Skip to main content

Cytokines and Oxidative Stress in the Germ Line

  • Chapter
  • First Online:

Abstract

Cytokines are important mediators of the immunologic response and involved in numerous physiological and pathological processes in the male genital tract. The same cytokines that act as elements of immunomodulation for the male gonad appear in large concentrations in semen in a number of pathological conditions, including autoimmune diseases, spinal cord injury, varicocele, or genital tract infection/inflammation. The activated macrophages and neutrophils release reactive oxygen intermediates and secrete proinflammatory cytokines, both of which can affect spermatozoa through peroxidative processes of sperm membrane components and DNA. Elucidation of these mechanisms and their interactions can be critical to develop novel diagnostic tests and treatment of male genital tract infection/inflammation. This chapter covers the current evidence about a relationship among the cytokines, antioxidants, prooxidants, and semen parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stephan JP, Syed V, Jegou B. Regulation of Sertoli cell IL-1 and IL-6 production in vitro. Mol Cell Endocrinol. 1997;134:109–18.

    PubMed  CAS  Google Scholar 

  2. Guazzone VA, Jacobo P, Theas MS, et al. Cytokines and chemokines in testicular inflammation: a brief review. Microsc Res Tech. 2009;72:620–8.

    PubMed  CAS  Google Scholar 

  3. O’Bryan MK, Schlatt S, Phillips DJ, et al. Bacterial lipopolysaccharide-induced inflammation compromises testicular function at multiple levels in vivo. Endocrinology. 2000;141:238–46.

    PubMed  Google Scholar 

  4. O’Bryan MK, Hedger MP. Inflammatory networks in the control of spermatogenesis: chronic inflammation in an immunologically privileged tissue? Adv Exp Med Biol. 2008;636:92–114.

    PubMed  Google Scholar 

  5. Hedger M, Klug J, Fröhlich S, et al. Regulatory cytokine expression and interstitial fluid formation in the normal and inflamed rat testis are under Leydig cell control. J Androl. 2005;26:379–86.

    PubMed  CAS  Google Scholar 

  6. Fijak M, Bhushan S, Meinhardt A. Immunoprivileged sites: the testis. Methods Mol Biol. 2011;677:459–70.

    PubMed  CAS  Google Scholar 

  7. Jacobo P, Guazzone VA, Theas MS, et al. Testicular autoimmunity. Autoimmun Rev. 2011;10:201–4.

    PubMed  CAS  Google Scholar 

  8. Cheng CY, Mruk DD. Regulation of spermiogenesis, spermiation and blood-testis barrier dynamics: novel insights from studies on Eps8 and Arp3. Biochem J. 2011;435(3):553–62.

    PubMed  CAS  Google Scholar 

  9. Cheng CY, Mruk DD. A local autocrine axis in the testes that regulates spermatogenesis. Nat Rev Endocrinol. 2010;6:380–95.

    PubMed  CAS  Google Scholar 

  10. Wong CH, Cheng CY. The blood–testis barrier: its biology, regulation and physiological role in spermatogenesis. Curr Top Dev Biol. 2005;7:263–96.

    Google Scholar 

  11. Su L, Mruk DD, et al. Drug transporters, the blood–testis barrier, and spermatogenesis. J Endocrinol. 2011;208(3):207–23.

    PubMed  CAS  Google Scholar 

  12. Yan HH, Mruk DD, Lee WM, Cheng CY. Ectoplasmic specialization: a friend or a foe of spermatogenesis? Bioessays. 2007;29(1):36–48.

    PubMed  Google Scholar 

  13. Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev. 2004;25(5):747–806.

    PubMed  CAS  Google Scholar 

  14. Xia W, Wong CH, et al. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat testis can be limited to adherens junctions without affecting the blood-testis barrier integrity: an in vivo study using an androgen suppression model. J Cell Physiol. 2005;205(1):141–57.

    PubMed  CAS  Google Scholar 

  15. Li MW, Mruk DD, et al. Cytokines and the junction restructuring events during spermatogenesis in the testis: an emerging new concept of regulation. Cytokine Growth Factor Rev. 2009;20(4):329–38.

    PubMed  CAS  Google Scholar 

  16. Li MW, Mruk DD, et al. “Unlocking” the blood-testis barrier and the ectoplasmic specialization by cytokines during spermatogenesis: emerging targets for male contraception. Immunol Endocr Metab Agents Med Chem. 2008;8:20–7.

    CAS  Google Scholar 

  17. Siu MK, Wong CH, et al. Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases. J Biol Chem. 2005;280(26):25029–47.

    PubMed  CAS  Google Scholar 

  18. Xia W, Mruk DD, et al. Cytokines and junction restructuring during spermatogenesis—a lesson to learn from the testis. Cytokine Growth Factor Rev. 2005;16(4–5):469–93.

    PubMed  CAS  Google Scholar 

  19. Meng J, Holdcraft RW, et al. Androgens regulate the permeability of the blood–testis barrier. Proc Natl Acad Sci USA. 2005;102(46):16696–700.

    PubMed  CAS  Google Scholar 

  20. Yan HH, Mruk DD, et al. Blood-testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. FASEB J. 2008;22(6):1945–59.

    PubMed  CAS  Google Scholar 

  21. Su L, Mruk DD, et al. Differential effects of testosterone and TGF-β3 on endocytic vesicle-mediated protein trafficking events at the blood-testis barrier. Exp Cell Res. 2010;316(17):2945–60.

    PubMed  CAS  Google Scholar 

  22. Cheng CY, Mruk DD. An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit Rev Biochem Mol Biol. 2009;44(5):245–63.

    PubMed  CAS  Google Scholar 

  23. Yan HH, Mruk DD, et al. An autocrine axis in the testis that coordinates spermiation and blood–testis barrier restructuring during spermatogenesis. Proc Natl Acad Sci USA. 2008;105(26):8950–5.

    PubMed  CAS  Google Scholar 

  24. Cheng CY, Wong EW, et al. Regulation of spermatogenesis in the microenvironment of the seminiferous epithelium: new insights and advances. Mol Cell Endocrinol. 2010;315(1–2):49–56.

    PubMed  CAS  Google Scholar 

  25. Bornstein R, Rutkowski H. Cytokines and steroidogenesis. Mol Cell Endocrinol. 2004;215(1–2):135–41.

    PubMed  CAS  Google Scholar 

  26. Guzmán C, Hernández-Bello R, et al. Regulation of steroidogenesis in reproductive, adrenal and neural tissues by cytokines. Open Neuroendocrinol J. 2010;3:161–9.

    Google Scholar 

  27. Cudicini C, Lejeune H, Gomez E, et al. Human Leydig cells and Sertoli cells are producers of interleukins-1 and -6. J Clin Endocrinol Metab. 1997;82:1426–33.

    PubMed  CAS  Google Scholar 

  28. Hedger MP, Meinhardt A. Cytokines and the immune-testicular axis. J Reprod Immunol. 2003;58:1–26.

    PubMed  CAS  Google Scholar 

  29. Rozwadowska N, Fiszer D, Kurpisz M. Function of the interleukin-1 gene system in immunomodulation, apoptosis and proliferation in the male gonad. Postepy Hig Med Dosw. 2005;59:56–67.

    Google Scholar 

  30. Hales DB, Diemer T, Hales KH. Role of cytokines in testicular function. Endocrine. 1999;10:201–17.

    PubMed  CAS  Google Scholar 

  31. Khan SA, Schmidt K, Hallin P, et al. Human testis cytosol and ovarian follicular fluid contain high amounts of interleukin-1-like factor(s). Mol Cell Endocrinol. 1998;58:221–30.

    Google Scholar 

  32. Stéphan JP, Syed V, Jégou B. Regulation of Sertoli cell IL-1 and IL-6 production in vitro. Mol Cell Endocrinol. 1997;134:109–18.

    PubMed  Google Scholar 

  33. Lysiak JJ. The role of tumor necrosis factor-alpha and interleukin-1 in the mammalian testis and their involvement in testicular torsion and autoimmune orchitis. Reprod Biol Endocrinol. 2004;2:9.

    PubMed  Google Scholar 

  34. Lin T, Wang D, Nagpal ML, et al. Interleukin-1 inhibits cholesterol side-chain cleavage cytochrome P450 expression in primary cultures of Leydig cells. Endocrinology. 1991;129:1305–11.

    PubMed  CAS  Google Scholar 

  35. Kanzaki M, Morris PL. Growth hormone regulates steroidogenic acute regulatory protein expression and steroidogenesis in Leydig cell progenitors. Endocrinology. 1999;140:1681–6.

    PubMed  CAS  Google Scholar 

  36. Bourguiba S, Chater S, Delalande C, et al. Regulation of aromatase gene expression in purified germ cells of adult male rats: effects of transforming growth factor β, tumor necrosis factor α, and cyclic adenosine 3′,5′-monophosphate. Biol Reprod. 2003;69:592–601.

    PubMed  CAS  Google Scholar 

  37. O’Bryan MK, Gerdprasert O, Nikolic-Paterson DJ, et al. Cytokine profiles in the testes of rats treated with lipopolysaccharide reveal localized suppression of inflammatory responses. Am J Physiol Regul Integr Comp Physiol. 2005;288:1744–55.

    Google Scholar 

  38. Turner T, Lysiak J. Oxidative stress: a common factor in testicular dysfunction. J Androl. 2008;29:488–98.

    PubMed  CAS  Google Scholar 

  39. Fujii J, Iuchi Y, Matsuki S, et al. Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Asian J Androl. 2003;5:231–42.

