    Article  PubMed  CAS  Google Scholar 

  90. Gruneberg U, Neef R, Li X, Chan EH, Chalamalasetty RB et al (2006) KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol 172:363–372

    Article  PubMed  CAS  Google Scholar 

  91. Hoepfner S, Severin F, Cabezas A, Habermann B, Runge A et al (2005) Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121:437–450

    Article  PubMed  CAS  Google Scholar 

  92. Bieling P, Kronja I, Surrey T (2010) Microtubule Motility on Reconstituted Meiotic Chromatin. Curr Biol 20(8):763–769

    Article  PubMed  CAS  Google Scholar 

  93. Bringmann H, Skiniotis G, Spilker A, Kandels-Lewis S, Vernos I et al (2004) A kinesin-like motor inhibits microtubule dynamic instability. Science 303:1519–1522

    Article  PubMed  CAS  Google Scholar 

  94. Bieling P, Telley IA, Surrey T (2010) A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142:420–432

    Article  PubMed  CAS  Google Scholar 

  95. Vernos I, Raats J, Hirano T, Heasman J, Karsenti E et al (1995) Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 81:117–127

    Article  PubMed  CAS  Google Scholar 

  96. Kapitein LC, Peterman EJ, Kwok BH, Kim JH, Kapoor TM et al (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–118

    Article  PubMed  CAS  Google Scholar 

  97. Kashina AS, Baskin RJ, Cole DG, Wedaman KP, Saxton WM et al (1996) A bipolar kinesin. Nature 379:270–272

    Article  PubMed  CAS  Google Scholar 

  98. Sawin KE, LeGuellec K, Philippe M, Mitchison TJ (1992) Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359:540–543

    Article  PubMed  CAS  Google Scholar 

  99. Nislow C, Lombillo VA, Kuriyama R, McIntosh JR (1992) A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359:543–547

    Article  PubMed  CAS  Google Scholar 

  100. Mishima M, Pavicic V, Gruneberg U, Nigg EA, Glotzer M (2004) Cell cycle regulation of central spindle assembly. Nature 430:908–913

    Article  PubMed  CAS  Google Scholar 

  101. Neef R, Preisinger C, Sutcliffe J, Kopajtich R, Nigg EA et al (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162:863–875

    Article  PubMed  CAS  Google Scholar 

  102. Kuriyama R, Gustus C, Terada Y, Uetake Y, Matuliene J (2002) CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. J Cell Biol 156:783–790

    Article  PubMed  CAS  Google Scholar 

  103. Wood KW, Sakowicz R, Goldstein LS, Cleveland DW (1997) CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91:357–366

    Article  PubMed  CAS  Google Scholar 

  104. Yen TJ, Li G, Schaar BT, Szilak I, Cleveland DW (1992) CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359:536–539

    Article  PubMed  CAS  Google Scholar 

  105. Mayr MI, Hummer S, Bormann J, Gruner T, Adio S et al (2007) The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17:488–498

    Article  PubMed  CAS  Google Scholar 

  106. Demonchy R, Blisnick T, Deprez C, Toutirais G, Loussert C et al (2009) Kinesin 9 family members perform separate functions in the trypanosome flagellum. J Cell Biol 187:615–622

    Article  PubMed  CAS  Google Scholar 

  107. Piddini E, Schmid JA, de Martin R, Dotti CG (2001) The Ras-like GTPase Gem is involved in cell shape remodelling and interacts with the novel kinesin-like protein KIF9. EMBO J 20:4076–4087

    Article  PubMed  CAS  Google Scholar 

  108. Tikhonenko I, Nag DK, Robinson DN, Koonce MP (2009) Microtubule-nucleus interactions in Dictyostelium discoideum mediated by central motor kinesins. Eukaryot Cell 8:723–731

    Article  PubMed  CAS  Google Scholar 

  109. Yajima J, Edamatsu M, Watai-Nishii J, Tokai-Nishizumi N, Yamamoto T et al (2003) The human chromokinesin Kid is a plus end-directed microtubule-based motor. EMBO J 22:1067–1074

