Skip to main content

Leukemias

  • Chapter
  • First Online:
  • 817 Accesses

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

The new understanding of the mechanisms involved in the transformation process and tumor progression, and recognition of oncogenes and proteins involved in regulating these processes, has opened a new era in diagnostic formulation and clinical evaluation of new drugs. The proteins that regulate proliferation, differentiation, apoptosis, and cell invasiveness are the basis of leukemogenesis and are the target of this new therapeutic approach (targeted therapy). The study of some aspects of molecular biology, such as growth factors, molecules involved in signal transduction, angiogenesis, apoptosis, invasiveness, and cell cycle has allowed the identification of new drug targets that interfere with key events of leukemogenesis. Like normal hematopoietic cells, most of the leukemic cells use multiple intracellular signaling pathways to ensure the maintenance of critical functions and activities for their own survival, and these signaling pathways are potential targets for new forms of targeted therapy.

Several novel targeted therapies have recently emerged as active in the treatment of leukemia, including monoclonal antibodies, small molecules that inhibit critical signaling pathways, proapoptotic agents, or modulators of the leukemia microenvironment. Other new agents target novel discovered cell surface receptors or promote DNA damage. Some of these innovative drugs are now commonly used to treat certain leukemias, such as chronic myelogenous leukemia and promyelocytic leukemia. The new lines of research are directed to the identification of pharmacological agents (targeted therapy) that can interfere selectively against specific molecular targets to increase the selectivity of the target and reduce systemic side effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABC:

Antibody binding capacity

ADCC:

Antibody-dependent cellular cyto­toxicity

ALL:

Acute lymphoid leukemia

AML:

Acute myeloid leukemia

APL:

Acute promyelocytic leukemia

Ara-C:

Cytarabine

ATO:

Arsenic trioxide

ATRA:

All-trans-retinoic acid

BAALC:

Brain cells and acute leukemia, cytoplasmic

B-CLL:

B-cell chronic lymphocytic leukemia

BCP-ALL:

B-cell precursor acute lymphoblastic leukemia

BCR:

B-cell receptor

cAMP:

Cyclic adenosine monophosphate

CDC:

Complement-dependent cytotoxicity

CDK:

Cyclin-dependent kinase

CLL:

Chronic lymphocytic leukemia

CML:

Chronic myeloid leukemia

CN:

Cytogenetically normal

CR:

Complete remission

ET:

Essential thrombocythemia

EVI1:

Ecotropic viral integration site 1

FCR:

Fludarabine, cyclophosphamide, rituximab

FISH:

Fluorescent in situ hybridization

FLT3:

FMS-like tyrosine kinase 3

GO:

Gemtuzumab ozogamicin

HCL:

Hairy cell leukemia

HDACs:

Histone deacetylases

HIF-1α:

Hypoxia-inducible transcription factor-1 α

HMOX-1:

Heme oxygenase

HSC:

Hematopoietic stem cells

IL:

Interleukin

IFN-α:

Interferon alfa

IgVH:

Immunoglobulin heavy-chain variable gene

IKZF1:

IKAROS family zinc finger 1

ITDs:

Internal tandem duplications

ITIMs:

Immune tyrosine-based inhibitory motifs

LSC:

Leukemic stem cell

MCL:

Mantle cell lymphoma

MDS:

Myelodysplastic syndrome

MESF:

Molecules of equivalent soluble fluorophore

MMPs:

Matrix metalloproteinases

MN1:

Meningioma 1

MoAb:

Monoclonal antibody

MPD:

Myeloproliferative disorder

MPN:

Myeloproliferative neoplasm

NFκB:

Nuclear factor kappa B

NPM1:

Nucleophosmin 1

NRP-1:

Neuropilin-1

NR:

Nonresponder

NRR:

Negative regulatory region

PCD:

Programmed cell death

PCR:

Polymerase chain reaction

Ph-chromosome:

Philadelphia chromosome

PI3K:

Phosphoinositide 3-kinase

PLL:

Prolymphocytic leukemia

PMF:

Primary myelofibrosis

PML-RARα:

Promyelocytic leukemia–retinoic acid receptor-α

PR:

Partial remission

PTD:

Partial tandem duplications

PV:

Polycythemia vera

R:

Responder

RARG:

Retinoic acid receptor-γ

RoS:

Reactive oxygen species

siRNA:

Short-interfering RNA

SLVL:

Splenic lymphoma with villous lymphocytes

SMIPs:

Small-molecule immunophar­maceuticals

T-ALL:

T-lineage ALL

TCRAD:

T-cell receptor α–δ

TCRB:

T-cell receptor β

TH:

T helper

TKIs:

Tyrosine kinase inhibitors

TNF-α:

Tumor necrosis factor-alpha

T-PLL:

T-prolymphocytic leukemia

VDR:

Vitamin D receptor

VEGF:

Vascular endothelial growth factor

WT1:

Wilms tumor 1

XiaP:

X-linked inhibitor of apoptosis

References

  1. Saglio G, Kim DW, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukaemia. N Engl J Med. 2010;362:2251–9.

    Article  PubMed  CAS  Google Scholar 

  2. DeVita VT, Canellos GP. New therapies and standard of care in oncology. Nat Rev Clin Oncol. 2011;8:67–8.

    Article  PubMed  CAS  Google Scholar 

  3. Abou-Nassar K, Brown RJ. Novel agents for the treatment of chronic lymphocytic leukaemia. Clin Adv Hematol Oncol. 2010;8:1–10.

    Google Scholar 

  4. Gribben JG, O’Brien S. Update on therapy of chronic lymphocytic leukaemia. J Clin Oncol. 2011;29:544–50.

    Article  PubMed  Google Scholar 

  5. Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukaemia. J Clin Oncol. 2011;29:532–43.

    Article  PubMed  Google Scholar 

  6. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukaemia in adults: recommendations from an international expert panel, on behalf of the European LeukaemiaNet. Blood. 2010;15:396–400.

    Google Scholar 

  7. Mullighan CG. New strategies in acute lymphoblastic leukaemia: translating advances in genomics into clinical practice. Clin Cancer Res. 2010;17:396–400.

    Article  PubMed  CAS  Google Scholar 

  8. de Thè H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer. 2010;10:775–83.

    Article  PubMed  CAS  Google Scholar 

  9. Burnett A, Wetzler M, Löwenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29:487–94.

    Article  PubMed  Google Scholar 

  10. Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol. 2011;29:504–15.

    Article  PubMed  CAS  Google Scholar 

  11. Santos FP, Verstovsek S. JAK2 inhibitors: what’s the true therapeutic potential? Blood Rev. 2011;25:53–63.

    Article  PubMed  CAS  Google Scholar 

  12. Czuczman MS, Olejniczak S, Gowda A, et al. Acquirement of rituximab resistance in lymphoma cell lines is associated with both global CD20 gene and protein down-regulation regulated at the pretranscriptional and posttranscriptional levels. Clin Cancer Res. 2008;14:1561–70.

    Article  PubMed  CAS  Google Scholar 

  13. Hiraga J, Tomita A, Sugimoto T, et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood. 2009;113:4885–93.

    Article  PubMed  CAS  Google Scholar 

  14. Alduaij W, Illidge TM. The future of anti-CD20 monoclonal antibodies: are we making progress? Blood. 2011;117:2993–3001.

    Article  PubMed  CAS  Google Scholar 

  15. Ginaldi L, De Martinis M, Matutes E, et al. Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol. 1998;51:364–9.

    Article  PubMed  CAS  Google Scholar 

  16. Ginaldi L, De Martinis M, Matutes E, et al. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res. 1998;22:185–91.

    Article  PubMed  CAS  Google Scholar 

  17. Ball ED, Broome HE. Monoclonal antibodies in the treatment of hematologic malignancy. Best Pract Res Clin Haematol. 2010;23:403–16.

    Article  PubMed  CAS  Google Scholar 

  18. Wierda WG, Kipps TJ, Mayer J, et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukaemia. J Clin Oncol. 2010;28:1749–55.

    Article  PubMed  CAS  Google Scholar 

  19. Richards JO, Karki S, Lazar GA, et al. Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther. 2008;7:2517–27.

    Article  PubMed  CAS  Google Scholar 

  20. Hillmen P, Skotnicki AB, Robak T, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukaemia. J Clin Oncol. 2007;25:5616–23.

    Article  PubMed  CAS  Google Scholar 

  21. Keating MJ, Flinn I, Jain V, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood. 2002;99:3554–61.

    Article  PubMed  CAS  Google Scholar 

  22. Ball ED, Medeiros BC, Balaian L, et al. A phase I/II trial of 5-azacytidine prior to gemtuzumab ozogamicin (GO) for patients with relapsed acute myeloid leukaemia with correlative biomarker studies. Blood. 2009;114 (Abstract 2049).

    Google Scholar 

  23. Sutherland MK, Yu C, Lewis TS, et al. Anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukaemia. MAbs. 2009;1:481–90.

    Article  PubMed  Google Scholar 

  24. Krause DS, Van Etten RA. Right on target: eradicating leukemic stem cells. Trends Mol Med. 2007;13:470–81.

    Article  PubMed  CAS  Google Scholar 

  25. Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12:1167–74.

    Article  PubMed  CAS  Google Scholar 

  26. Du X, Ho M, Pastan I. New immunotoxins targeting CD123, a stem cell antigen on acute myeloid leukaemia cells. J Immunother. 2007;30:607–13.

    Article  PubMed  CAS  Google Scholar 

  27. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukaemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  PubMed  CAS  Google Scholar 

  28. le Coutre P, Schwarz M, Kim TD. New developments in tyrosine kinase inhibitor therapy for newly diagnosed chronic myeloid leukaemia. Clin Cancer Res. 2010;16:1771–80.

    Article  PubMed  CAS  Google Scholar 

  29. Breccia M, Efficace F, Alimena G. Imatinib treatment in chronic myelogenous leukaemia: what have we learned so far? Cancer Lett. 2011;300:115–21.

    Article  PubMed  CAS  Google Scholar 

  30. Mahon FX, Réa D, Guilhot J. Discontinuation of imatinib in patient with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre stop imatinib (STIM) trial. Lancet Oncol. 2010;11:1029–35.

    Article  PubMed  CAS  Google Scholar 

  31. O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukaemia. N Engl J Med. 2003;348:994–1004.

    Article  PubMed  Google Scholar 

  32. Cortes J, Hochhaus A, Hughes T, Kantarjian H. Front-line and salvage therapies with tyrosine kinase inhibitors and other treatments in chronic myeloid leukaemia. J Clin Oncol. 2011;29:524–31.

    Article  PubMed  CAS  Google Scholar 

  33. Druker BJ, Guilhot F, O’Brien SG. Five-year follow-up of patients receiving imatinib for chronic myeloid leukaemia. N Engl J Med. 2006;355:2408–17.

    Article  PubMed  CAS  Google Scholar 

  34. Ibrahim AR, Eliasson L, Apperley JF, Milojkovic D, et al. Poor adherence is the main reason for loss of CCyR and imatinib failure for chronic myeloid leukaemia patients on long-term therapy. Blood. 2011;117:3733–6.

    Article  PubMed  CAS  Google Scholar 

  35. Wei G, Rafiyath S, Liu D. First-line treatment for chronic myeloid leukaemia: dasatinib, nilotinib, or imatinib. J Hematol Oncol. 2010;3:47.

    Article  PubMed  CAS  Google Scholar 

  36. Hochhaus A, Baccarani M, Deininger M, et al. Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukaemia in chronic phase with resistance or intolerance to imatinib. Leukemia. 2008;22:1200–6.

    Article  PubMed  CAS  Google Scholar 

  37. Kantarjian H, Giles F, Bhalla K, et al. Update on imatinib-resistant chronic myeloid leukaemia patients in chronic phase (CML-CP) on nilotinib therapy at 24 months: clinical response, safety, and long-term outcomes. Blood. 2009;114 (Abstract 1129).

    Google Scholar 

  38. Cortes J, Kantarjian H, Brummendorf TH, et al. Safety and efficacy of bosutinib (SKI-606) in patients with chronic phase chronic myeloid leukaemia following resistance or intolerance to imatinib. J Clin Oncol. 2010;28:487s (Abstract 6502).

    Google Scholar 

  39. Deininger M. Curing CML with imatiib-a dream come true? Nat Rev Clin Oncol. 2001;8:127–8.

    Article  CAS  Google Scholar 

  40. Bosch F, Muntanola A, Gine E, et al. Clinical implications of ZAP-70 expression in chronic lymphocytic leukaemia. Cytometry B Clin Cytom. 2006;70:214–7.

    PubMed  Google Scholar 

  41. Del Principe MI, Del Poeta G, Buccisano F, et al. Clinical significance of ZAP-70 protein expression in B-cell chronic lymphocytic leukaemia. Blood. 2006;108:853–61.

    Article  PubMed  CAS  Google Scholar 

  42. Knauf WU, Lissichkov T, Aldaoud A, et al. Phase III randomized study of bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukaemia. J Clin Oncol. 2009;27:4378–84.

    Article  PubMed  CAS  Google Scholar 

  43. Lim SH, Beers SA, French RR, et al. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica. 2010;95:135–43.

    Article  PubMed  CAS  Google Scholar 

  44. de Haij S, Jansen JH, Boross P, et al. In vivo cytotoxicity of type I CD20 antibodies critically depends on Fc receptor ITAM signaling. Cancer Res. 2010;70:3209–17.

    Article  PubMed  CAS  Google Scholar 

  45. Chang DH, Liu N, Klimek V, et al. Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood. 2006;108:618–21.

    Article  PubMed  CAS  Google Scholar 

  46. Aue G, Njuguna N, Tian X, et al. Lenalidomide-induced upregulation of CD80 on tumor cells correlates with T-cell activation, the rapid onset of a cytokine release syndrome and leukemic cell clearance in chronic lymphocytic leukaemia. Haematologica. 2009;94:1266–73.

    Article  PubMed  CAS  Google Scholar 

  47. Pathan NI, Chu P, Hariharan K, Cheny C, Molina A, Byrd J. Mediation of apoptosis by and antitumor activity of lumiliximab in chronic lymphocytic leukaemia cells and CD23 lymphoma cell lines. Blood. 2008;111:1594–602.

    Article  PubMed  CAS  Google Scholar 

  48. Zhao X, Lapalombella R, Joshi T, et al. Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. Blood. 2007;110:2569–77.

    Article  PubMed  CAS  Google Scholar 

  49. Paoluzzi L, Gonen M, Gardner JR, et al. Targeting Bcl-2 family members with the BH3 mimetic AT-101 markedly enhances the therapeutic effects of chemotherapeutic agents in in vitro and in vivo models of B-cell lymphoma. Blood. 2008;111:5350–8.

    Article  PubMed  CAS  Google Scholar 

  50. Lin TS, Ruppert AS, Johnson AJ, et al. Phase II study of flavopiridol in relapsed chronic lymphocytic leukaemia demonstrating high response rates in genetically high-risk disease. J Clin Oncol. 2009;27:6012–8.

    Article  PubMed  CAS  Google Scholar 

  51. Wierda WG, Chen R, Plunkett W, et al. A phase 1 trial of SNS-032, a potent and specific CDK 2, 7 and 9 inhibitor, in chronic lymphocytic leukaemia and multiple myeloma. Blood (ASH Annual Meeting Abstracts). 2008;112 (Abstract 3178).

    Google Scholar 

  52. Flynn JM, Johnson AJ, Andritsos L, et al. The cyclin dependent kinase inhibitor SCH 727965 demonstrates promising pre-clinical and early clinical activity in chronic lymphocytic leukaemia. Blood (ASH Annual Meeting Abstracts). 2009;114 (Abstract 886).

    Google Scholar 

  53. Gobessi S, Laurenti L, Longo PG, et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukaemia B cells. Leukemia. 2009;23:686–97.

    Article  PubMed  CAS  Google Scholar 

  54. Friedberg JW, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non Hodgkin’s lymphoma and chronic lymphocytic leukemia. Blood. 2010;115:2578–85.

    Article  PubMed  CAS  Google Scholar 

  55. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signaling controls tumour cell growth. Nature. 2006;441:424–30.

    Article  PubMed  CAS  Google Scholar 

  56. Aleskog A, Norberg M, Nygren P, et al. Rapamycin shows anticancer activity in primary chronic lymphocytic leukemia cells in vitro, as single agent and in drug combination. Leuk Lymphoma. 2008;49:2333–43.

    Article  PubMed  CAS  Google Scholar 

  57. Decker T, Sandherr M, Goetze K, et al. A pilot trial of the mTOR (mammalian target of rapamycin) inhibitor RAD001 in patients with advanced B-CLL. Ann Hematol. 2009;88:221–7.

    Article  PubMed  CAS  Google Scholar 

  58. Contri A, Brunati AM, Trentin L, et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest. 2005;115:369–78.

    PubMed  CAS  Google Scholar 

  59. Stamatopoulos B, Meuleman N, De Bruyn C, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) downregulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells. Haematologica. 2009;95:S83.

    Google Scholar 

  60. Marcucci G, Haferlach T, Dohner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011;29:475–86.

    Article  PubMed  CAS  Google Scholar 

  61. Mrozek K, Radmacher MD, Bloomfield CD, et al. Molecular signatures in acute myeloid leukemia. Curr Opin Hematol. 2009;16:64–9.

    Article  PubMed  CAS  Google Scholar 

  62. Garzon R, Garofalo M, Martelli MP, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophos- min. Proc Natl Acad Sci U S A. 2008;105:3945–50.

    Article  PubMed  CAS  Google Scholar 

  63. Debernardi S, Skoulakis S, Molloy G, et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukemia and the expression of its target genes in global genome-wide analysis. Leukemia. 2007;21:912–6.

    PubMed  CAS  Google Scholar 

  64. Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias. J Clin Oncol. 2011;29:551–65.

    Article  PubMed  Google Scholar 

  65. Damm F, Heuser M, Morgan M, et al. Single nucleotide polymorphism in the mutational hotspot of WT1 predicts a favorable outcome in cytogenetically normal acute myeloid leukemia. J Clin Oncol. 2010;28:578–85.

    Article  PubMed  CAS  Google Scholar 

  66. Ho PA, Alonzo TA, Gerbing RB, et al. Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood. 2009;113:6558–66.

    Article  PubMed  CAS  Google Scholar 

  67. Mrozek K, Marcucci G, Paschka P, et al. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109:431–48.

    Article  PubMed  CAS  Google Scholar 

  68. Gaidzik VI, Schlenk RF, Moschny S, et al. Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. Blood. 2009;113:4505–11.

    Article  PubMed  CAS  Google Scholar 

  69. Mead AJ, Linch DC, Hills RK, et al. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood. 2007;110:1262–70.

    Article  PubMed  CAS  Google Scholar 

  70. Paschka P. Core binding factor acute myeloid leukemia. Semin Oncol. 2008;35:410–7.

    Article  PubMed  CAS  Google Scholar 

  71. Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.

    Article  PubMed  CAS  Google Scholar 

  72. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28:2348–55.

    Article  PubMed  CAS  Google Scholar 

  73. Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia (AML) and confer adverse prognosis in cytogenetically normal AML with NPM1 mutation without FLT3-ITD. J Clin Oncol. 2010;28:3636–43.

    Article  PubMed  CAS  Google Scholar 

  74. Boissel N, Nibourel O, Renneville A, et al. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 (IDH1) and 2 (IDH2) mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association (ALFA) group. J Clin Oncol. 2010;28:3717–23.

    Article  PubMed  CAS  Google Scholar 

  75. Becker H, Marcucci G, Maharry K, et al. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28:596–604.

    Article  PubMed  CAS  Google Scholar 

  76. Heuser M, Argiropoulos B, Kuchenbauer F, et al. MN1 over expression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. Blood. 2007;110:1639–47.

    Article  PubMed  CAS  Google Scholar 

  77. Langer C, Marcucci G, Holland KB, et al. Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2009;27:3198–204.

    Article  PubMed  CAS  Google Scholar 

  78. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  PubMed  CAS  Google Scholar 

  79. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  PubMed  CAS  Google Scholar 

  80. Haferlach C, Mecucci C, Schnittger S, et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood. 2009;114:3024–32.

    Article  PubMed  CAS  Google Scholar 

  81. Lowenberg B, Beck J, Graux C, et al. Gemtuzumab ozogamicin as postremission treatment in AML at 60 years of age or more: results of a multicenter phase 3 study. Blood. 2010;115:2586–91.

    Article  PubMed  CAS  Google Scholar 

  82. Ball ED, Balaian L. Cytotoxic activity of gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukemia correlates with the expression of protein kinase Syk. Leukemia. 2006;20:2093–101.

    Article  PubMed  CAS  Google Scholar 

  83. Migkou M, Dimopoulos MA, Gavriatopoulou M, et al. Applications of monoclonal antibodies for the treatment of hematological malignancies. Expert Opin Biol Ther. 2009;9:207–20.

    Article  PubMed  CAS  Google Scholar 

  84. Jin L, Lee EM, Ramshaw HS, et al. MAb-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009;5:31–42.

    Article  PubMed  CAS  Google Scholar 

  85. Mao X, Cao B, Wood TE, et al. A small-molecule inhibitor of D-cyclin transactivation displays preclinical efficacy in myeloma and leukemia via phosphoinositide 3-kinase pathway. Blood. 2011;117:1986–97.

    Article  PubMed  CAS  Google Scholar 

  86. Baughn LB, Di Liberto M, Wu K, et al. A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin dependent kinase 4/6. Cancer Res. 2006;66:7661–7.

    Article  PubMed  CAS  Google Scholar 

  87. Mao X, Zhu X, Hurren R, et al. Dexamethasone increases ubiquitin transcription through an SP-1 dependent mechanism in multiple myeloma cells. Leuk Res. 2008;32:1480–2.

    Article  PubMed  CAS  Google Scholar 

  88. Mao X, Liang SB, Hurren R, et al. Cyproheptadine displays preclinical activity in myeloma and leukemia. Blood. 2008;112:760–9.

    Article  PubMed  CAS  Google Scholar 

  89. Tiedemann RE, Mao X, Shi CX, et al. Identification of kinetin riboside as a repressor of CCND1 and CCND2 with preclinical antimyeloma activity. J Clin Invest. 2008;118:1750–64.

    PubMed  CAS  Google Scholar 

  90. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371:1030–43.

    Article  PubMed  CAS  Google Scholar 

  91. Pui CH, Pei D, Sandlund JT, et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia. 2009;24:371–82.

    Article  PubMed  CAS  Google Scholar 

  92. Nguyen K, Devidas M, Cheng SC, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia. 2008;22:2142–50.

    Article  PubMed  CAS  Google Scholar 

  93. Harrison CJ. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol. 2009;144:147–56.

    Article  PubMed  Google Scholar 

  94. Mullighan CG, Downing JR. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia. 2009;23:1209–18.

    Article  PubMed  CAS  Google Scholar 

  95. Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    Article  PubMed  CAS  Google Scholar 

  96. Kuiper RP, Waanders E, Van Der Velden VH, et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia. 2010;24:1258–64.

    Article  PubMed  CAS  Google Scholar 

  97. Nebral K, Denk D, Attarbaschi A, et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia. 2009;23:134–43.

    Article  PubMed  CAS  Google Scholar 

  98. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–4.

    Article  PubMed  CAS  Google Scholar 

  99. Virely C, Moulin S, Cobaleda C, et al. Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia. Leukemia. 2010;24:1200–4.

    Article  PubMed  CAS  Google Scholar 

  100. Schwab CJ, Jones LR, Morrison H, et al. Evaluation of multiplex ligation-dependent probe amplification as a method for the detection of copy number abnormalities in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2010;49:1104–13.

    Article  PubMed  CAS  Google Scholar 

  101. Mullighan CG. New strategies in acute lymphoblastic leukemia: translating advances in genomics into clinical practice. Clin Cancer Res. 2001;17:396–400.

    Article  CAS  Google Scholar 

  102. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010;115:5312–21.

    Article  PubMed  CAS  Google Scholar 

  103. Uckun FM, Sun L, Qazi S, et al. Recombinant human CD19-ligand protein as a potent anti-leukaemic agent. Br J Haematol. 2001;153:15–23.

    Article  CAS  Google Scholar 

  104. Van Vlierberghe P, van Grotel M, Beverloo HB, et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood. 2006;108:3520–9.

    Article  PubMed  CAS  Google Scholar 

  105. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet. 2007;39:593–5.

    Article  PubMed  CAS  Google Scholar 

  106. Graux C, Cools J, Melotte C, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36:1084–9.

    Article  PubMed  CAS  Google Scholar 

  107. Palomero T, Sulis ML, Cortina M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13:1203–10.

    Article  PubMed  CAS  Google Scholar 

  108. Tosello V, Mansour ML, Barnes K, et al. WT1 mutations in T-ALL. Blood. 2009;114:1038–45.

    Article  PubMed  CAS  Google Scholar 

  109. Aifantis I, Raetz E, Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol. 2008;8:380–90.

    Article  PubMed  CAS  Google Scholar 

  110. Aster JC, Pear WS, Blacklow SC. Notch signaling in leukemia. Annu Rev Pathol. 2008;3:587–613.

    Article  PubMed  CAS  Google Scholar 

  111. Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematol Am Soc Hematol Educ Program. 2009:353–61.

    Google Scholar 

  112. Paganin M, Adolfo Ferrando A. Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic. Blood Rev. 2011;25:83–90.

    Article  PubMed  CAS  Google Scholar 

  113. van Tetering G, van Diest P, Verlaan I, et al. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem. 2009;284:31018–27.

    Article  PubMed  CAS  Google Scholar 

  114. Hozumi K, Mailhos C, Negishi N, et al. Delta-like 4 is indispensable in thymic environment specific for T cell development. J Exp Med. 2008;205:2507–13.

    Article  PubMed  CAS  Google Scholar 

  115. Gonzalez-Garcia S, Garcia-Peydro M, Martin-Gayo E, et al. CSL-MAML-dependent Notch1 signaling controls T lineage specific IL-7R{alpha} gene expression in early human thymopoiesis and leukemia. J Exp Med. 2009;206:779–91.

    Article  PubMed  CAS  Google Scholar 

  116. Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. c- Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20:2096–109.

    Article  PubMed  CAS  Google Scholar 

  117. Margolin AA, Palomero T, Sumazin P, et al. ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Proc Natl Acad Sci U S A. 2009;106:244–9.

    Article  PubMed  CAS  Google Scholar 

  118. Rao SS, O’Neil J, Liberator CD, et al. Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells. Cancer Res. 2009;69:3060–8.

    Article  PubMed  CAS  Google Scholar 

  119. Joshi I, Minter LM, Telfer J, et al. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood. 2009;113:1689–98.

    Article  PubMed  CAS  Google Scholar 

  120. Song LL, Peng Y, Yun J, et al. Notch-1 associates with IKK alpha and regulates IKK activity in cervical cancer cells. Oncogene. 2008;27:5833–44.

    Article  PubMed  CAS  Google Scholar 

  121. Vilimas T, Mascarenhas J, Palomero T, et al. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med. 2007;13:70–7.

    Article  PubMed  CAS  Google Scholar 

  122. Cullion K, Draheim KM, Hermance N, et al. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood. 2009;113:6172–81.

    Article  PubMed  CAS  Google Scholar 

  123. Moellering RE, Cornejo M, Davis TN, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462:182–8.

    Article  PubMed  CAS  Google Scholar 

  124. Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual Notch receptors. Nature. 2010;464:1052–7.

    Article  PubMed  CAS  Google Scholar 

  125. Sanz MA, Lo-Coco F. Arsenic trioxide: its use in the treatment of acute promyelocytic leukemia. Am J Cancer. 2006;5:183–91.

    Article  CAS  Google Scholar 

  126. Sanz MA, Grimwade D, Tallman MS, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European leukemia net. Blood. 2009;113:1875–91.

    Article  PubMed  CAS  Google Scholar 

  127. Sanz MA, Lo-Coco F. Modern approaches to treating acute promyelocytic leukemia. J Clin Oncol. 2011;29:495–503.

    Article  PubMed  Google Scholar 

  128. de la Serna J, Montesinos P, Vellenga E, et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood. 2008;111:3395–402.

    Article  PubMed  CAS  Google Scholar 

  129. Sanz MA, Montesinos P, Rayon C, et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome. Blood. 2010;115:5137–46.

    Article  PubMed  CAS  Google Scholar 

  130. Licht JD. Reconstructing a disease: what essential features of the retinoic acid receptor fusion on coproteins generate acute promyelocytic leukemia? Cancer Cell. 2006;9:73–4.

    Article  PubMed  CAS  Google Scholar 

  131. Martens JH, Brinkman AB, Simmer F, et al. PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell. 2010;17:173–85.

    Article  PubMed  CAS  Google Scholar 

  132. Curing KSC. Curing APL: differentiation or destruction? Cancer Cell. 2009;15:7–8.

    Article  CAS  Google Scholar 

  133. Licht JD. Acute promyelocytic leukemia weapons of mass differentiation. N Engl J Med. 2009;360:928–30.

    Article  PubMed  CAS  Google Scholar 

  134. Jeanne M, Lallemand-Breitenbach V, Ferhi O, et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell. 2010;18:88–98.

    Article  PubMed  CAS  Google Scholar 

  135. Tallman MS, Altman JK. How I treat acute promyelocytic leukemia. Blood. 2009;114:5126–35.

    Article  PubMed  CAS  Google Scholar 

  136. Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol. 2011;29:573–82.

    Article  PubMed  CAS  Google Scholar 

  137. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24:1128–38.

    Article  PubMed  CAS  Google Scholar 

  138. Voskaridou E, Christoulas D, Bilalis A, et al. The effect of prolonged administration of hydroxyu.rea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single center trial (LaSHS). Blood. 2010;115:2354–63.

    Article  PubMed  CAS  Google Scholar 

  139. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    PubMed  CAS  Google Scholar 

  140. Abdel-Wahab O, Manshouri T, Patel J, et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res. 2010;70:447–52.

    Article  PubMed  CAS  Google Scholar 

  141. Quintas-Cardama A, Kantarjian HM, Manshouri T, et al. Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J Clin Oncol. 2009;27:4760–6.

    Article  PubMed  CAS  Google Scholar 

  142. Tefferi A, Lasho TL, Mesa RA, et al. Lenalidomide therapy in del(5)(q31)-associated myelofibrosis: cytogenetic and JAK2V617F molecular remissions. Leukemia. 2007;21:1827–8.

    Article  PubMed  CAS  Google Scholar 

  143. Mishchenko E, Tefferi A. Treatment options for hydroxyurea-refractory disease complications in myeloproliferative neoplasms: JAK2 inhibitors, radiotherapy, splenectomy and transjugular intra hepatic portosystemic shunt. Eur J Haematol. 2010;85:192–9.

    Article  PubMed  CAS  Google Scholar 

  144. Agrawal M, Garg RJ, Cortes J, et al. Experimental therapeutics for patients with myeloproliferative neoplasias. Cancer. 2011;15(117):662–76.

    Article  CAS  Google Scholar 

  145. Quintás-Cardama A, Kantarjian H, Cortes J, Verstovsek S. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Nat Rev Drug Discov. 2011;10:127–40.

    Article  PubMed  CAS  Google Scholar 

  146. Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2V617F mutation in chronic myeloproliferative disorders. Blood. 2005;106:2162–8.

    Article  PubMed  CAS  Google Scholar 

  147. Santos FP, Kantarjian HM, Jain N, et al. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood. 2010;115:1131–6.

    Article  PubMed  CAS  Google Scholar 

  148. Giralt S, Horowitz M, Weisdorf D, Cutler C. Review of stem-cell transplantation for myelodysplastic syndromes in older patients in the context of the decision memo for allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome emanating from the centers for medicare and medicaid services. J Clin Oncol. 2011;29:566–72.

    Article  PubMed  Google Scholar 

  149. Shen L, Kantarjian H, Guo Y, et al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol. 2010;28:605–13.

    Article  PubMed  CAS  Google Scholar 

  150. Jiang Y, Dunbar A, Gondek LP, et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 2009;113:1315–25.

    Article  PubMed  CAS  Google Scholar 

  151. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32.

    Article  PubMed  CAS  Google Scholar 

  152. Tsimberidou AM, Estey E, Wen S, et al. The prognostic significance of cytokine levels in newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndromes. Cancer. 2008;113:1605–13.

    Article  PubMed  Google Scholar 

  153. Garcia-Manero G, Pierre Fenaux P. Hypomethylating agents and other novel strategies in myelodysplastic syndromes. J Clin Oncol. 2011;29:516–23.

    Article  PubMed  CAS  Google Scholar 

  154. van Rhenen A, van Dogen GA, Kelder A, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cell. Blood. 2007;110:2659–66.

    Article  PubMed  CAS  Google Scholar 

  155. Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A. 2002;99:16220–5.

    Article  PubMed  CAS  Google Scholar 

  156. Hassane DC, Guzman ML, Corbett C, et al. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood. 2008;111:5654–62.

    Article  PubMed  CAS  Google Scholar 

  157. MacDonald BT, Tamai K, He X. Wnt/betacatenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  PubMed  CAS  Google Scholar 

  158. Chen B, Dodge ME, Tang W, et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009;5:100–7.

    Article  PubMed  CAS  Google Scholar 

  159. Wang Y, Krivtsov AV, Sinha AU, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650–3.

    Article  PubMed  CAS  Google Scholar 

  160. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9:665–74.

    Article  PubMed  CAS  Google Scholar 

  161. Naveiras O, Daley GQ. Stem cells and their niche: a matter of fate. Cell Mol Life Sci. 2006;63:760–6.

    Article  PubMed  CAS  Google Scholar 

  162. Colmone A, Amorim M, Pontier AL, et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322:1861–5.

    Article  PubMed  CAS  Google Scholar 

  163. Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy- resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2009;25:1315–21.

    Article  CAS  Google Scholar 

  164. Zeng Z, Shi YX, Samudio IJ, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113:6215–24.

    Article  PubMed  CAS  Google Scholar 

  165. Karjalainen K, Jaalouk DE, Bueso-Ramos CE, et al. Targeting neuropilin-1 in human leukemia and lymphoma. Blood. 2011;117:920–7.

    Article  PubMed  CAS  Google Scholar 

  166. Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011;29:591–9.

    Article  PubMed  Google Scholar 

  167. Wang Y, Liu Y, Malek SN, et al. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell. 2011;8:399–411.

    Article  PubMed  CAS  Google Scholar 

  168. Karp JE, Gojo I, Pili R, et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res. 2004;10:3577–85.

    Article  PubMed  CAS  Google Scholar 

  169. Lam BS, Adams GB. Blocking HIF1α activity eliminates hematological cancer stem cells. Cell Stem Cell. 2011;8:354–6.

    Article  PubMed  CAS  Google Scholar 

  170. Vignoli A, Marchetti M, Russo L, et al. LMWH bemiparin and ULMWH RO-14 reduce the endothelial angiogenic features elicited by leukemia, lung cancer, or breast cancer cells. Cancer Invest. 2011;29:153–61.

    Article  PubMed  CAS  Google Scholar 

  171. Blau O, Hofmann WK, Baldus CD, et al. Chromosomal aberrations in bone marrow mesenchymal stromal cells from patients with myelodysplastic syndrome and acute myeloblastic leukaemia. Exp Hematol. 2007;35:221–9.

    Article  PubMed  CAS  Google Scholar 

  172. Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M. Neuropilin in neoplasms: expression, regulation, and function. Exp Cell Res. 2006;312:584–93.

    Article  PubMed  CAS  Google Scholar 

  173. Pan Q, Chanthery Y, Liang WC, et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell. 2007;11:53–67.

    Article  PubMed  CAS  Google Scholar 

  174. Vales A, Kondo R, Aichberger KJ. Myeloid leukemias express a broad spectrum of VEGF receptors including neuropilin-1 (NRP-1) and NRP-2. Leuk Lymphoma. 2007;48(10):1997–2007.

    Article  PubMed  CAS  Google Scholar 

  175. Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nat Rev Clin Oncol. 2011;8:25–37.

    Article  PubMed  CAS  Google Scholar 

  176. Hoffmann TK, Donnenberg AD, Finkelstein SD, et al. Frequencies of tetramer T cells specific for the wild type sequence p53264–272 peptide in the circulation of patients with head and neck cancer. Cancer Res. 2002;62:3521–9.

    PubMed  CAS  Google Scholar 

  177. Allende VN, Saville MK. Targeting the ubiquitin proteasome system to activate wildtype p53 for cancer therapy. Semin Cancer Biol. 2010;20:29–39.

    Article  CAS  Google Scholar 

  178. Marine JC, Lozano G. Mdm2 mediated ubiquitylation: p53 and beyond. Cell Death Differ. 2010;17:93–102.

    Article  PubMed  CAS  Google Scholar 

  179. Dickens MP, Fitzgerald R, Fischer PM. Small molecule inhibitors of MDM2 as new anticancer therapeutics. Semin Cancer Biol. 2010;20:10–8.

    Article  PubMed  CAS  Google Scholar 

  180. Secchiero P, di Iasio MG, Gonelli A, Zauli G. The MDM2 inhibitor Nutlins as an innovative therapeutic tool for the treatment of haematological malignancies. Curr Pharm Des. 2008;14:2100–10.

    Article  PubMed  CAS  Google Scholar 

  181. Grinkevich VV, Nikulenkov F, Shi Y, et al. Ablation of key oncogenic pathways by RITA reactivated p53 is required for efficient apoptosis. Cancer Cell. 2009;15:441–53.

    Article  PubMed  CAS  Google Scholar 

  182. Carter BZ, Mak DH, Schober WD, et al. Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood. 2010;115:306–14.

    Article  PubMed  CAS  Google Scholar 

  183. Secchiero P, Melloni E, di Iasio MG, et al. Nutlin 3 up regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. Blood. 2009;113:4300–8.

    Article  PubMed  CAS  Google Scholar 

  184. Ocana A, Pandiella A, Siu LL, Tannock IF. Preclinical development of molecular-targeted agents for cancer. Nat Rev Clin Oncol. 2011;8:200–9.

    Article  CAS  Google Scholar 

  185. Sawyers CL. Translational research: are we on the right track? 2008 American Society for Clinical Investigation Presidential Address. J Clin Invest. 2008;118:3798–801.

    Article  PubMed  CAS  Google Scholar 

  186. Chiarini F, Grimaldi C, Ricci F, et al. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res. 2010;70:8097–107.

    Article  PubMed  CAS  Google Scholar 

  187. Smith MA. Update on developmental therapeutics for acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2009;4:175–82.

    Article  PubMed  Google Scholar 

  188. Fullmer A, O’Brien S, Kantarjian H, Jabbour E. Novel therapies for relapsed acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2009;4:148–56.

    Article  PubMed  Google Scholar 

  189. Real PJ, Ferrando AA. NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. Leukemia. 2009;23:1374–7.

    Article  PubMed  CAS  Google Scholar 

  190. Babusikova O, Stevulova L, Fajtova M. Immunophenotyping parameters as prognostic factors in T-acute leukemia patients. Neoplasma. 2009;56:508–13.

    Article  PubMed  CAS  Google Scholar 

  191. Ginaldi L, Farahat N, Matutes E, et al. Differential expression of T cell antigens in normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry. J Clin Pathol. 1996;49:539–44.

    Article  PubMed  CAS  Google Scholar 

  192. Ginaldi L, Matutes E, Farahat N, et al. Differential expression of CD3 and CD7 in T-cell malignancies. Br J Haematol. 1996;93:921–7.

    Article  PubMed  CAS  Google Scholar 

  193. Baskic D, Ilic N, Popovic S, Djurdjevic P, et al. In vitro induction of apoptotic cell death in chronic lymphocytic leukemia by two natural products: preliminary study. J BUON. 2010;15:732–9.

    PubMed  CAS  Google Scholar 

  194. Sarma SN, Kim YJ, Song M, Ryu JC. Induction of apoptosis in human leukemia cells through the production of reactive oxygen species and activation of HMOX1 and Noxa by benzene, toluene, and o-xylene. Toxicology. 2011;280:109–17.

    Article  PubMed  CAS  Google Scholar 

  195. Zhao WL. Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways. Leukemia. 2010;24:13–21.

    Article  PubMed  CAS  Google Scholar 

  196. Walsby E, Lazenby M, Pepper C, Burnett AK. The cyclin-dependent kinase inhibitor SNS-032 has single agent activity in AML cells and is highly synergistic with cytarabine. Leukemia. 2011;25:411–9.

    Article  PubMed  CAS  Google Scholar 

  197. Taghdisi SM, Abnous K, Mosaffa F, Behravan J. Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer. J Drug Target. 2010;18:277–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Ginaldi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ginaldi, L., De Martinis, M. (2012). Leukemias. In: Bologna, M. (eds) Biotargets of Cancer in Current Clinical Practice. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-61779-615-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-615-9_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-614-2

  • Online ISBN: 978-1-61779-615-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics