Skip to main content

Cryostorage and Oxidative Stress in Mammalian Spermatozoa

  • Chapter
  • First Online:

Abstract

Although cryopreservation of ejaculated sperm has been in clinical and agricultural use for decades, it is not completely clear how the damage that sperm incur as a result of cryopreservation contributes to fertilization failure, or embryonic or fetal loss. Oxygen is required for life, but oxidative metabolism, particularly during low temperature storage, of biological molecules can be potentially toxic due to the formation of reactive oxygen species (ROS) that can modify cell functions or viability. A limited ability to store antioxidant enzymes combined with a membrane rich in unsaturated fatty acids makes spermatozoa particularly susceptible to oxidative stress and peroxidative attack by ROS, specifically superoxide anion and hydrogen peroxide. This chapter outlines the primary mechanisms of sperm damage during cryopreservation and loss of subsequent fertility and discusses the potential mechanisms of DNA/chromosomal fragmentation and damage, lipid peroxidation, and intracellular ice formation and associated cell damage. The origin of ROS in sperm is discussed as well as how ROS are processed and ultimately scavenged by sperm.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tosic J, Walton A. Formation of hydrogen peroxide by spermatozoa and its inhibitory effect of respiration. Nature. 1946;158:485.

    PubMed  CAS  Google Scholar 

  2. Macleod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am J Physiol. 1943;138:512–8.

    CAS  Google Scholar 

  3. Klooster KL, Burruel VR, Meyers SA. Loss of fertilization potential of desiccated rhesus macaque spermatozoa following prolonged storage. Cryobiology. 2011;62(3):161–6.

    PubMed  Google Scholar 

  4. Li MW, Biggers JD, Elmoazzen HY, Toner M, McGinnis L, Lloyd KC. Long-term storage of mouse spermatozoa after evaporative drying. Reproduction. 2007;133(5):919–29.

    PubMed  CAS  Google Scholar 

  5. Li MW, Meyers S, Tollner TL, Overstreet JW. Damage to chromosomes and DNA of rhesus monkey sperm following cryopreservation. J Androl. 2007;28(4):493–501.

    PubMed  CAS  Google Scholar 

  6. Sanchez R, Risopatron J, Schulz M, et al. Canine sperm vitrification with sucrose: effect on sperm function. Andrologia. 2011;43(4):233–41.

    PubMed  CAS  Google Scholar 

  7. Katkov II, Isachenko V, Isachenko E, et al. Low- and high-temperature vitrification as a new approach to biostabilization of reproductive and progenitor cells. Int J Refrig. 2006;29:346–57.

    CAS  Google Scholar 

  8. Buchanan SS, Gross SA, Acker JP, Toner M, Carpenter JF, Pyatt DW. Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev. 2004;13(3):295–305.

    PubMed  CAS  Google Scholar 

  9. Reubinoff BE, Pera MF, Vajta G, Trounson AO. Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod. 2001;16(10):2187–94.

    PubMed  CAS  Google Scholar 

  10. Massip A, Blesbois E. Cryobiology of gametes and the breeding of domestic animals. In: Lane N, Fuller J, Benson E, editors. Life in the frozen state. Boca Raton: CRC Press LLC; 2004. p. 347–70.

    Google Scholar 

  11. Mazur P. Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE, editors. Life in the frozen state. Boca Raton: CRC; 2004.

    Google Scholar 

  12. Watson PF. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci. 2000;60:481–92.

    PubMed  Google Scholar 

  13. Massip A. Cryopreservation of bovine oocytes: current status and recent developments. Reprod Nutr Dev. 2003;43(4):325–30.

    PubMed  Google Scholar 

  14. Graham EF, Schmehl MKL, Evensen BK, Nelson DS. Viability assays for frozen semen. Cryobiology. 1978;15(2):242–4.

    PubMed  CAS  Google Scholar 

  15. Johnson LA, Weitze KF, Fiser P, Maxwell WMC. Storage of boar semen. Anim Reprod Sci. 2000;62(1–3):143–72.

    PubMed  CAS  Google Scholar 

  16. Pommer AC, Rutllant J, Meyers SA. The role of osmotic resistance on equine spermatozoal function. Theriogenology. 2002;58(7):1373–84.

    PubMed  Google Scholar 

  17. Pommer AC, Rutllant J, Meyers SA. Phosphorylation of protein tyrosine residues in fresh and cryopreserved stallion spermatozoa under capacitating conditions. Biol Reprod. 2003;68(4):1208–14.

    PubMed  CAS  Google Scholar 

  18. Rutllant J, Pommer AC, Meyers SA. Osmotic tolerance limits and properties of rhesus monkey (Macaca mulatta) spermatozoa. J Androl. 2003;24(4):534–41.

    PubMed  Google Scholar 

  19. Correa LM, Thomas A, Meyers SA. The macaque sperm actin cytoskeleton reorganizes in response to osmotic stress and contributes to morphological defects and decreased motility. Biol Reprod. 2007;77(6):942–53.

    PubMed  CAS  Google Scholar 

  20. Baumber J, Ball BA, Linfor JJ, Meyers SA. Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. J Androl. 2003;24(4):621–8.

    PubMed  CAS  Google Scholar 

  21. Gandini L, Lombardo F, Lenzi A, Spano M, Dondero F. Cryopreservation and sperm DNA integrity. Cell Tissue Bank. 2006;7(2):91–8.

    PubMed  CAS  Google Scholar 

  22. Toro E, Fernandez S, Lopez-Teijon M, Alvarez J, Velillal E. Cryopreservation of human sperm results in an increase in sperm DNA fragmentation. J Androl. 2009;30:90–1.

    Google Scholar 

  23. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod. 1996;2(8):613–9.

    PubMed  CAS  Google Scholar 

  24. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68(3):519–24.

    PubMed  CAS  Google Scholar 

  25. Twigg JP, Irvine DS, Aitken RJ. Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum Reprod. 1998;13(7):1864–71.

    PubMed  CAS  Google Scholar 

  26. Barratt CL, Aitken RJ, Bjorndahl L, et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications—a position report. Hum Reprod. 2010;25(4):824–38.

    PubMed  Google Scholar 

  27. Baker MA, Aitken RJ. Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility. Reprod Biol Endocrinol. 2005;3:67.

    PubMed  Google Scholar 

  28. Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool. 1999;284(6):696–704.

    PubMed  CAS  Google Scholar 

  29. Evenson DP, Jost LK, Marshall D, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14(4):1039–49.

    PubMed  CAS  Google Scholar 

  30. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75(4):674–7.

    PubMed  CAS  Google Scholar 

  31. Cho C, Jung-Ha H, Willis WD, et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69(1):211–7.

    PubMed  CAS  Google Scholar 

  32. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21(1):33–44.

    PubMed  CAS  Google Scholar 

  33. Wehbi E, Meriano J, Laskin C, Jarvi KA. Adverse Ivf/Icsi outcomes associated with higher levels of sperm DNA fragmentation. J Urol. 2009;181(4):688.

    Google Scholar 

  34. Zini A, Libman J. Sperm DNA damage: clinical significance in the era of assisted reproduction. CMAJ. 2006;175(5):495–500.

    PubMed  Google Scholar 

  35. Sakkas D, Seli E, Bizzaro D, Tarozzi N, Manicardi GC. Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodelling during spermatogenesis. Reprod Biomed Online. 2003;7(4):428–32.

    PubMed  Google Scholar 

  36. Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal. 2011;14(3):367–81.

    PubMed  CAS  Google Scholar 

  37. Bilodeau JF, Chatterjee S, Sirard MA, Gagnon C. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol Reprod Dev. 2000;55(3):282–8.

    PubMed  CAS  Google Scholar 

  38. Gadea J, Selles E, Marco MA, et al. Decrease in glutathione content in boar sperm after cryopreservation. Effect of the addition of reduced glutathione to the freezing and thawing extenders. Theriogenology. 2004;62(3–4):690–701.

    PubMed  CAS  Google Scholar 

  39. Chatterjee S, de Lamirande E, Gagnon C. Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione. Mol Reprod Dev. 2001;60(4):498–506.

    PubMed  CAS  Google Scholar 

  40. Chatterjee S, Gagnon C. Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol Reprod Dev. 2001;59(4):451–8.

    PubMed  CAS  Google Scholar 

  41. Ball BA, Medina V, Gravance CG, Baumbe J. Effect of antioxidants on preservation of motility, viability and acrosomal integrity of equine spermatozoa during storage at 5 degrees C. Theriogenology. 2001;56(4):577–89.

    PubMed  CAS  Google Scholar 

  42. Ball BA, Vo AT, Baumber J. Generation of reactive oxygen species by equine spermatozoa. Am J Vet Res. 2001;62(4):508–15.

    PubMed  CAS  Google Scholar 

  43. Wang Y, Sharma RK, Agarwal A. Effect of cryopreservation and sperm concentration on lipid peroxidation in human semen. Urology. 1997;50(3):409–13.

    PubMed  CAS  Google Scholar 

  44. McCarthy MJ, Baumber J, Kass PH, Meyers SA. Osmotic stress induces oxidative cell damage to rhesus macaque spermatozoa. Biol Reprod. 2010;82(3):644–51.

    PubMed  CAS  Google Scholar 

  45. McCarthy MJ, Meyers SA. Antioxidant treatment in the absence of exogenous lipids and proteins protects rhesus macaque sperm from cryopreservation-induced cell membrane damage. Theriogenology. 2011;76(1):168–76.

    PubMed  CAS  Google Scholar 

  46. Sofikitis N, Miyagawa I, Dimitriadis D, Zavos P, Sikka S, Hellstrom W. Effects of smoking on testicular function, semen quality and sperm fertilizing capacity. J Urol. 1995;154(3):1030–4.

    PubMed  CAS  Google Scholar 

  47. Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25(10):2415–26.

    PubMed  CAS  Google Scholar 

  48. Alvarez JG, Storey BT. Role of superoxide-dismutase in protecting rabbit spermatozoa from O-2 toxicity due to lipid-peroxidation. Biol Reprod. 1983;28(5):1129–36.

    PubMed  CAS  Google Scholar 

  49. Barbas JP, Mascarenhas RD. Cryopreservation of domestic animal sperm cells. Cell Tissue Bank. 2009;10(1):49–62.

    PubMed  CAS  Google Scholar 

  50. Tatone C, Di Emidio G, Vento M, Ciriminna R, Artini PG. Cryopreservation and oxidative stress in reproductive cells. Gynecol Endocrinol. 2010;26(8):563–7.

    PubMed  Google Scholar 

  51. Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci. 1995;108(Pt 5):2017–25.

    PubMed  CAS  Google Scholar 

  52. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Adv Exp Med Biol. 2008;636:154–71.

    PubMed  CAS  Google Scholar 

  53. Bailey JL, Bilodeau JF, Cormier N. Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. J Androl. 2000;21(1):1–7.

    PubMed  CAS  Google Scholar 

  54. Baumber J, Ball BA, Linfor JJ, Meyers SA. Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. J Androl. 2003;24(4):621–8.

    PubMed  CAS  Google Scholar 

  55. Linfor JJ, Meyers SA. Detection of DNA damage in response to cooling injury in equine spermatozoa using single-cell gel electrophoresis. J Androl. 2002;23(1):107–13.

    PubMed  CAS  Google Scholar 

  56. Bilodeau JF, Blanchette S, Cormier N, Sirard MA. Reactive oxygen species-mediated loss of bovine sperm motility in egg yolk Tris extender: protection by pyruvate, metal chelators and bovine liver or oviductal fluid catalase. Theriogenology. 2002;57(3):1105–22.

    PubMed  CAS  Google Scholar 

  57. Fraser L, Strzezek J. Effects of freezing-thawing on DNA integrity of boar spermatozoa assessed by the neutral comet assay. Reprod Domest Anim. 2005;40(6):530–6.

    PubMed  CAS  Google Scholar 

  58. Holt WV. Basic aspects of frozen storage of semen. Anim Reprod Sci. 2000;62(1–3):3–22.

    PubMed  CAS  Google Scholar 

  59. Ricker JV, Linfor JJ, Delfino WJ, et al. Equine sperm membrane phase behavior: the effects of lipid-based cryoprotectants. Biol Reprod. 2006;74(2):359–65.

    PubMed  CAS  Google Scholar 

  60. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.

    PubMed  CAS  Google Scholar 

  61. Pourova J, Kottova M, Voprsalova M, Pour M. Reactive oxygen and nitrogen species in normal physiological processes. Acta Physiol (Oxf). 2010;198(1):15–35.

    CAS  Google Scholar 

  62. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9(6):367–76.

    PubMed  CAS  Google Scholar 

  63. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41(1):183–97.

    PubMed  CAS  Google Scholar 

  64. Aitken RJ, West KM. Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. Int J Androl. 1990;13(6):433–51.

    PubMed  CAS  Google Scholar 

  65. Aitken RJ. Molecular mechanisms regulating human sperm function. Mol Hum Reprod. 1997;3(3):169–73.

    PubMed  CAS  Google Scholar 

  66. Banfi B, Molnar G, Maturana A, et al. A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem. 2001;276(40):37594–601.

    PubMed  CAS  Google Scholar 

  67. Ford WC. Regulation of sperm function by reactive oxygen species. Hum Reprod Update. 2004;10(5):387–99.

    PubMed  CAS  Google Scholar 

  68. Sabeur K, Ball BA. Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction. 2007;134(2):263–70.

    PubMed  CAS  Google Scholar 

  69. Ford WC, Whittington K, Williams AC. Reactive oxygen species in human sperm suspensions: production by leukocytes and the generation of NADPH to protect sperm against their effects. Int J Androl. 1997;20 Suppl 3:44–9.

    PubMed  CAS  Google Scholar 

  70. de Lamirande E, Harakat A, Gagnon C. Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. J Androl. 1998;19:215–25.

    PubMed  Google Scholar 

  71. Armstrong JS, Bivalacqua TJ, Chamulitrat W, Sikka S, Hellstrom WJ. A comparison of the NADPH oxidase in human sperm and white blood cells. Int J Androl. 2002;25(4):223–9.

    PubMed  CAS  Google Scholar 

  72. Richer SC, Ford WC. A critical investigation of NADPH oxidase activity in human spermatozoa. Mol Hum Reprod. 2001;7(3):237–44.

    PubMed  CAS  Google Scholar 

  73. Baker MA, Krutskikh A, Curry BJ, McLaughlin EA, Aitken RJ. Identification of cytochrome P450-reductase as the enzyme responsible for NADPH-dependent lucigenin and tetrazolium salt reduction in rat epididymal sperm preparations. Biol Reprod. 2004;71(1):307–18.

    PubMed  CAS  Google Scholar 

  74. Shukla S, Jha RK, Laloraya M, Kumar PG. Identification of non-mitochondrial NADPH oxidase and the spatio-temporal organization of its components in mouse spermatozoa. Biochem Biophys Res Commun. 2005;331(2):476–83.

    PubMed  CAS  Google Scholar 

  75. Baker MA, Reeves G, Hetherington L, Muller J, Baur I, Aitken RJ. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl. 2007;1(5):524–32.

    PubMed  CAS  Google Scholar 

  76. Halliwell B, Cross CE. Reactive oxygen species, antioxidants, and acquired immunodeficiency syndrome. Sense or speculation? Arch Intern Med. 1991;151(1):29–31.

    PubMed  CAS  Google Scholar 

  77. Aitken RJ, West K, Buckingham D. Leukocytic infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J Androl. 1994;15(4):343–52.

    PubMed  CAS  Google Scholar 

  78. Ball BA. Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Anim Reprod Sci. 2008;107(3–4):257–67.

    PubMed  CAS  Google Scholar 

  79. Ball BA, Vo A. Detection of lipid peroxidation in equine spermatozoa based upon the lipophilic fluorescent dye C1l-BODIPY581/591. J Androl. 2002;23(2):259–69.

    PubMed  CAS  Google Scholar 

  80. Jang HY, Kim YH, Kim BW, et al. Ameliorative effects of melatonin against hydrogen peroxide-induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development. Reprod Domest Anim. 2010;45(6):943–50.

    PubMed  CAS  Google Scholar 

  81. Ramya T, Misro MM, Sinha D, Nandan D, Mithal S. Altered levels of seminal nitric oxide, nitric oxide synthase, and enzymatic antioxidants and their association with sperm function in infertile subjects. Fertil Steril. 2011;95(1):135–40.

    PubMed  CAS  Google Scholar 

  82. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008;93(8):3199–207.

    PubMed  CAS  Google Scholar 

  83. Koppers AJ, Garg ML, Aitken RJ. Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radic Biol Med. 2010;48(1):112–9.

    PubMed  CAS  Google Scholar 

  84. Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM. Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med. 2002;33(6):755–64.

    PubMed  CAS  Google Scholar 

  85. Sanocka D, Miesel R, Jedrzejczak P, Kurpisz MK. Oxidative stress and male infertility. J Androl. 1996;17(4):449–54.

    PubMed  CAS  Google Scholar 

  86. Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250(1–2):66–9.

    PubMed  CAS  Google Scholar 

  87. Aitken RJ, Buckingham DW, Carreras A, Irvine DS. Superoxide dismutase in human sperm suspensions: relationship with cellular composition, oxidative stress, and sperm function. Free Radic Biol Med. 1996;21(4):495–504.

    PubMed  CAS  Google Scholar 

  88. Burnaugh L, Ball BA, Sabeur K, Thomas AD, Meyers SA. Osmotic stress stimulates generation of superoxide anion by spermatozoa in horses. Anim Reprod Sci. 2010;117(3–4):249–60.

    PubMed  CAS  Google Scholar 

  89. Benson E, Bremner DH. Oxidative stress in the frozen plant: a free radical point of view. In: Fuller BJ, Lane N, Benson EE, editors. Life in the frozen state. Boca Raton: CRC; 2004. p. 205–41.

    Google Scholar 

  90. Dambrova M, Baumane L, Kalvinsh I, Wikberg JE. Improved method for EPR detection of DEPMPO-superoxide radicals by liquid nitrogen freezing. Biochem Biophys Res Commun. 2000;275(3):895–8.

    PubMed  CAS  Google Scholar 

  91. McKersie BD, Bowley SR, Jones KS. Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 1999;119(3):839–48.

    PubMed  CAS  Google Scholar 

  92. Crowe JH, Crowe LM, Tablin F, Wolkers W, Oliver AE, Tsvetkova N. Stabilization of cells during freeze-drying: the trehalose myth. In: Fuller BJ, Lane N, Benson EE, editors. Life in the frozen state. Boca Raton: CRC; 2004. p. 581–601.

    Google Scholar 

  93. Mazur P, Leibo SP, Seidel Jr GE. Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol Reprod. 2008;78(1):2–12.

    PubMed  CAS  Google Scholar 

  94. Aitken RJ, Baker MA, De Iuliis GN, Nixon B. New insights into sperm physiology and pathology. Handb Exp Pharmacol. 2010;198:99–115.

    PubMed  CAS  Google Scholar 

  95. Baumber J, Sabeur K, Vo A, Ball BA. Reactive oxygen species promote tyrosine phosphorylation and capacitation in equine spermatozoa. Theriogenology. 2003;60(7):1239–47.

    PubMed  CAS  Google Scholar 

  96. Sakkas D, Leppens-Luisier G, Lucas H, et al. Localization of tyrosine phosphorylated proteins in human sperm and relation to capacitation and zona pellucida binding. Biol Reprod. 2003;68(4):1463–9.

    PubMed  CAS  Google Scholar 

  97. Aitken RJ, Henkel RR. Sperm cell biology: current perspectives and future prospects. Asian J Androl. 2011;13(1):3–5.

    PubMed  Google Scholar 

  98. Ashizawa K, Hashimoto K, Higashio M, Tsuzuki Y. The addition of mitogen-activated protein kinase and p34(cdc2) kinase substrate peptides inhibits the flagellar motility of demembranated fowl spermatozoa. Biochem Biophys Res Commun. 1997;240(1):116–21.

    PubMed  CAS  Google Scholar 

  99. Lu Q, Sun QY, Breitbart H, Chen DY. Expression and phosphorylation of mitogen-activated protein kinases during spermatogenesis and epididymal sperm maturation in mice. Arch Androl. 1999;43(1):55–66.

    PubMed  CAS  Google Scholar 

  100. Luconi M, Barni T, Vannelli GB, et al. Extracellular signal-regulated kinases modulate capacitation of human spermatozoa. Biol Reprod. 1998;58(6):1476–89.

    PubMed  CAS  Google Scholar 

  101. de Lamirande E, Gagnon C. The extracellular signal-regulated kinase (ERK) pathway is involved in human sperm function and modulated by the superoxide anion. Mol Hum Reprod. 2002;8(2):124–35.

    PubMed  Google Scholar 

  102. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    PubMed  CAS  Google Scholar 

  103. Bode JG, Gatsios P, Ludwig S, et al. The mitogen-activated protein (MAP) kinase p38 and its upstream activator MAP kinase kinase 6 are involved in the activation of signal transducer and activator of transcription by hyperosmolarity. J Biol Chem. 1999;274(42):30222–7.

    PubMed  CAS  Google Scholar 

  104. Gatsios P, Terstegen L, Schliess F, et al. Activation of the Janus kinase signal transducer and activator of transcription pathway by osmotic shock. J Biol Chem. 1998;273(36):22962–8.

    PubMed  CAS  Google Scholar 

  105. Qin SF, Ding JY, Takano T, Yamamura H. Involvement of receptor aggregation and reactive oxygen species in osmotic stress-induced Syk activation in B cells. Biochem Biophys Res Commun. 1999;262(1):231–6.

    PubMed  CAS  Google Scholar 

  106. Irvine DS, Aitken RJ. Measurement of intracellular calcium in human-spermatozoa. Gamete Res. 1986;15(1):57–71.

    CAS  Google Scholar 

  107. Askari HA, Check JH, Peymer N, Bollendorf A. Effect of natural antioxidants tocopherol and ascorbic acids in maintenance of sperm activity during freeze-thaw process. Arch Androl. 1994;33(1):11–5.

    PubMed  CAS  Google Scholar 

  108. Breininger E, Beorlegui NB, O’Flaherty CM, Beconi MT. Alpha-tocopherol improves biochemical and dynamic parameters in cryopreserved boar semen. Theriogenology. 2005;63(8):2126–35.

    PubMed  CAS  Google Scholar 

  109. Killian G, Honadel T, Mcnutt T, Henault M, Wegner C, Dunlap D. Evaluation of butylated hydroxytoluene as a cryopreservative added to whole or skim milk diluent for bull semen. J Dairy Sci. 1989;72(5):1291–5.

    PubMed  CAS  Google Scholar 

  110. Pena FJ, Johannisson A, Wallgren M, Martinez HR. Antioxidant supplementation in vitro improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. Anim Reprod Sci. 2003;78(1–2):85–98.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Meyers DVM, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meyers, S.A. (2012). Cryostorage and Oxidative Stress in Mammalian Spermatozoa. In: Agarwal, A., Aitken, R., Alvarez, J. (eds) Studies on Men's Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-776-7_3

Download citation

Publish with us

Policies and ethics