    PubMed  CAS  Google Scholar 

  40. Lukyanenko YO, Chen JJ, Hutson JC. Production of 25-HC by testicular macrophages and its effects on Leydig cells. Biol Reprod. 2001;64:790–6.

    PubMed  CAS  Google Scholar 

  41. Hales DB. Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol. 2002;57:3–18.

    PubMed  CAS  Google Scholar 

  42. Thiemermann C, Szabo C, Peretti M, et al. Role of tumor necrosis factor in the induction of nitric oxide in a rat model of endotoxin. Br J Pharmacol. 1993;110:177–82.

    PubMed  CAS  Google Scholar 

  43. Allen JA, Diemer T, Janus P, et al. Bacterialendotoxin lipopolysaccharide and reactive oxygen species inhibit Leydig cell steroidogenesis via perturbation of mitochondria. Endocrine. 2004;25:265–75.

    PubMed  CAS  Google Scholar 

  44. Diemer T, Allen JA, Hales KH, et al. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology. 2003;144:2882–91.

    PubMed  CAS  Google Scholar 

  45. Aly HA, Lightfoot DA, El-Shemy HA. Bacterial lipopolysaccharide-induced oxidative stress in adult rat Sertoli cells in vitro. Toxicol In Vitro. 2010;24:1266–72.

    PubMed  CAS  Google Scholar 

  46. Kern S, Robertson SA, et al. Cytokine secretion by macrophages in the rat testis. Biol Reprod. 1995;53(6):1407–16.

    PubMed  CAS  Google Scholar 

  47. Fujii J, Iuchi Y, et al. Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Asian J Androl. 2003;5(3):231–42.

    PubMed  CAS  Google Scholar 

  48. Maiorino M, Ursini F. Oxidative stress, spermatogenesis and fertility. Biol Chem. 2002;383:591–7.

    PubMed  CAS  Google Scholar 

  49. Soder O, Sultana T, Jonsson C, et al. The interleukin-1 system in the testis. Andrologia. 2000;32:52–5.

    PubMed  CAS  Google Scholar 

  50. Rozwadowska N, Fiszer D, Jedrzejczak P, et al. Interleukin-1 superfamily genes expression in normal or impaired human spermatogenesis. Genes Immun. 2007;8:100–7.

    PubMed  CAS  Google Scholar 

  51. Maegawa M, Kamada M, Irahara M, et al. A repertoire of cytokines in human seminal plasma. J Reprod Immunol. 2002;54:33–42.

    PubMed  CAS  Google Scholar 

  52. Politch JA, Tucker L, Bowman FP, et al. Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men. Hum Reprod. 2007;22:2928–35.

    PubMed  CAS  Google Scholar 

  53. Huleihel M, Lunenfeld E, Levy A, et al. Distinct expression levels of cytokines and soluble cytokine receptors in seminal plasma of fertile and infertile men. Fertil Steril. 1996;66:135–9.

    PubMed  CAS  Google Scholar 

  54. Matalliotakis I, Kiriakou D, Fragouli I, et al. Interleukin-6 in seminal plasma of fertile and infertile men. Arch Androl. 1998;41:43–50.

    PubMed  CAS  Google Scholar 

  55. Twillie DA, Eisenberger MA, Carducci MA, et al. Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology. 1995;45:542–9.

    PubMed  CAS  Google Scholar 

  56. Naz RK, Kaplan P. Increased levels of interleukin-6 in seminal plasma of infertile men. J Androl. 1994;15:220–7.

    PubMed  CAS  Google Scholar 

  57. Depuydt CE, Bosmans E, Zalata AA, et al. The relation between reactive oxygen species and cytokines in andrological patients with or without male accessory gland infection. J Androl. 1996;17:699–707.

    PubMed  CAS  Google Scholar 

  58. Friebe K, Bohring C, Skrzypek J, et al. Levels of interleukin-6 and interleukin-8 in seminal fluid of men attending an andrological clinic. Andrologia. 2003;35:126–9.

    PubMed  CAS  Google Scholar 

  59. Huleihel M, Lunenfeld E, Horowitz S, et al. Involvement of serum and lipopolysaccharide in the production of interleukin-1- and interleukin-6-like molecules by human sperm cells. Am J Reprod Immunol. 2000;43:41–6.

    PubMed  CAS  Google Scholar 

  60. Huleihel M, Lunenfeld E, Horowitz S, et al. Production of interleukin-1-like molecules by human sperm cells. Fertil Steril. 2000;73:1132–7.

    PubMed  CAS  Google Scholar 

  61. Huleihel M, Lunenfeld E. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J Androl. 2004;6:259–68.

    PubMed  CAS  Google Scholar 

  62. Ochsendorf RF. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5:399–420.

    PubMed  CAS  Google Scholar 

  63. Comhaire F, Bosmans E, Ombelet W, et al. Cytokines in semen of normal men and of patients with andrological diseases. Am J Reprod Immunol. 1994;31:99–103.

    PubMed  CAS  Google Scholar 

  64. Matalliotakis I, Kyriakou D, Fragouli Y, et al. Determination of interleukin-11 in seminal plasma and elevated IL-11 in seminal plasma of infertile patients with urogenital infection. Arch Androl. 1998;41:177–83.

    PubMed  CAS  Google Scholar 

  65. Papadimas J, Goulis DG, Sotiriades A, et al. Interleukin-1 beta and tumor necrosis factor-alpha in normal/infertile men. Arch Androl. 2002;48:107–13.

    PubMed  CAS  Google Scholar 

  66. Paradisi R, Capelli M, Mandini M, et al. Interleukin-2 in seminal plasma of fertile and infertile men. Arch Androl. 1995;35:35–41.

    PubMed  CAS  Google Scholar 

  67. Gruschwitz MS, Brezinschek R, Brezinschek HP. Cytokine levels in the seminal plasma of infertile males. J Androl. 1996;17:158–63.

    PubMed  CAS  Google Scholar 

  68. Paradisi R, Capelli M, Mandini M, et al. Increased levels of interferon-gamma in seminal plasma of infertile men. Andrologia. 1996;28:157–61.

    PubMed  CAS  Google Scholar 

  69. Paradisi R, Mancini R, Bellavia E, et al. T-helper 2 type cytokine and soluble interleukin-2 receptor levels in seminal plasma of infertile men. Am J Reprod Immunol. 1997;38:94–9.

    PubMed  CAS  Google Scholar 

  70. Dousset B, Hussenet F, Daudin M, et al. Seminal cytokine concentrations (IL-1beta, IL-2, IL-6, sR IL-2, sR IL-6), semen parameters and blood hormonal status in male infertility. Hum Reprod. 1997;12:1476–9.

    PubMed  CAS  Google Scholar 

  71. Matalliotakis IM, Cakmak H, Fragouli Y, et al. Increased IL-18 levels in seminal plasma of infertile men with genital tract infections. Am J Reprod Immunol. 2006;55:428–33.

    PubMed  CAS  Google Scholar 

  72. Eggert-Kruse W, Boit R, Rohr G, et al. Relationship of seminal plasma interleukin (IL) -8 and IL-6 with semen quality. Hum Reprod. 2001;16:517–28.

    PubMed  CAS  Google Scholar 

  73. Kocak I, Yenisey C, Dundar M, et al. Relationship between seminal plasma interleukin-6 and tumor necrosis factor alpha levels with semen parameters in fertile and infertile men. Urol Res. 2002;30:263–7.

    PubMed  CAS  Google Scholar 

  74. Furuya Y, Akashi T, Fuse H. Soluble Fas and interleukin-6 and interleukin-8 levels in seminal plasma of infertile men. Arch Androl. 2003;49:449–52.

    PubMed  CAS  Google Scholar 

  75. Paulis G, Conti E, Voliani S, et al. Evaluation of the cytokines in genital secretions of patients with chronic prostatitis. Arch Ital Urol Androl. 2003;75:179–86.

    PubMed  Google Scholar 

  76. Sanocka D, Jedrzejczak P, Szumala-Kakol A, et al. Male genital tract inflammation: the role of selected interleukins in regulation of pro-oxidant and antioxidant enzymatic substances in seminal plasma. J Androl. 2003;24:448–55.

    PubMed  Google Scholar 

  77. Kopa Z, Wenzel J, Papp GK, et al. Role of granulocyte elastase and interleukin-6 in the diagnosis of male genital tract inflammation. Andrologia. 2005;37:188–94.

    PubMed  CAS  Google Scholar 

  78. Bezold G, Politch JA, Kiviat NB, et al. Prevalence of sexually transmissible pathogens in semen from asymptomatic male infertility patients with and without leukocytospermia. Fertil Steril. 2007;87:1087–97.

    PubMed  Google Scholar 

  79. Hill JA, Haimovici F, Politch JA, et al. Effects of soluble products of activated lymphocytes and macrophages (lymphokines and monokines) on human sperm motion parameters. Fertil Steril. 1987;47:460–5.

    PubMed  CAS  Google Scholar 

  80. Eisermann J, Register KB, Strickler RC, et al. The effect of tumor necrosis factor on human sperm motility in vitro. J Androl. 1989;10:270–4.

    PubMed  CAS  Google Scholar 

  81. Hill JA, Cohen J, Anderson DJ. The effects of lymphokines and monokines on human sperm fertilizing ability in the zona-free hamster egg penetration test. Am J Obstet Gynecol. 1989;160:1154–9.

    PubMed  CAS  Google Scholar 

  82. Fedder J, Ellerman-Eriksen S. Effect of cytokines on sperm motility and ionophore-­stimulated acrosome reaction. Arch Androl. 1995;35:173–85.

    PubMed  CAS  Google Scholar 

  83. Naz RK, Evans L. Presence and modulation of interleukin-12 in seminal plasma of fertile and infertile men. J Androl. 1998;19:302–7.

    PubMed  CAS  Google Scholar 

  84. Feldmann M, Saklatvala J. Proinflammatory cytokines. In: Oppenheim JJ, Feldman M, editors. Cytokine reference. New York: Academic; 2001. p. 291–305.

    Google Scholar 

  85. Sanocka D, Fraczek M, Jedrzejczak P, et al. Male genital tract infection: an influence of leukocytes and bacteria on semen. J Reprod Immunol. 2004;62:111–24.

    PubMed  CAS  Google Scholar 

  86. Hussenet F, Dousset B, Cordonnier JL, et al. Tumour necrosis factor alpha and interleukin 2 in normal and infected human seminal fluid. Hum Reprod. 1993;8:409–11.

    PubMed  CAS  Google Scholar 

  87. Estrada LS, Champion HC, Wang R, et al. Effect of tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) on human sperm motility, viability and motion parameters. Int J Androl. 1997;20:237–42.

    PubMed  CAS  Google Scholar 

  88. Fraczek M, Sanocka D, Kamieniczna M, et al. Proinflammatory cytokines as an intermediate factor enhancing lipid sperm membrane peroxidation in in vitro conditions. J Androl. 2008;29:85–92.

    PubMed  CAS  Google Scholar 

  89. Motrich RD, Maccioni M, Molina R, et al. Reduced semen quality in chronic prostatitis patients that have cellular autoimmune response to prostate antigens. Hum Reprod. 2005;20:2567–72.

    PubMed  Google Scholar 

  90. Theas MS, Rival C, Jarazo-Dietrich S, et al. Tumour necrosis factor-alpha released by testicular macrophages induces apoptosis of germ cells in autoimmune orchitis. Hum Reprod. 2008;23:1865–72.

    PubMed  CAS  Google Scholar 

  91. Basu S, Aballa TC, Ferrell SM, et al. Inflammatory cytokine concentrations are elevated in seminal plasma of men with spinal cord injuries. J Androl. 2004;25:250–4.

    PubMed  CAS  Google Scholar 

  92. Nallella KP, Allamaneni SS, Pasqualotto FF, et al. Relationship of interleukin-6 with semen characteristics and oxidative stress in patients with varicocele. Urology. 2004;64:1010–3.

    PubMed  Google Scholar 

  93. Martínez-Prado E, Camejo Bermúdez MI. Expression of IL-6, IL-8, TNF-alpha, IL-10, HSP-60, anti-HSP-60 antibodies, and anti-sperm antibodies, in semen of men with leukocytes and/or bacteria. Am J Reprod Immunol. 2010;63:233–43.

    PubMed  Google Scholar 

  94. Kokab A, Akhondi MM, Sadeghi MR, et al. Raised inflammatory markers in semen from men with asymptomatic chlamydial infection. J Androl. 2010;31:114–20.

    PubMed  CAS  Google Scholar 

  95. Eggert-Kruse W, Kiefer I, Beck C, et al. Role for tumor necrosis factor alpha (TNF-alpha) and interleukin 1-beta (IL-1beta) determination in seminal plasma during infertility investigation. Fertil Steril. 2007;87:810–23.

    PubMed  CAS  Google Scholar 

  96. Omu AE, Al-Qattan F, Al-Abdul-Hadi FM, et al. Seminal immune response in infertile men with leukocytospermia: effect on antioxidant activity. Eur J Obstet Gynecol Reprod Biol. 1999;86:195–2002.

    PubMed  CAS  Google Scholar 

  97. Lee CY, Man-Fan Wan J. Vitamin E supplementation improves cell-mediated immunity and oxidative stress of Asian men and women. J Nutr. 2000;130:2932–7.

    PubMed  CAS  Google Scholar 

  98. Aitken RJ, Baker MA, De Iuliis GN, et al. New insights into sperm physiology and pathology. Handb Exp Pharmacol. 2010;198:99–115.

    PubMed  CAS  Google Scholar 

  99. Wang A, Fanning L, Anderson DJ, et al. Generation of reactive oxygen species by leukocytes and sperm following exposure to urogenital tract infection. Arch Androl. 1997;39:11–7.

    PubMed  CAS  Google Scholar 

  100. Comhaire FH, Mahmoud AM, Depuydt CE, et al. Mechanisms and effects of male genital tract infection on sperm quality and fertilizing potential: the andrologist’s viewpoint. Hum Reprod Update. 1999;5:393–8.

    PubMed  CAS  Google Scholar 

  101. Wolff H, Anderson DJ. Immunohistologic characterization and quantitation of leukocyte subpopulations in human semen. Fertil Steril. 1988;49:497–504.

    PubMed  CAS  Google Scholar 

  102. Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63:1143–57.

    PubMed  CAS  Google Scholar 

  103. Kovalski N, de Lamirande E, Gagnon C. Reactive oxygen species generated by human neutrophils inhibit sperm motility: protective effect of seminal plasma and scavengers. Fertil Steril. 1992;58:809–16.

    PubMed  CAS  Google Scholar 

  104. Shimoya K, Matsuzaki N, Tsutsui T, et al. Detection of interleukin-8 (IL-8) in seminal plasma and elevated IL-8 in seminal plasma of infertile patients with leukospermia. Fertil Steril. 1993;59:885–8.

    PubMed  CAS  Google Scholar 

  105. Rajasekaran M, Hellstrom WJ, Naz RK, et al. Oxidative stress and interleukins in seminal plasma during leukocytospermia. Fertil Steril. 1995;64:166–71.

    PubMed  CAS  Google Scholar 

  106. Liu J, Wang YX, Wu YL, et al. Measurement of the reactive oxygen species and cytokines in the seminal plasma of leukocytospermic patients. Zhonghua Nan Ke Xue. 2003;9:103–5.

    PubMed  CAS  Google Scholar 

  107. Jedrzejczak P, Fraczek M, Szumala-Kakol A, et al. Consequences of semen inflammation and lipid peroxidation on fertilization capacity of spermatozoa in in vitro conditions. Int J Androl. 2005;28:275–83.

    PubMed  CAS  Google Scholar 

  108. Alexander RB, Ponniah S, Hasday J, et al. Elevated levels of proinflammatory cytokines in the semen of patients with chronic prostatitis/chronic pelvic pain syndrome. Urology. 1998;52:744–9.

    PubMed  CAS  Google Scholar 

  109. Naz RK, Evans L, Armstrong JS, et al. Decreased levels of interleukin-12 are not correlated with leukocyte concentration and superoxide dismutase activity in semen of infertile men. Arch Androl. 1998;41:91–6.

    PubMed  CAS  Google Scholar 

  110. Aitken RJ, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays. 1994;16:259–67.

    PubMed  CAS  Google Scholar 

  111. Buch JP, Kolon TF, Maulik N, et al. Cytokines stimulate lipid membrane peroxidation of human sperm. Fertil Steril. 1994;62:186–8.

    PubMed  CAS  Google Scholar 

  112. DeForge LE, Preston AM, Takeuchi E, et al. Regulation of interleukin 8 gene expression by oxidant stress. J Biol Chem. 1993;268:25568–76.

    PubMed  CAS  Google Scholar 

  113. Kikumori T, Kambe F, Nagaya T, et al. Activation of transcriptionally active nuclear factor-kappaB by tumor necrosis factor-alpha and its inhibition by antioxidants in rat thyroid FRTL-5 cells. Endocrinology. 1998;139:1715–22.

    PubMed  CAS  Google Scholar 

  114. Boulares AH, Giardina C, Inan MS, et al. Acetaminophen inhibits NF-kappaB activation by interfering with the oxidant signal in murine Hepa 1-6 cells. Toxicol Sci. 2000;55:370–5.

    PubMed  CAS  Google Scholar 

  115. Das UN. Interaction(s) between essential fatty acids, eicosanoids, cytokines, growth factors and free radicals: relevance to new therapeutic strategies in rheumatoid arthritis and other collagen vascular diseases. Prostaglandins Leukot Essent Fatty Acids. 1991;44:201–10.

    PubMed  CAS  Google Scholar 

  116. Barrett EG, Johnston C, Oberdörster G, et al. Silica-induced chemokine expression in alveolar type II cells is mediated by TNF-alpha-induced oxidant stress. Am J Physiol. 1999;276:L979–88.

    PubMed  CAS  Google Scholar 

  117. Seo JY, Kim H, Seo JT, et al. Oxidative stress induced cytokine production in isolated rat pancreatic acinar cells: effects of small-molecule antioxidants. Pharmacology. 2002;64:63–70.

    PubMed  CAS  Google Scholar 

  118. Wereszczynska-Siemiatkowska U, Mroczko B, Siemiątkowski A, et al. The importance of interleukin 18, glutathione peroxidase, and selenium concentration changes in acute pancreatitis. Dig Dis Sci. 2004;49:642–50.

    PubMed  CAS  Google Scholar 

  119. Hennig B, Meerarani P, Toborek M, et al. Antioxidant-like properties of zinc in activated endothelial cells. J Am Coll Nutr. 1999;18:152–8.

    PubMed  CAS  Google Scholar 

  120. Karube-Harada A, Sugino N, Kashida S, et al. Induction of manganese superoxide dismutase by tumour necrosis factor-alpha in human endometrial stromal cells. Mol Hum Reprod. 2001;7:1065–72.

    PubMed  CAS  Google Scholar 

  121. Isoherranen K, Peltola V, Laurikainen L, et al. Regulation of copper/zinc and manganese dismutase by UVB irradiation, oxidative stress and cytokines. J Photochem Photobiol B. 1997;40:288–93.

    PubMed  CAS  Google Scholar 

  122. Omu AE, Al-Qattan F, Al-Abdul-Hadi FM, et al. Seminal immune response in infertile men with leukocytospermia: effect on antioxidant activity. Eur J Obstet Gynecol Reprod Biol. 1999;86:195–202.

    PubMed  CAS  Google Scholar 

  123. Pannekoek Y, Trum JW, Bleker OP, et al. Cytokine concentrations in seminal plasma from subfertile men are not indicative of the presence of ureaplasma urealyticum or mycoplasma hominis in the lower genital tract. J Med Microbiol. 2000;49:697–700.

    PubMed  CAS  Google Scholar 

  124. Matalliotakis I, Arici A, Goumenou A, et al. Distinct expression pattern of cytokines in semen of men with genital infection and oligo-terato-asthenozoospermia. Am J Reprod Immunol. 2002;48:170–5.

    PubMed  Google Scholar 

  125. Fraczek M, Kurpisz M. Inflammatory mediators exert toxic effects of oxidative stress on human spermatozoa. J Androl. 2007;28:325–33.

    PubMed  CAS  Google Scholar 

  126. Sharma RK, Pasqualotto FF, Nelson DR, et al. The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod. 1999;14:2801–7.

    PubMed  CAS  Google Scholar 

  127. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43.

    PubMed  Google Scholar 

  128. Alvarez JG, Touchstone JC, Blasco L, et al. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. J Androl. 1987;8:338–48.

    PubMed  CAS  Google Scholar 

  129. Rao B, Soufir JC, Martin M, et al. Lipid peroxidation in human spermatozoa as related to midpiece abnormalities and motility. Gamete Res. 1989;24:127–34.

    PubMed  CAS  Google Scholar 

  130. Aitken RJ, Harkiss D, Buckingham DW. Analysis of lipid peroxidation mechanisms in human spermatozoa. Mol Reprod Dev. 1993;35:302–15.

    PubMed  CAS  Google Scholar 

  131. Engel S, Schreiner T, Petzoldt R. Lipid peroxidation in human spermatozoa and maintenance of progressive sperm motility. Andrologia. 1999;31:17–22.

    PubMed  CAS  Google Scholar 

  132. Fraczek M, Szkutnik D, Sanocka D, et al. Peroxidation components of sperm lipid membranes in male infertility. Ginekol Pol. 2001;72:73–9.

    PubMed  CAS  Google Scholar 

  133. Zalata AA, Christophe AB, Depuydt CE, et al. White blood cells cause oxidative damage to the fatty acid composition of phospholipids of human spermatozoa. Int J Androl. 1998;21:154–62.

    PubMed  CAS  Google Scholar 

  134. Fraczek M, Sanocka D, Kurpisz M. Interaction between leucocytes and human spermatozoa influencing reactive oxygen intermediates release. Int J Androl. 2004;27:69–75.

    PubMed  CAS  Google Scholar 

  135. Fraczek M, Szumala-Kakol A, Jedrzejczak P, et al. Bacteria trigger oxygen radical release and sperm lipid peroxidation in in vitro model of semen inflammation. Fertil Steril. 2007;88:1076–85.

    PubMed  Google Scholar 

  136. Camejo MI, Segnini A, Proverbio F. Interleukin-6 (IL-6) in seminal plasma of infertile men, and lipid peroxidation of their sperm. Arch Androl. 2001;47:97–101.

    PubMed  CAS  Google Scholar 

  137. Martinez P, Proverbio F, Camejo MI. Sperm lipid peroxidation and pro-inflammatory cytokines. Asian J Androl. 2007;9:102–7.

    PubMed  CAS  Google Scholar 

  138. Zalata AA, Hafez T, Comhaire F. Evaluation of the role of reactive oxygen species in male infertility. Hum Reprod. 1995;10:1444–51.

    PubMed  CAS  Google Scholar 

  139. Aitken RJ, Krausz C, Buckingham D. Relationship between biochemical markers for residual sperm cytoplasm, reactive oxygen species generation, and the presence of leukocytes and precursor germ cells in human sperm suspensions. Mol Reprod Dev. 1994;39:268–79.

    PubMed  CAS  Google Scholar 

  140. Huszar G, Vigue L. Correlation between the rate of lipid peroxidation and cellular maturity as measured by creatine kinase activity in human spermatozoa. J Androl. 1994;15:71–7.

    PubMed  CAS  Google Scholar 

  141. Hughes M, Lewis SE, McKelvey-Martin VJ, et al. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod. 1996;2:613–9.

    PubMed  CAS  Google Scholar 

  142. Baccetti B, Collodel G, Piomboni P. Apoptosis in human ejaculated sperm cells (notulae seminologicae 9). J Submicrosc Cytol Pathol. 1996;28:587–96.

    PubMed  CAS  Google Scholar 

  143. Lopes S, Sun JG, Jurisicova A, et al. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril. 1998;69:528–32.

    PubMed  CAS  Google Scholar 

  144. Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250:66–9.

    PubMed  CAS  Google Scholar 

  145. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.

    PubMed  CAS  Google Scholar 

  146. Wang X, Sharma RK, Sikka SC, et al. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril. 2003;80:531–5.

    PubMed  Google Scholar 

  147. Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005;95:503–7.

    PubMed  CAS  Google Scholar 

  148. Oosterhuis GJ, Mulder AB, Kalsbeek-Batenburg E, et al. Measuring apoptosis in human spermatozoa: a biological assay for semen quality? Fertil Steril. 2000;74:245–50.

    PubMed  CAS  Google Scholar 

  149. Said T, Agarwal A, Grunewald S, et al. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod. 2006;74:530–7.

    PubMed  CAS  Google Scholar 

  150. Grunewald S, Said TM, Paasch U, et al. Relationship between sperm apoptosis signalling and oocyte penetration capacity. Int J Androl. 2008;31:325–30.

    PubMed  CAS  Google Scholar 

  151. Dinarello CA. Interleukin-18, a proinflammatory cytokine. Eur Cytokine Netw. 2000;11:483–6.

    PubMed  CAS  Google Scholar 

  152. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–5.

    PubMed  CAS  Google Scholar 

  153. Riccioli A, Salvati L, D’Alessio A, et al. The Fas system in the seminiferous epithelium and its possible extra-testicular role. Andrologia. 2003;35:64–70.

    PubMed  CAS  Google Scholar 

  154. Salguero FJ, Sánchez-Cordón PJ, Núñez A, et al. Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. J Comp Pathol. 2005;132:289–302.

    PubMed  CAS  Google Scholar 

  155. Mariño E, Cardier JE. Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-alpha and Fas (CD95). Cytokine. 2003;22:142–8.

    PubMed  Google Scholar 

  156. Li MW, Mruk DD, Lee WM, et al. Cytokines and junction restructuring events during spermatogenesis in the testis: an emerging concept of regulation. Cytokine Growth Factor Rev. 2009;20:329–38.

    PubMed  CAS  Google Scholar 

  157. Barroso G, Morshedi M, Oehninger S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod. 2000;15:1338–44.

    PubMed  CAS  Google Scholar 

  158. Ollero M, Gil-Guzman E, Lopez MC, et al. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16:1912–21.

    PubMed  CAS  Google Scholar 

  159. Lampiao F, du Plessis SS. TNF-alpha and IL-6 affect human sperm function by elevating nitric oxide production. Reprod Biomed Online. 2008;17:628–31.

    PubMed  CAS  Google Scholar 

  160. Said TM, Agarwal A, Falcone T, et al. Infliximab may reverse the toxic effects induced by tumor necrosis factor alpha in human spermatozoa: an in vitro model. Fertil Steril. 2005;83:1665–73.

    PubMed  CAS  Google Scholar 

  161. Perdichizzi A, Nicoletti F, La Vignera S, et al. Effects of tumour necrosis factor-alpha on human sperm motility and apoptosis. J Clin Immunol. 2007;27:152–62.

    PubMed  CAS  Google Scholar 

  162. Allam JP, Fronhoffs F, Fathy A, et al. High percentage of apoptotic spermatozoa in ejaculates from men with chronic genital tract inflammation. Andrologia. 2008;40:329–34.

    PubMed  Google Scholar 

  163. Haidl G, Allam JP, Schuppe HC. Chronic epididymitis: impact on semen parameters and therapeutic options. Andrologia. 2008;40:92–6.

    PubMed  CAS  Google Scholar 

  164. Penna G, Mondaini N, Amuchastegui S, et al. Seminal plasma cytokines and chemokines in prostate inflammation: interleukin 8 as a predictive biomarker in chronic prostatitis/chronic pelvic pain syndrome and benign prostatic hyperplasia. Eur Urol. 2007;51:524–33.

    PubMed  CAS  Google Scholar 

  165. Matalliotakis I, Goumenou A, Fragouli Y, et al. Soluble IL-6 receptor levels in the seminal plasma of infertile patients with accessory gland infection. Arch Androl. 2000;44:237–42.

    PubMed  CAS  Google Scholar 

  166. Krause W, Bohring C, Gueth A, et al. Cellular and biochemical markers in semen indicating male accessory gland inflammation. Andrologia. 2003;35:279–82.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Kurpisz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fraczek, M., Czernikiewicz, A., Kurpisz, M. (2012). Cytokines and Oxidative Stress in the Germ Line. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_9

Download citation

Publish with us

Policies and ethics