Skip to main content

Abstract

Thyroid cancer (TC) is a rare disease that prevalently affects females (female/male ratio: 4/1). It accounted for 1.7% of new cancer cases worldwide in 2008, although this number is destined to increase due to the steep rise in the incidence of papillary forms of TC in the last few decades. TC includes several histotypes that can be divided into two groups according to the cell in which they originate: differentiated cancer (derived from the epithelial thyroid cell) and medullary cancer (derived from the parafollicular C cell). Anaplastic thyroid cancer, more frequently derived from a differentiated TC, is commonly considered separately due to its aggressive biological and clinical features. TCs are usually characterized by an excellent prognosis (most of all for differentiated cases), with a 10-year survival rate in excess of 90%. The appearance of distant metastasis is a very rare event. Doxorubicin was the only compound authorized by the FDA for the treatment of metastatic TCs until the approval of vandetanib in April 2011. In the last few years, new drugs, such as tyrosine kinase inhibitors, have been extensively investigated in patients with advanced/metastatic TCs with remarkable results. Molecular biology studies have contributed to the discovery of molecular profiles and pathways involved in each TC histotype, defining the diagnostic and prognostic characteristics as well as driving the therapeutic choices in this modern era of target therapies. This chapter will be focused in particular on the description of biomarkers and tailored therapies in advanced TCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    PubMed  CAS  Google Scholar 

  2. American Cancer Society. Cancer facts and figures 2009. Available at: http://www.cancer.org. Accessed 10 Apr 2011.

  3. Liu S, Semenciw R, Ugnat AM, et al. Increasing thyroid cancer incidence in Canada, 1970–1996: time trends and age-period-cohort effects. Br J Cancer. 2001;85:1335–9.

    PubMed  CAS  Google Scholar 

  4. Lubina A, Cohen O, Barchana M, et al. Time trends of incidence rates of thyroid cancer in Israel: what might explain the sharp increase. Thyroid. 2006;16:1033–40.

    PubMed  Google Scholar 

  5. Akslen LA, Haldorsen T, Thoresen SO, et al. Incidence pattern of thyroid cancer in Norway: influence of birth cohort and time period. Int J Cancer. 1993;53:183–7.

    PubMed  CAS  Google Scholar 

  6. Reynolds RM, Weir J, Stockton DL, et al. Changing trends in incidence and mortality of thyroid cancer in Scotland. Clin Endocrinol. 2005;62:156–62.

    Google Scholar 

  7. Levi F, Randimbison L, Te VC, La Vecchia C. Thyroid cancer in Vaud, Switzerland: an update. Thyroid. 2002;12:163–8.

    PubMed  Google Scholar 

  8. Italian Association of Cancer Registries. http://www.registri-tumori.it/. Accessed 10 Apr 2011.

  9. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295:2164–7.

    PubMed  CAS  Google Scholar 

  10. Hughes DT, Haymart MR, Miller BS, et al. The most commonly occurring papillary thyroid cancer in the United States is now a microcarcinoma in a patient older than 45 years. Thyroid. 2011;21:231–6.

    PubMed  Google Scholar 

  11. Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer. 2009;115:3801–7.

    PubMed  Google Scholar 

  12. Mettler Jr FA, Bhargavan M, Faulkner K, et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources–1950–2007. Radiology. 2009;253:520–31.

    PubMed  Google Scholar 

  13. Kitahara CM, Platz EA, Freeman LE, et al. Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies. Cancer Epidemiol Biomarkers Prev. 2011;20:464–72.

    PubMed  Google Scholar 

  14. Grodski S, Brown T, Sidhu S, et al. Increasing incidence of thyroid cancer is due to increased pathologic detection. Surgery. 2008;144:1038–43. discussion 1043.

    PubMed  Google Scholar 

  15. La Vecchia C, Bosetti C, Lucchini F, et al. Cancer mortality in Europe, 2000–2004, and an overview of trends since 1975. Ann Oncol. 2010;21:1323–60.

    PubMed  Google Scholar 

  16. Hundahl SA, Fleming ID, Fremgen AM, et al. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer. 1998;83:2638–48.

    PubMed  CAS  Google Scholar 

  17. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91:2892–9.

    PubMed  CAS  Google Scholar 

  18. Haq M, Harmer C. Differentiated thyroid carcinoma with distant metastases at presentation: prognostic factors and outcome. Clin Endocrinol. 2005;63:87–93.

    CAS  Google Scholar 

  19. Bossi P, Locati LD. Role of chemotherapy in thyroid cancer. In Thyroid cancer: from emergent biotechnologies to clinical practice guidelines. Carpi A, Mechanick ed. CRC Press, 2011: 313–318.

    Google Scholar 

  20. American Thyroid Association (ATA) Guidelines Task Force. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid. 2009;19:565–612. Review. Erratum in: Thyroid. 2009;19:1295.

    Google Scholar 

  21. DeLellis RA, Lloyd RV, Heitz PU, Eng C (eds.): World Health Organisation Classification of Tumours. Pathology and Genetics of Tumours of Endocrine Organs. Tumors of the thyroid and parathyroid: 49–133; IARC Press: Lyon 2004.

    Google Scholar 

  22. Pilotti S, Collini P, Mariani L, et al. Insular carcinoma. A distinct de novo entity among follicular carcinomas of the thyroid gland. Am J Surg Pathol. 1997;21:1466–73.

    PubMed  CAS  Google Scholar 

  23. Sobrinho-Simoes M. Poorly differentiated carcinomas of the thyroid. Endocr Pathol. 1996;7:99–102.

    Google Scholar 

  24. Sobrinho-Simoes M. Tumor of the thyroid: a brief overview with emphasis on the most controversial issues. Curr Diagn Pathol. 1995;2:15–22.

    Google Scholar 

  25. Sobrinho-Simoes M, Sambade C, Fonseca E, et al. Poorly differentiated carcinomas of the thyroid gland: a review of the clinicopathologic features of a series of 28 cases of a heterogeneous, clinically aggressive group of thyroid tumors. Int J Surg Pathol. 2002;10:123–31.

    PubMed  Google Scholar 

  26. Green FL, Page DL, Fleming ID, et al. AJCC cancer staging handbook from the AJCC cancer system manual. 7th ed. New York: Springer; 2009.

    Google Scholar 

  27. McIver B, Hay ID, Giuffrida DF, et al. Anaplastic thyroid carcinoma: a 50-year experience at a single institution. Surgery. 2001;130:1028–34.

    PubMed  CAS  Google Scholar 

  28. Sugitani I, Kasai N, Fujimoto Y, et al. Prognostic factors and therapeutic strategy for anaplastic carcinoma of the thyroid. World J Surg. 2001;25:617–22.

    PubMed  CAS  Google Scholar 

  29. Voutilainen PE, Multanen M, Haapiainen RK, et al. Anaplastic thyroid carcinoma survival. World J Surg. 1999;23:975–8. discussion 978–9.

    PubMed  CAS  Google Scholar 

  30. Sipple JH. The association of pheochromocytoma with carcinoma of the thyroid gland. Am J Med. 1961;31:163–6.

    Google Scholar 

  31. Marx SJ. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nature Reviews. Nat Rev Cancer. 2005;5:367–75. Review. Erratum in: Nat Rev Cancer. 2005;5:663.

    Google Scholar 

  32. Elisei R, Romei C, Cosci B, et al. RET genetic screening inpatients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab. 2007;92:4725–9.

    PubMed  CAS  Google Scholar 

  33. Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer. 2007;7:35–45.

    PubMed  CAS  Google Scholar 

  34. Elisei R. Routine serum calcitonin measurement in the evaluation of thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2008;22:941–53.

    PubMed  CAS  Google Scholar 

  35. Pacini F, Castagna MG, Cipri C, et al. Medullary thyroid carcinoma. Clin Oncol (R Coll Radiol). 2010;22:475–85. Review.

    CAS  Google Scholar 

  36. Bhattacharyya N. A population-based analysis of survival factors in differentiated and medullary thyroid carcinoma. Otolaryngol Head Neck Surg. 2003;128:115–23.

    PubMed  Google Scholar 

  37. Greco A, Borrello MG, Miranda C, et al. Molecular pathology of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009;53:440–53.

    PubMed  CAS  Google Scholar 

  38. Giannini R, Ugolini C, Lupi C, et al. The heterogeneous distribution of BRAF mutation supports the independent clonal origin of distinct tumor foci in multifocal papillary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92:3511–6.

    PubMed  CAS  Google Scholar 

  39. Romei C, Ciampi R, Faviana P, et al. BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr Relat Cancer. 2008;15:511–20.

    PubMed  CAS  Google Scholar 

  40. Muzza M, Degl’Innocenti D, Colombo C, et al. The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies. Clin Endocrinol (Oxf). 2010;72:702–8.

    CAS  Google Scholar 

  41. Alberti L, Carniti C, Miranda C, et al. RET and NTRK1 proto-oncogenes in human diseases. J Cell Physiol. 2003;195:168–86.

    PubMed  CAS  Google Scholar 

  42. Fusco A, Grieco M, Santoro M, et al. A new oncogene in human papillary thyroid carcinomas and their lymph-nodal metastases. Nature. 1987;328:170–2.

    PubMed  CAS  Google Scholar 

  43. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002;3:383–94.

    PubMed  CAS  Google Scholar 

  44. Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 2005;16:441–67.

    PubMed  CAS  Google Scholar 

  45. Viglietto G, Chiappetta G, Martinez-Tello FJ, et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene. 1995;11:1207–10.

    PubMed  CAS  Google Scholar 

  46. Fischer AH, Bond JA, Taysavang P, et al. Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol. 1998;153:1443–50.

    PubMed  CAS  Google Scholar 

  47. Jhiang SM, Sagartz JE, Tong Q, et al. Targeted expression of the RET/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996;137:375–8.

    PubMed  CAS  Google Scholar 

  48. Adeniran AJ, Zhu Z, Gandhi M, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006;30:216–22.

    PubMed  Google Scholar 

  49. Nikiforov YE. Radiation-induced thyroid cancer: what we have learned from Chernobyl. Endocr Pathol. 2006;17:307–17.

    PubMed  CAS  Google Scholar 

  50. Asai N, Jijiwa M, Enomoto A, et al. Ret receptor signaling: dysfunction in thyroid cancer and Hirschsprung’s disease. Pathol Int. 2006;56:164–72.

    PubMed  CAS  Google Scholar 

  51. Castellone MD, Santoro M. Dysregulated RET signaling in thyroid cancer. Endocrinol Metab Clin North Am. 2008;37:363–74.

    PubMed  CAS  Google Scholar 

  52. Cassinelli G, Favini E, Degl’Innocenti D, et al. RET/PTC1-driven neoplastic transformation and proinvasive phenotype of human thyrocytes involve Met induction and beta-catenin nuclear translocation. Neoplasia. 2009;11:10–21.

    PubMed  CAS  Google Scholar 

  53. Castellone MD, De Falco V, Rao DM, et al. The {beta}-catenin axis integrates multiple signals downstream from RET/papillary thyroid carcinoma leading to cell proliferation. Cancer Res. 2009;69:1867–76.

    PubMed  CAS  Google Scholar 

  54. Borrello MG, Alberti L, Fischer A, et al. Induction of a proinflammatory programme in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci U S A. 2005;102:14825–30.

    PubMed  CAS  Google Scholar 

  55. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000;10:381–91.

    PubMed  CAS  Google Scholar 

  56. Butti MG, Bongarzone I, Ferraresi G, et al. A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics. 1995;28:15–24.

    PubMed  CAS  Google Scholar 

  57. Greco A, Roccato E, Pierotti MA. TRK oncogenes in papillary thyroid carcinoma. In: Farid NR, editor. Molecular basis of thyroid cancer. Ith ed. Boston: Kluwer; 2004. p. 207–19.

    Google Scholar 

  58. Pierotti MA, Greco A. Oncogenic rearrangements of the NTRK1/NGF receptor. Cancer Lett. 2006;232:90–8.

    PubMed  CAS  Google Scholar 

  59. Bounacer A, Schlumberger M, Wicker R, et al. Search for NTRK1 proto-oncogene rearrangements in human thyroid tumours originated after therapeutic radiation. Br J Cancer. 2000;82:308–14.

    PubMed  CAS  Google Scholar 

  60. Rabes HM, Demidchik EP, Sidorow JD, et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res. 2000;6:1093–103.

    PubMed  CAS  Google Scholar 

  61. Russell JP, Powell DJ, Cunnane M, et al. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene. 2000;19:5729–35.

    PubMed  CAS  Google Scholar 

  62. Fedele M, Palmieri D, Chiappetta G, et al. Impairment of the p27kip1 function enhances thyroid carcinogenesis in TRK-T1 transgenic mice. Endocr Relat Cancer. 2009;16:483–90.

    PubMed  CAS  Google Scholar 

  63. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5:875–85.

    PubMed  CAS  Google Scholar 

  64. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    PubMed  CAS  Google Scholar 

  65. Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.

    PubMed  CAS  Google Scholar 

  66. Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: gene evidence for constitutive activation of RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.

    PubMed  CAS  Google Scholar 

  67. Frattini M, Ferrario C, Bressan P, et al. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene. 2004;23:7436–40.

    PubMed  CAS  Google Scholar 

  68. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.

    PubMed  CAS  Google Scholar 

  69. Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95:625–7.

    PubMed  CAS  Google Scholar 

  70. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–62.

    PubMed  CAS  Google Scholar 

  71. Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90:6373–9.

    PubMed  CAS  Google Scholar 

  72. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, et al. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. Endocr Relat Cancer. 2006;13:257–69.

    PubMed  CAS  Google Scholar 

  73. Namba H, Nakashima M, Hayashi T, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003;88:4393–7.

    PubMed  CAS  Google Scholar 

  74. Begum S, Rosenbaum E, Henrique R, et al. BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol. 2004;17:1359–63.

    PubMed  CAS  Google Scholar 

  75. Knauf JA, Ma X, Smith EP, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 2005;65:4238–45.

    PubMed  CAS  Google Scholar 

  76. Lee MH, Lee SE, Kim DW, et al. Mitochondrial localization and regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to block the mitochondrial activities of BRAFV600E. J Clin Endocrinol Metab. 2011;96:E19–30.

    PubMed  CAS  Google Scholar 

  77. Trovisco V, Vieira de Castro I, Soares P, et al. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J Pathol. 2004;202:247–51.

    PubMed  CAS  Google Scholar 

  78. Hou P, Liu D, Xing M. Functional characterization of the T1799-1801del and A1799-1816ins BRAF mutations in papillary thyroid cancer. Cell Cycle. 2007;6:377–9.

    PubMed  CAS  Google Scholar 

  79. Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115:94–101.

    PubMed  CAS  Google Scholar 

  80. Nikiforova MN, Biddinger PW, Caudill CM, et al. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26:1016–23.

    PubMed  Google Scholar 

  81. Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn. 2008;8:83–95.

    PubMed  CAS  Google Scholar 

  82. Vitagliano D, Portella G, Troncone G, et al. Thyroid targeting of the N-ras(Gln61Lys) oncogene in transgenic mice results in follicular tumors that progress to poorly differentiated carcinomas. Oncogene. 2006;25:5467–74.

    PubMed  CAS  Google Scholar 

  83. Manenti G, Pilotti S, Re FC, et al. Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer. 1994;30:987–93.

    Google Scholar 

  84. Garcia-Rostan G, Zhao H, Camp RL, et al. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21:3226–35.

    PubMed  CAS  Google Scholar 

  85. Saavedra HI, Knauf JA, Shirokawa JM, et al. The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene. 2000;19:3948–54.

    PubMed  CAS  Google Scholar 

  86. Placzkowski KA, Reddi HV, Grebe SK, et al. The role of the PAX8/PPARgamma fusion oncogene in thyroid cancer. PPAR Res. 2008;29:672829.

    Google Scholar 

  87. Lui WO, Zeng L, Rehrmann V, Deshpande S, et al. CREB3L2-PPARgamma fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis. Cancer Res. 2008;68:7156–64.

    PubMed  CAS  Google Scholar 

  88. Lui WO, Foukakis T, Liden J, et al. Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8-PPAR(gamma) fusion oncogene. Oncogene. 2005;24:1467–76.

    PubMed  CAS  Google Scholar 

  89. Aldred MA, Morrison C, Gimm O, et al. Peroxisome proliferator-activated receptor gamma is frequently downregulated in a diversity of sporadic nonmedullary thyroid carcinomas. Oncogene. 2003;22:3412–6.

    PubMed  CAS  Google Scholar 

  90. Marques AR, Espadinha C, Frias MJ, et al. Underexpression of peroxisome proliferator-activated receptor (PPAR)gamma in PAX8/PPARgamma-negative thyroid tumours. Br J Cancer. 2004;91:732–8.

    PubMed  CAS  Google Scholar 

  91. Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88:2318–26.

    PubMed  CAS  Google Scholar 

  92. Ringel MD, Hayre N, Saito J, et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 2001;61:6105–11.

    PubMed  CAS  Google Scholar 

  93. Vasko V, Saji M, Hardy E, et al. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet. 2004;41:161–70.

    PubMed  CAS  Google Scholar 

  94. Wu G, Mambo E, Guo Z, et al. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab. 2005;90:4688–93.

    PubMed  CAS  Google Scholar 

  95. Wang Y, Hou P, Yu H, et al. High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumors. J Clin Endocrinol Metab. 2007;92:2387–90.

    PubMed  CAS  Google Scholar 

  96. Dahia PL, Marsh DJ, Zheng Z, et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res. 1997;57:4710–3.

    PubMed  CAS  Google Scholar 

  97. Bruni P, Boccia A, Baldassarre G, et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene. 2000;19:3146–55.

    PubMed  CAS  Google Scholar 

  98. Paes JE, Ringel MD. Dysregulation of the phosphatidylinositol 3-kinase pathway in thyroid neoplasia. Endocrinol Metab Clin North Am. 2008;37:375–9.

    PubMed  CAS  Google Scholar 

  99. Hou P, Liu D, Shan Y, et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway. Clin Cancer Res. 2007;13:1161–70.

    PubMed  CAS  Google Scholar 

  100. Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.

    PubMed  CAS  Google Scholar 

  101. Fagin JA, Tang SH, Zeki K, et al. Reexpression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Res. 1996;56:765–71.

    PubMed  CAS  Google Scholar 

  102. Moretti F, Farsetti A, Soddu S, et al. A p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene. 1997;14:729–40.

    PubMed  CAS  Google Scholar 

  103. Garcia-Rostan G, Camp RL, Herrero A, et al. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol. 2001;158:987–96.

    PubMed  CAS  Google Scholar 

  104. Miyake N, Maeta H, Horie S, et al. Absence of mutations in the beta-catenin and adenomatous polyposis coli genes in papillary and follicular thyroid carcinomas. Pathol Int. 2001;51:680–5.

    PubMed  CAS  Google Scholar 

  105. Tauriello DVF, Maurice MM. The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle. 2010;9:3700–9.

    PubMed  CAS  Google Scholar 

  106. Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.

    PubMed  CAS  Google Scholar 

  107. Garcia-Rostan G, Costa AM, Pereira-Castro I, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65:10199–207.

    PubMed  CAS  Google Scholar 

  108. Lindahl M, Timmusk T, Rossi J, et al. Expression and alternative splicing of mouse Gfra4 suggest roles in endocrine cell development. Mol Cell Neurosci. 2000;15:522–33.

    PubMed  CAS  Google Scholar 

  109. Lindfors PH, Lindahl M, Rossi J, et al. Ablation of persephin receptor glial cell line derived neurotrophic factor family receptor alpha4 impairs thyroid calcitonin production in young mice. Endocrinology. 2006;147:2237–44.

    PubMed  CAS  Google Scholar 

  110. Eng C, Clayton D, Schuffenecker I, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in MEN type 2. International RET mutation consortium analysis. JAMA. 1996;276:1575–9.

    PubMed  CAS  Google Scholar 

  111. Machens A, Niccoli-Sire P, Hoegel J, et al. Early malignant progression of hereditary medullary thyroid cancer. NEJM. 2003;349:1517–25.

    PubMed  CAS  Google Scholar 

  112. Niccoli-Sire P, Murat A, Rohmer V, et al. Familial medullary thyroid carcinoma with noncysteine ret mutations: phenotype–genotype relationship in a large series of patients. J Clin Endocrinol Metab. 2001;86:3746–53.

    PubMed  CAS  Google Scholar 

  113. Kouvaraki MA, Shapiro SE, Perrier ND, et al. RET proto-oncogene: a review and update of genotype-phenotype correlations in hereditary medullary thyroid cancer and associated endocrine tumors. Thyroid. 2005;15:531–44.

    PubMed  CAS  Google Scholar 

  114. Hansford JR, Mulligan LM. Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J Med Genet. 2000;37:817–27.

    PubMed  CAS  Google Scholar 

  115. Santoro M, Carlomagno F, Romano A, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science. 1995;267:381–3.

    PubMed  CAS  Google Scholar 

  116. Frank-Raue K, Rondot S, Raue F. Molecular genetics and phenomics of RET mutations: impact on prognosis of MTC. Mol Cell Endocrinol. 2010;322(1–2):2–7.

    PubMed  CAS  Google Scholar 

  117. Gagel FR, Marx SJ. Multiple endocrine neoplasia. In: Larsen PR, editor. Williams textbook of endocrinology. 10th ed. Philadelphia: Saunders; 2003. p. 1717–62.

    Google Scholar 

  118. Montero-Conde C, Ruiz-Llorente S, Gonza’lez-Albarran O, et al. Identification of a candidate chromosomal region using a SNP linkage panel suggests a second locus responsible for non-RET MEN2 families. Hor Res. 2007;68:6–7.

    Google Scholar 

  119. Michiels FM, Chappuis S, Caillou B, et al. Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene altered by a multiple endocrine neoplasia type 2A mutation. PNAS. 1997;94:3330–5.

    PubMed  CAS  Google Scholar 

  120. Acton DS, Velthuyzen D, Lips CJ, et al. Multiple endocrine neoplasia type 2B mutation in human RET oncogene induces medullary thyroid carcinoma in transgenic mice. Oncogene. 2000;19:3121–5.

    PubMed  CAS  Google Scholar 

  121. Smith-Hicks CL, Sizer KC, Powers JF, et al. C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J. 2000;19:612–22.

    PubMed  CAS  Google Scholar 

  122. Huang SC, Torres-Cruz J, Pack SD, et al. Amplification and overexpression of mutant RET in multiple endocrine neoplasia type 2-associated medullary thyroid carcinoma. J Clin Endocrin Metab. 2003;88:459–63.

    CAS  Google Scholar 

  123. Mathew CG, Smith BA, Thorpe K, et al. Deletion of genes on chromosome 1 in endocrine neoplasia. Nature. 1987;328:524–6.

    PubMed  CAS  Google Scholar 

  124. Ye L, Santarpia L, Cote GJ, et al. High resolution array-comparative genomic hybridization profiling reveals deoxyribonucleic acid copy number alterations associated with medullary thyroid carcinoma. J Clin Endocrin Metab. 2008;93:4367–72.

    CAS  Google Scholar 

  125. Cranston AN, Ponder BA. Modulation of medullary thyroid carcinoma penetrance suggests the presence of modifier genes in a RET transgenic mouse model. Cancer Res. 2003;63:4777–80.

    PubMed  CAS  Google Scholar 

  126. Zedenius J. Is somatic RET mutation a prognostic factor for sporadic medullary thyroid carcinoma? Nat Clin Pract Endocrinol Metab. 2008;4:432–3.

    PubMed  Google Scholar 

  127. Moura MM, Cavaco BM, Pinto AE, et al. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab. 2011;96:E863.

    PubMed  CAS  Google Scholar 

  128. Pavelic K, Dedivitis RA, Kapitanovic S, et al. Molecular genetic alterations of FHIT and p53 genes in benign and malignant thyroid gland lesions. Mutat Res. 2006;599:45–57.

    PubMed  CAS  Google Scholar 

  129. Sheikh HA, Tometsko M, Niehouse L, et al. Molecular genotyping of medullary thyroid carcinoma can predict tumor recurrence. Am J Surg Pathol. 2004;28:101–6.

    PubMed  Google Scholar 

  130. van Veelen W, van Gasteren CJ, Acton DS, et al. Synergistic effect of oncogenic RET and loss of p18 on medullary thyroid carcinoma development. Cancer Res. 2008;68:1329–37.

    PubMed  Google Scholar 

  131. Fenton C, Patel A, Dinauer C, et al. The expression of vascular endothelial growth factor and the type 1 vascular endothelial growth factor receptor correlate with the size of papillary thyroid carcinoma in children and young adults. Thyroid. 2000;10:349–57.

    PubMed  CAS  Google Scholar 

  132. Dhar DK, Kubota H, Kotoh T, et al. Tumor vascularity predicts recurrence in differentiated thyroid carcinoma. Am J Surg. 1998;176:442–7.

    PubMed  CAS  Google Scholar 

  133. Espinosa AV, Porchia L, Ringel MD. Targeting BRAF in thyroid cancer. Br J Cancer. 2007;96:16–20.

    PubMed  CAS  Google Scholar 

  134. Di Renzo MF, Olivero M, Ferro S, et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene. 1992;7:2549–53.

    PubMed  Google Scholar 

  135. Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev. 2008;27:85–94.

    PubMed  CAS  Google Scholar 

  136. Ruco LP, Stoppacciaro A, Ballarini F, et al. Met protein and hepatocyte growth factor (HGF) in papillary carcinoma of the thyroid: evidence for a pathogenic role in tumourigenesis. J Pathol. 2001;194:4–8.

    PubMed  CAS  Google Scholar 

  137. Scarpino S, Cancellario D’Alena F, et al. Papillary carcinoma of the thyroid: evidence for a role for hepatocyte growth factor (HGF) in promoting tumour angiogenesis. J Pathol. 2003;199:243–50.

    PubMed  CAS  Google Scholar 

  138. Wiseman SM, Masoudi H, Niblock P. Anaplastic thyroid carcinoma: expression profile of targets for therapy offers new insights for disease treatment. Ann Surg Oncol. 2007;14:719–29.

    PubMed  Google Scholar 

  139. Lam AK, Lau KK, Gopalan V, et al. Quantitative analysis of the expression of TGF-alpha and EGFR in papillary thyroid carcinoma: clinicopathological relevance. Pathology. 2011;43:40–7.

    PubMed  Google Scholar 

  140. Degl’ Innocenti D, Alberti C, Castellano G, et al. Integrated ligand-receptor bioinformatic and in vitro functional analysis identifies active TGFA/EGFR signaling loop in papillary thyroid carcinomas. PLoS One. 2010;5:e12701.

    Google Scholar 

  141. Ulisse S, Delcros JG, Baldini E, et al. Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int J Cancer. 2006;119:275–82.

    PubMed  CAS  Google Scholar 

  142. Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer. 2004;4:927–36. Review.

    PubMed  CAS  Google Scholar 

  143. Keen N, Taylor S. Mitotic drivers-inhibitors of the Aurora B kinase. Cancer Metastasis Rev. 2009;28:185–95.

    PubMed  CAS  Google Scholar 

  144. Wunderlich A, Fischer M, Schlosshauer T, et al. Evaluation of Aurora kinase inhibition as a new therapeutic strategy in anaplastic and poorly differentiated follicular thyroid cancer. Cancer Sci. 2011;102:762–8.

    PubMed  CAS  Google Scholar 

  145. Sherman SI, Wirth LJ, Droz JP, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359:31–42.

    PubMed  CAS  Google Scholar 

  146. Kloos RT, Ringel MD, Knopp MV, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 2009;27:1675–84.

    PubMed  CAS  Google Scholar 

  147. Leboulleux S, Bastholt L, Krause TM, et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer (papillary or follicular; DTC): a randomized double blind phase II trial. Ann Oncol. 2010;21 (suppl_8): viii315.

    Google Scholar 

  148. Bible KC, Suman VJ, Molina JR, et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 2010;11:962–72.

    PubMed  CAS  Google Scholar 

  149. Lucas AS, Cohen EE, Cohen RB, et al. Phase II study and tissue correlative studies of AZD6244 (ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma (IRPTC) and papillary thyroid carcinoma (PTC) with follicular elements. J Clin Oncol, 2010;28 (8_suppl): 5536.

    Google Scholar 

  150. Sherman SI, Jarzab B, Cabanillas ME, et al. A phase II trial of the multitargeted kinase inhibitor E7080 in advanced radioiodine (RAI)-refractory differentiated thyroid cancer (DTC). J Clin Oncol, 2011;29 (15_suppl): 5503.

    Google Scholar 

  151. de Groot JW, Zonnenberg BA, van Ufford-Mannesse PQ, et al. A phase II trial of imatinib therapy for metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92:3466–9.

    PubMed  Google Scholar 

  152. Frank-Raue K, Fabel M, Delorme S, et al. Efficacy of imatinib mesylate in advanced medullary thyroid carcinoma. Eur J Endocrinol. 2007;157:215–20.

    PubMed  CAS  Google Scholar 

  153. Schlumberger MJ, Elisei R, Bastholt L, et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol. 2009;27:3794–801.

    PubMed  CAS  Google Scholar 

  154. Lam ET, Ringel MD, Kloos RT, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol. 2010;28:2323–30.

    PubMed  CAS  Google Scholar 

  155. Robinson BG, Paz-Ares L, Krebs A, et al. Vandetanib (100 mg) in patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Endocrinol Metab. 2010;95:2664–71.

    PubMed  CAS  Google Scholar 

  156. Wells SA Jr, Robinson BG, Gagel RF et al. Vandetanib in Patients With Locally Advanced or Metastatic Medullary Thyroid Cancer: A Randomized, Double-Blind Phase III Trial.J Clin Oncol. 2012;30:134–41.

    Google Scholar 

  157. Wells SA, Jr, Gosnell JE, Gagel RF, et al. vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol. 2010;28:767–72.

    Google Scholar 

  158. De Souza JA, Busaidy N, Zimrin A, et al. Phase II trial of sunitinib in medullary thyroid cancer (MTC). J Clin Oncol, 2010; 28 (8_suppl): 5504.

    Google Scholar 

  159. Cohen EE, Rosen LS, Vokes EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 2008;26:4708–13.

    PubMed  CAS  Google Scholar 

  160. Gupta-Abramson V, Troxel AB, Nellore A, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 2008;26:4714–9.

    PubMed  CAS  Google Scholar 

  161. Pennell NA, Daniels GH, Haddad RI, et al. A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid. 2008;18:317–23.

    PubMed  CAS  Google Scholar 

  162. Cohen EE, Needles BM, Cullen KJ, et al. Phase 2 study of sunitinib in refractory thyroid cancer. J Clin Oncol, 2008;26 (15_suppl): 6025.

    Google Scholar 

  163. Carr LL, Mankoff DA, Goulart BH, et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 2010;16:5260–8.

    PubMed  CAS  Google Scholar 

  164. Nagaiah G, Fu P, Wasman JK, et al. Phase II trial of sorafenib (bay 43-9006) in patients with advanced anaplastic carcinoma of the thyroid (ATC). J Clin Oncol, 2009;27 (15_suppl): 6058.

    Google Scholar 

  165. Coxon A, Bready JV, Hughes P, et al. Motesanib diphosphate (AMG 706) inhibits the growth of medullary thyroid carcinoma in a nude mouse model. Proc Am Assoc Cancer Res. 2007;48:71 (abstr LB-283).

    Google Scholar 

  166. Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29:2660–6.

    Google Scholar 

  167. Capdevila J, Argiles G, Rodriguez-Frexinos V, et al. New approaches in the management of radioiodine-refractory thyroid cancer: the molecular targeted therapy era. Discov Med. 2010;9:153–62.

    PubMed  Google Scholar 

  168. Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885–93.

    PubMed  CAS  Google Scholar 

  169. Brose MS, Troxel AB, Redlinger M, et al. Effect of BRAFV600E on response to sorafenib in advanced thyroid cancer patients. J Clin Oncol, 2009;27 (15_suppl): 6002.

    Google Scholar 

  170. Sala E, Mologni L, Truffa S, et al. BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol Cancer Res. 2008;6:751–9.

    PubMed  CAS  Google Scholar 

  171. Flaherty K, Puzanov I, Sosman J, et al. Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J Clin Oncol, 2009;27 (15_suppl): 9000.

    Google Scholar 

  172. Schwartz GK, Robertson S, Shen A, et al. A phase I study of XL281, a selective oral RAF kinase inhibitor, in patients with advanced solid tumors. J Clin Oncol, 2009;27 (15_suppl): 3513.

    Google Scholar 

  173. Gramza AW, Patterson J, Peters J, et al. Activity of novel RET genotypes associated with medullary thyroid cancer. J Clin Oncol, 2010;28 (8_suppl): 5559.

    Google Scholar 

  174. Tuccinardi T, Manetti F, Schenone S, et al. Construction and validation of a RET TK catalytic domain by homology modeling. J Chem Inf Model. 2007;47:644–55.

    PubMed  CAS  Google Scholar 

  175. Cabanillas ME, Waguespack SG, Bronstein Y, et al. Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: the M. D. Anderson experience. J Clin Endocrinol Metab. 2010;95:2588–95.

    PubMed  CAS  Google Scholar 

  176. Broutin S, Ameur N, Lacroix L, et al. Identification of soluble candidate biomarkers of therapeutic response to sunitinib in medullary thyroid carcinoma in preclinical models. Clin Cancer Res. 2011;17:2044–54.

    PubMed  CAS  Google Scholar 

  177. Bass MB, Sherman SI, Schlumberger MJ, et al. Biomarkers as predictors of response to treatment with motesanib in patients with progressive advanced thyroid cancer. J Clin Endocrinol Metab. 2010;95:5018–27.

    PubMed  CAS  Google Scholar 

  178. Akeno-Stuart N, Croyle M, Knauf JA, et al. The RET kinase inhibitor NVP-AST487 blocks growth and calcitonin gene expression through distinct mechanisms in medullary thyroid cancer cells. Cancer Res. 2007;67:6956–64.

    PubMed  CAS  Google Scholar 

  179. Harvey RD, Kauh JS, Ramalingam SS, et al. Combination therapy with sunitinib and bortezomib in adult patients with radioiodine refractory thyroid cancer. J Clin Oncol. 2010;abs 5589.

    Google Scholar 

  180. Gramza AW, Wells SA, Balasubramaniam S, et al. Phase I/II trial of vandetanib and bortezomib in adults with locally advanced or metastatic medullary thyroid cancer: phase I results. J Clin Oncol. 2011:abs 5565.

    Google Scholar 

  181. Hong DS, Cabanillas ME, Wheler J, et al. Inhibition of the Ras/Raf/MEK/ERK and RET kinase pathways with the combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in medullary and differentiated thyroid malignancies. J Clin Endocrinol Metab. 2011;96:997–1005.

    PubMed  Google Scholar 

  182. Motzer RJ, Escudier B, Oudard S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer. 2010;116:4256–65.

    PubMed  CAS  Google Scholar 

  183. Edgerly M, Fojo T. Is there room for improvement in adverse event reporting in the era of targeted therapies? J Natl Cancer Inst. 2008;100:240–2.

    Google Scholar 

  184. Hu-Lowe DD, Zou HY, Grazzini ML, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14:7272–83.

    PubMed  CAS  Google Scholar 

  185. Soria JC, Deutsch E. Hemorrhage caused by antiangiogenic therapy within previously irradiated areas: expected consequence of tumor shrinkage or a warning for antiangiogenic agents combined to radiotherapy? Ann Oncol. 2011;22:1247–9.

    PubMed  Google Scholar 

  186. Rixe O, Billemont B, Izzedine H. Hypertension as a predictive factor of Sunitinib activity. Ann Oncol. 2007;18:1117.

    PubMed  CAS  Google Scholar 

  187. Ravaud A, Sire M. Arterial hypertension and clinical benefit of sunitinib, sorafenib and bevacizumab in first and second-line treatment of metastatic renal cell cancer. Ann Oncol. 2009;20:966–7.

    PubMed  CAS  Google Scholar 

  188. Dahlberg SE, Sandler AB, Brahmer JR, et al. Clinical course of advanced non-small-cell lung cancer patients experiencing hypertension during treatment with bevacizumab in combination with carboplatin and paclitaxel on ECOG 4599. J Clin Oncol. 2010;28:949–54.

    PubMed  CAS  Google Scholar 

  189. Österlund P, Soveri LM, Isoniemi H, et al. Hypertension and overall survival in metastatic colorectal cancer patients treated with bevacizumab-containing chemotherapy. Br J Cancer. 2011;104:599–604.

    PubMed  Google Scholar 

  190. Friberg G, Kasza K, Vokes EE, et al. Early hypertension (HTN) as a potential pharmacodynamic (PD) marker for survival in pancreatic cancer (PC) patients (pts) treated with bevacizumab (B) and gemcitabine (G). J Clin Oncol, 2005; 23 (16_suppl): 3020.

    Google Scholar 

  191. Bono P, Elfving H, Utriainen T, et al. Hypertension and clinical benefit of bevacizumab in the treatment of advanced renal cell carcinoma. Ann Oncol. 2009;20:393–4.

    PubMed  CAS  Google Scholar 

  192. Scartozzi M, Galizia E, Chiorrini S, et al. Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann Oncol. 2009;20:227–30.

    PubMed  CAS  Google Scholar 

  193. Rini BI, Schiller JH, Fruehauf JP, et al. Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin Cancer Res. 2011;17:3841–9.

    PubMed  CAS  Google Scholar 

  194. Sipos JA, Wang D, Wei L, et al. VEGF polymorphisms predict adverse events in patients taking sorafenib for refractory thyroid cancer. International Thyroid Congress 2010, abs 0C-089.

    Google Scholar 

  195. D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91:4082–5.

    PubMed  Google Scholar 

  196. Ain KB, Lee C, Williams KD. Phase II trial of thalidomide for therapy of radioiodine-unresponsive and rapidly progressive thyroid carcinomas. Thyroid. 2007;17(7):663–70.

    PubMed  CAS  Google Scholar 

  197. Ain KB, Lee C, Holbrook KM, et al. Phase II study of lenalidomide in distantly metastatic, rapidly progressive, and radioiodine-unresponsive thyroid carcinomas: preliminary results. J Clin Oncol, 2008; 26 (15_suppl): 6027.

    Google Scholar 

  198. Mooney CJ, Nagaiah G, Fu P, et al. A phase II trial of fosbretabulin in advanced anaplastic thyroid carcinoma and correlation of baseline serum-soluble intracellular adhesion molecule-1 with outcome. Thyroid. 2009;19:233–40.

    PubMed  CAS  Google Scholar 

  199. Sosa JA, Elisei R, Jarzab B, et al. A randomized phase II/III trial of a tumor vascular disrupting agent fosbretabulin tromethamine (CA4P) with carboplatin (C) and paclitaxel (P) in anaplastic thyroid cancer (ATC): final survival analysis for the FACT trial. J Clin Oncol, 2011;29 (15_suppl): 5502.

    Google Scholar 

  200. Woyach JA, Kloos RT, Ringel MD, et al. Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma. J Clin Endocrinol Metab. 2009;94:164–70.

    PubMed  CAS  Google Scholar 

  201. Kiazano M, Kitazono M, Chuman Y, Aikou T, Fojo T. Construction of gene therapy vectors targeting thyroid cells: enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the cyclic adenosine 3′,5′-monophosphate pathway and demonstration of activity in follicular and anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab. 2001;86:834–40.

    Google Scholar 

  202. Sherman EJ, Fury MG, Tuttle RM, et al. Phase II study of depsipeptide (DEP) in radioiodine (RAI)-refractory metastatic nonmedullary thyroid carcinoma. J Clin Oncol, 2009;27 (15_suppl): 6059.

    Google Scholar 

  203. Catalano MG, Pugliese M, Poli R, et al. Effects of the histone deacetylase inhibitor valproic acid on the sensitivity of anaplastic thyroid cancer cell lines to imatinib. Oncol Rep. 2009;21:515–21.

    PubMed  CAS  Google Scholar 

  204. Catalano MG, Fortunati N, Pugliese M, et al. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells. J Clin Endocrinol Metab. 2005;90:1383–9.

    PubMed  CAS  Google Scholar 

  205. Braiteh F, Soriano AO, Garcia-Manero G, et al. Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers. Clin Cancer Res. 2008;14:6296–301.

    PubMed  CAS  Google Scholar 

  206. Short SC, Suovuori A, Cook G, et al. A phase II study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer. Clin Oncol (R Coll Radiol). 2004;16:569–74.

    CAS  Google Scholar 

  207. Coelho SM, Corbo R, Buescu A, et al. Retinoic acid in patients with radioiodine non-responsive thyroid carcinoma. J Endocrinol Invest. 2004;27:334–9.

    PubMed  CAS  Google Scholar 

  208. Simon D, Köhrle J, Schmutzler C, et al. Redifferentiation therapy of differentiated thyroid carcinoma with retinoic acid: basics and first clinical results. Exp Clin Endocrinol Diabetes. 1996;104 Suppl 4:13–5.

    PubMed  CAS  Google Scholar 

  209. Tepmongkol S, Keelawat S, Honsawek S, et al. Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-gamma. Thyroid. 2008;18:697–704.

    PubMed  CAS  Google Scholar 

  210. Koong SS, Reynolds JC, Movius EG, et al. Lithium as a potential adjuvant to 131I therapy of metastatic, well differentiated thyroid carcinoma. J Clin Endocrinol Metab. 1999;84:912–6.

    PubMed  CAS  Google Scholar 

  211. Mitsiades CS, Kotoula V, Poulaki V, et al. Epidermal growth factor receptor as a therapeutic target in human thyroid carcinoma: mutational and functional analysis. J Clin Endocrinol Metab. 2006;91:3662–6.

    PubMed  CAS  Google Scholar 

  212. Marsee DK, Venkateswaran A, Tao H, et al. Inhibition of heat shock protein 90, a novel RET/PTC1-associated protein, increases radioiodide accumulation in thyroid cells. J Biol Chem. 2004;279:43990–7.

    PubMed  CAS  Google Scholar 

  213. Elisei R, Vivaldi A, Ciampi R, et al. Treatment with drugs able to reduce iodine efflux significantly increases the intracellular retention time in thyroid cancer cells stably transfected with sodium iodide symporter complementary deoxyribonucleic acid. J Clin Endocrinol Metab. 2006;91:2389–95.

    Google Scholar 

  214. Braga-Basaria M, Hardy E, Gottfried R. 17-Allylamino-17-demethoxygeldanamycin activity against thyroid cancer cell lines correlates with heat shock protein 90 levels. J Clin Endocrinol Metab. 2004;89:2982–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Locati, L.D. et al. (2012). Thyroid Cancer. In: Bologna, M. (eds) Biotargets of Cancer in Current Clinical Practice. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-61779-615-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-615-9_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-614-2

  • Online ISBN: 978-1-61779-615-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics