Skip to main content

Basic Neurophysiology

  • Chapter
  • First Online:
  • 2617 Accesses

Abstract

Every neuron is said to possess “in miniature the integrative capacity of the entire nervous system.” Neurons can transform information and transmit it to other neurons. In most, the dendrite–cell body unit is specialized as a receptor and integrator of synaptic input from other neurons, and the axon is specialized to convey coded information from the dendrite–cell body unit to the synaptic junctions, where transformation functions take place with other neurons or effectors (muscles and glands). To serve these tasks, the neuron is thus organized into (1) a receptive segment (dendrites and cell body), (2) a conductile segment (axon), and (3) an effector segment (synapse) (Fig. 3.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Suggested Readings

  • Araque A, Carmignoto G, Haydon PG. 2001. Dynamic signaling between astrocytes and neurons. Annu. Rev. Physiol. 63:795–813.

    Google Scholar 

  • Chen YA, Scales SJ, Scheller RH. 2001. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30:161–170.

    Article  PubMed  CAS  Google Scholar 

  • Cline HT. 2001. Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11:118–126.

    Google Scholar 

  • Conners BW, Long MA. 2004. Electrical synapses in the mammalian brain. Annual Rev Neurosci. 27: 393–418.

    Google Scholar 

  • Cruikshank SJ, Landisman CE, Mancilla JG, Connors BW. 2005. Connexon connexions in the thalamocortical system. Prog Br Res. 149:41-57.

    Article  Google Scholar 

  • De Camilli P, Takei K. 1996. Molecular mechanisms in synaptic vesicle endocytosis and recycling. Neuron16:481–486.

    Article  PubMed  Google Scholar 

  • Dowling J. 1993. Neurons and Networks: An Introduction to Neuroscience. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Eccles JC. 1982. The synapse: from electrical to chemical transmission. Annu. Rev. Neurosci. 5:325–339.

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC. 1990. Developing concepts of the synapses. J. Neurosci.10:3769–3781.

    Google Scholar 

  • Ehlers MD. 2002. Molecular morphogens for dendritic spines. Trends Neurosci. 25:64–67.

    Google Scholar 

  • Ehlers MD. 2003. Eppendorf 2003. prize-winning essay. Ubiquitin and the deconstruction of synapses. Science. 302:800–801.

    Article  PubMed  CAS  Google Scholar 

  • Farsad K, De Camilli P. 2002. Neurotransmission and the synaptic vesicle cycle. Yale J. Biol. Med. 75: 261–284.

    PubMed  Google Scholar 

  • Fenstermaker V, Chen Y, Ghosh A, Yuste R. 2004. Regulation of dendritic length and branching by semaphorin 3A. J. Neurobiol. 58:403–412.

    Google Scholar 

  • Fiala JC, Harris KM. 1999. Dendritic structures. In: Stuart G, Sprutson N, Hausser M, eds. Dendrites. New York: Oxford University Press.

    Google Scholar 

  • Fields RD, Stevens-Graham B. 2002. New insights into neuron–glia communication. Science. 298:556–562.

    Article  PubMed  CAS  Google Scholar 

  • Furshpan EJ, Potter DD. 1957. Mechanism of nerve-impulse transmission at a crayfish synapse. Nature. 180:342–343.

    Google Scholar 

  • Gorlich D, Kutay U. 1999. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol.15:607–660.

    Google Scholar 

  • Greengard P. 2001. The neurobiology of slow synaptic transmission. Science. 294:1024–1030.

    Google Scholar 

  • Hannah MJ, Schmidt AA, Huttner WB. 1999. Synaptic vesicle biogenesis. Annu. Rev. Cell Dev. Biol. 15:733–798.

    Google Scholar 

  • Hering H, Sheng M. 2003. Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J. Neurosci. 23: 11759–11769.

    Google Scholar 

  • Ingolia NT, Murray AW. 2002. Signal transduction. History matters. Science. 297:948–949.

    CAS  Google Scholar 

  • Jan LY, Stevens CF. 2000. Signalling mechanisms: a decade of signalling. Curr. Opin. Neurobiol. 10:625–630.

    Google Scholar 

  • Kandel ER. 2001. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 294:1030–1038.

    Article  PubMed  CAS  Google Scholar 

  • Katz PS, Clemens S. 2001. Biochemical networks in nervous systems: expanding neuronal information capacity beyond voltage signals. Trends Neurosci. 24: 18–25.

    Google Scholar 

  • Kennedy MB. 2000. Signal-processing machines at the postsynaptic density. Science. 290:750–754.

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Sheng M. 2003. Some assembly required: the development of neuronal synapses. Natl. Rev. Mol. Cell Biol. 4:833–841.

    Article  CAS  Google Scholar 

  • Lin RC, Scheller RH. 2000. Mechanisms of synaptic vesicle exocytosis. Annu. Rev. Cell Dev. Biol. 16:19–49.

    Google Scholar 

  • Littleton JT, Sheng M. 2003. Neurobiology: synapses unplugged. Nature. 424:931–932.

    Article  Google Scholar 

  • Maletic-Savatic M, Malinow R, Svoboda K. 1999. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science. 283: 1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. 1998. Neuroprotective signal transduction. Totowa, N.J.: Humana Press.

    Google Scholar 

  • Murthy VN, De Camilli P. 2003. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci. 26:701–728.

    Google Scholar 

  • Nimchinsky EA, Sabatini BL, Svoboda K. 2002. Structure and function of dendritic spines. Annu. Rev. Physiol. 64:313–353.

    Google Scholar 

  • Okabe S. 2007. Molecular anatomy of the postsynaptic density. Mol Cell Neurosci. 34:503–518.

    Article  PubMed  CAS  Google Scholar 

  • Reith MEA ed. 2000. Cerebral Signal Transduction: From First to Fourth Messengers. Totowa, NJ: Humana.

    Google Scholar 

  • Reith MEA, ed. 2009. Neurotransmitter Transporters: Structure, Function, and Regulation. Totowa, NJ: Humana.

    Google Scholar 

  • Sheng M, Kim MJ. 2002. Postsynaptic signaling and ­plasticity mechanisms. Science. 298:776–780.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GM. 1996. The dendritic spine: a multifunctional integrative unit. J. Neurophysiol. 75: 2197–2210.

    PubMed  CAS  Google Scholar 

  • Song H, Stevens CF, Gage FH. 2002. Astroglia induce neurogenesis from adult neural stem cells. Nature. 417:39–44.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda R, Sabatini BL, Svoboda K. 2003. Plasticity of calcium channels in dendritic spines. Nature Neurosci. 6:948–955.

    Google Scholar 

  • Yuste R, Bonhoeffer T. 2004. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Natl. Rev. Neurosci. 5:24–34.

    Article  CAS  Google Scholar 

  • Zucker RS, Regehr WG. 2002. Short-term synaptic plasticity. Annu. Rev. Physiol. 64:355–405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strominger, N.L., Demarest, R.J., Laemle, L.B. (2012). Basic Neurophysiology. In: Noback's Human Nervous System, Seventh Edition. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-779-8_3

Download citation

Publish with us

Policies and ethics