    Article  PubMed  CAS  Google Scholar 

  110. Funabiki H, Murray AW (2000) The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102:411–424

    Article  PubMed  CAS  Google Scholar 

  111. Antonio C, Ferby I, Wilhelm H, Jones M, Karsenti E et al (2000) Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102:425–435

    Article  PubMed  CAS  Google Scholar 

  112. Zhou R, Niwa S, Homma N, Takei Y, Hirokawa N (2009) KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell 139:802–813

    Article  PubMed  CAS  Google Scholar 

  113. Lillie SH, Brown SS (1992) Suppression of a myosin defect by a kinesin-related gene. Nature 356:358–361

    Article  PubMed  CAS  Google Scholar 

  114. Lillie SH, Brown SS (1998) Smy1p, a kinesin-related protein that does not require microtubules. J Cell Biol 140:873–883

    Article  PubMed  CAS  Google Scholar 

  115. Uchiyama Y, Sakaguchi M, Terabayashi T, Inenaga T, Inoue S et al (2010) Kif26b, a kinesin family gene, regulates adhesion of the embryonic kidney mesenchyme. Proc Natl Acad Sci U S A 107:9240–9245

    Article  PubMed  CAS  Google Scholar 

  116. Boleti H, Karsenti E, Vernos I (1996) Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84:49–59

    Article  PubMed  CAS  Google Scholar 

  117. Brunet S, Sardon T, Zimmerman T, Wittmann T, Pepperkok R et al (2004) Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts. Mol Biol Cell 15:5318–5328

    Article  PubMed  CAS  Google Scholar 

  118. Vanneste D, Takagi M, Imamoto N, Vernos I (2009) The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr Biol 19:1712–1717

    Article  PubMed  CAS  Google Scholar 

  119. Gong Y, Ma Z, Patel V, Fischer E, Hiesberger T et al (2009) HNF-1beta regulates transcription of the PKD modifier gene Kif12. J Am Soc Nephrol 20:41–47

    Article  PubMed  CAS  Google Scholar 

  120. Mrug M, Li R, Cui X, Schoeb TR, Churchill GA et al (2005) Kinesin family member 12 is a candidate polycystic kidney disease modifier in the cpk mouse. J Am Soc Nephrol 16:905–916

    Article  PubMed  CAS  Google Scholar 

  121. Hunter AW, Caplow M, Coy DL, Hancock WO, Diez S et al (2003) The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol Cell 11:445–457

    Article  PubMed  CAS  Google Scholar 

  122. Walker RA, Salmon ED, Endow SA (1990) The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347:780–782

    Article  PubMed  CAS  Google Scholar 

  123. Endow SA, Kang SJ, Satterwhite LL, Rose MD, Skeen VP et al (1994) Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J 13:2708–2713

    PubMed  CAS  Google Scholar 

  124. Saito N, Okada Y, Noda Y, Kinoshita Y, Kondo S et al (1997) KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18:425–438

    Article  PubMed  CAS  Google Scholar 

  125. Meluh PB, Rose MD (1990) KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60:1029–1041

    Article  PubMed  CAS  Google Scholar 

  126. Goshima G, Wollman R, Stuurman N, Scholey JM, Vale RD (2005) Length control of the metaphase spindle. Curr Biol 15:1979–1988

    Article  PubMed  CAS  Google Scholar 

  127. Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2009) Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 20:1348–1359

    Article  PubMed  CAS  Google Scholar 

  128. Matthies HJ, Baskin RJ, Hawley RS (2001) Orphan kinesin NOD lacks motile properties but does possess a microtubule-stimulated ATPase activity. Mol Biol Cell 12:4000–4012

    PubMed  CAS  Google Scholar 

  129. Cochran JC, Sindelar CV, Mulko NK, Collins KA, Kong SE et al (2009) ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement. Cell 136:110–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am indebted to Mike Wagenbach for preparing Fig. 3.1a. The research in Linda Wordeman’s laboratory is supported by the National Institutes of Health (GM069429) and the National Science Foundation (MCB-1041173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Wordeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wordeman, L. (2012). The Kinesin Superfamily. In: Kavallaris, M. (eds) Cytoskeleton and Human Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-788-0_3

Download citation

Publish with us

Policies and ethics