Skip to main content

Docosahexaenoic Acid Signalolipidomics in the Homeostatic Modulation of Photoreceptor/Retinal Pigment Epithelial Cell Integrity During Oxidative Stress

  • Chapter
  • First Online:
Studies on Retinal and Choroidal Disorders

Abstract

Vision is sustained by the relationship between photoreceptor cells and retinal pigment epithelial (RPE) cells. This relationship results in life-long cell survival in spite of the fact that they reside in a part of the eye that is constantly exposed to potentially damaging factors such as light, high O2 consumption, and high fluxes of polyunsaturated fatty acids. One goal of vision research is to uncover the endogenous cell survival signals that counteract excessive oxidative stress in the retina. Docosahexaenoic acid (DHA) is a member of the omega-3 essential fatty acid family that is derived from linolenic acid, 18:3, n-3. DHA and vitamin A from the opsin chromophore of rod photoreceptor outer segments are recycled back from the RPE to inner segments through the interphotoreceptor matrix (IPM). In this chapter, we expound upon these concepts and discuss the intimate, harmonious relationship between photoreceptor and RPE cells.

Supported by National Institutes of Health, National Eye Institute grant EY005121, and National Center for Research Resources grant P20 RR016816, American Health Assistance Foundation grant M2010091, the Eye, Ear, Nose, and Throat Foundation; the Edward G. Schlieder Educational Foundation; and by the Ernest C. and Yvette C. Villere Endowed Chair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24:87–138

    Article  PubMed  CAS  Google Scholar 

  2. Marszalek JR, Lodish HF (2005) Docosahexaenoic acid, fatty acid interacting proteins, and neuronal function: breast milk and fish are good for you. Annu Rev Cell Dev Biol 21:633–657

    Article  PubMed  CAS  Google Scholar 

  3. Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29:263–271

    Article  PubMed  CAS  Google Scholar 

  4. Papermaster DS (2002) The birth and death of photoreceptors: the Friedenwald Lecture. Invest Ophthalmol Vis Sci 43:1300–1309

    PubMed  Google Scholar 

  5. Rattner A, Nathans J (2006) Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7:860–872

    Article  PubMed  CAS  Google Scholar 

  6. Chang GQ, Hao Y, Wong F (1993) Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 11:595–605

    Article  PubMed  CAS  Google Scholar 

  7. Portera-Cailliau C, Sung CH, Nathans J et al (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci USA 91:974–978

    Article  PubMed  CAS  Google Scholar 

  8. Bird AC (2003) The Bowman lecture. Towards an understanding of age-related macular disease. Eye 17:457–466

    Article  PubMed  CAS  Google Scholar 

  9. Liu Q, Zuo J, Pierce EA (2004) The retinitis pigmentosa 1 protein is a photoreceptor microtubule-associated protein. J Neurosci 24:6427–6436

    Article  PubMed  CAS  Google Scholar 

  10. Dryja TP, McGee TL, Reichel E et al (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343:364–366

    Article  PubMed  CAS  Google Scholar 

  11. Mendes HF, van der Spuy J, Chapple JP, Cheetham ME (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185

    Article  PubMed  CAS  Google Scholar 

  12. Hageman GS, Anderson DH, Johnson LV et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 102:7227–7232

    Article  PubMed  CAS  Google Scholar 

  13. Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  PubMed  CAS  Google Scholar 

  14. Edwards AO, Ritter R 3rd, Abel KJ et al (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424

    Article  PubMed  CAS  Google Scholar 

  15. Haines JL, Hauser MA, Schmidt S et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421

    Article  PubMed  CAS  Google Scholar 

  16. Gold B, Merriam JE, Zernant J et al (2006) Variation in factor B (BF) and complement 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462

    Article  PubMed  CAS  Google Scholar 

  17. Bok D (2005) Evidence for an inflammatory process in age-related macular degeneration gains new support. Proc Natl Acad Sci USA 102:7053–7054

    Article  PubMed  CAS  Google Scholar 

  18. Cideciyan AV, Aleman TS, Swider M et al (2004) Mutations in ABCA4 result in accumulation of lipofucsin before slowing the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet 13:525–534

    Article  PubMed  CAS  Google Scholar 

  19. Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31:53–59

    PubMed  CAS  Google Scholar 

  20. Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5:47–62

    Article  PubMed  CAS  Google Scholar 

  21. Ushio-Fukai M (2006) Localizing NADPH oxidase-derived ROS. Sci STKE 2006(349):re8

    Article  PubMed  Google Scholar 

  22. Wolin MS, Ahmad M, Gupte SA (2005) Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 289:L159–L173

    Article  PubMed  CAS  Google Scholar 

  23. Lambert AJ, Brand MD (2009) Reactive oxygen species production by mitochondria. Methods Mol Biol 554:165–181

    Article  PubMed  CAS  Google Scholar 

  24. Sreekumar PG, Kannan R, Yaung J et al (2005) Protection from oxidative stress by methionine sulfoxide reductases in RPE cells. Biochem Biophys Res Commun 334:245–253

    Article  PubMed  CAS  Google Scholar 

  25. Feher J, Kovacs I, Artico M et al (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27:983–993

    Article  PubMed  CAS  Google Scholar 

  26. Giorgio M, Trinei M, Migliaccio E et al (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722–728

    Article  PubMed  CAS  Google Scholar 

  27. Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003

    Article  PubMed  CAS  Google Scholar 

  28. Stone JR, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270

    Article  PubMed  CAS  Google Scholar 

  29. Choi MH, Lee IK, Kim GW et al (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435:347–353

    Article  PubMed  CAS  Google Scholar 

  30. Sundaresan M, Yu ZX, Ferrans VJ et al (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299

    Article  PubMed  CAS  Google Scholar 

  31. Bae YS, Kang SW, Seo MS et al (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  PubMed  CAS  Google Scholar 

  32. Bok D (1993) The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl 17:189–195

    PubMed  CAS  Google Scholar 

  33. Kolko M, Wang J, Zhan C et al (2007) Identification of intracellular phospholipases A2 in the human eye: involvement in phagocytosis of photoreceptor outer segments. Invest Ophthalmol Vis Sci 48:1401–1409

    Article  PubMed  Google Scholar 

  34. LaVail MM (1980) Circadian nature of rod outer segment disc shedding in the rat. Invest Ophthalmol Vis Sci 19:407–411

    PubMed  CAS  Google Scholar 

  35. Young RW, Droz B (1968) The renewal of protein in retinal rods and cones. J Cell Biol 39:169–184

    Article  PubMed  CAS  Google Scholar 

  36. Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22:79–131

    Article  PubMed  CAS  Google Scholar 

  37. Aveldano MI, Bazan NG (1983) Molecular species of phosphatidylcholine, -ethanolamine, -serine, and -inositol in microsomal and photoreceptor membranes of bovine retina. J Lipid Res 24:620–627

    PubMed  CAS  Google Scholar 

  38. Aveldano MI, Bazan NG (1977) Acyl groups, molecular species and labeling by 14C-glycerol and 3H-arachidonic acid of vertebrate retina glycerolipids. Adv Exp Med Biol 38:397–404

    Google Scholar 

  39. Aveldano MI, Bazan NG (1980) Composition and biosynthesis of molecular species of retina phosphoglycerides. Neurochem Int 1:381–392

    Article  Google Scholar 

  40. Aveldano MI, Pasquare de Garcia SJ, Bazan NG (1983) Biosynthesis of molecular species of inositol, choline, serine, and ethanolamine glycerophospholipids in the bovine retina. J Lipid Res 24:628–638

    PubMed  CAS  Google Scholar 

  41. Aveldano MI, Bazan NG (1972) High content of docosahexaenoate and of total diacylglycerol in retina. Biochem Biophys Res Commun 48:689–693

    Article  PubMed  CAS  Google Scholar 

  42. Aveldano MI, Bazan NG (1973) Fatty acid composition and level of diacylglycerols and phosphoglycerides in brain and retina. Biochim Biophys Acta 296:1–9

    PubMed  CAS  Google Scholar 

  43. Aveldano MI, Giusto NM, Bazan NG (1981) Polyunsaturated fatty acids of the retina. Prog Lipid Res 20:49–57

    Article  Google Scholar 

  44. Bazan NG, Giusto NM (1980) Docosahexaenoyl chains are introduced in phosphatic acid during de novo synthesis in retinal microsomes. In: Kates M, Kukis A (eds) Control of membrane fluidity. Humana Press, New Jersey, pp 223–236

    Chapter  Google Scholar 

  45. Aveldano MI (1988) Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of photoreceptor membranes. Biochemistry 27:1229–1239

    Article  PubMed  CAS  Google Scholar 

  46. Kim HY (2007) Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem 282:18661–18665

    Article  PubMed  CAS  Google Scholar 

  47. Akbar M, Calderon F, Wen Z et al (2005) Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA 102:10858–10863

    Article  PubMed  CAS  Google Scholar 

  48. Organisciak DT, Darrow RM, Jiang YL et al (1996) Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate. Invest Ophthalmol Vis Sci 37:2243–2257

    PubMed  CAS  Google Scholar 

  49. Maude MB, Anderson EO, Anderson RE (1998) Polyunsaturated fatty acids are lower in blood lipids of Usher’s type I but not Usher’s type II. Invest Ophthalmol Vis Sci 39:2164–2166

    PubMed  CAS  Google Scholar 

  50. Bazan NG, Scott BL, Reddy TS et al (1986) Decreased content of docosahexaenoate and arachidonate in plasma phospholipids in Usher’s syndrome. Biochem Biophys Res Commun 141:600–604

    Article  PubMed  CAS  Google Scholar 

  51. Hoffman DR, DeMar JC, Heird WC et al (2001) Impaired synthesis of DHA in patients with X-linked retinitis pigmentosa. J Lipid Res 42:1395–1401

    PubMed  CAS  Google Scholar 

  52. Gong J, Rosner B, Rees DG et al (1992) Plasma docosahexaenoic acid levels in various genetic forms of retinitis pigmentosa. Invest Ophthalmol Vis Sci 33:2596–2602

    PubMed  CAS  Google Scholar 

  53. Simonelli F, Manna C, Romano N et al (1996) Evaluation of fatty acids in membrane phospholipids of erythrocytes in retinitis pigmentosa patients. Ophthalmic Res 28:93–98

    Article  PubMed  CAS  Google Scholar 

  54. Hoffman DR, Uauy R, Birch DG (1993) Red blood cell fatty acid levels in patients with autosomal dominant retinitis pigmentosa. Exp Eye Res 57:359–368

    Article  PubMed  CAS  Google Scholar 

  55. McColl AJ, Converse CA (1995) Lipid studies in retinitis pigmentosa. Prog Lipid Res 349:1–16

    Article  Google Scholar 

  56. Anderson RE, Maude MB, McClellan M et al (2002) Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations. Mol Vis 8:351–358

    PubMed  CAS  Google Scholar 

  57. Li F, Cao W, Anderson RE (2001) Protection of photoreceptor cells in adult rats from light-induced degeneration by adaptation to bright cyclic light. Exp Eye Res 73:569–577

    Article  PubMed  CAS  Google Scholar 

  58. Hoffman DR, Birch DG (1995) Docosahexaenoic acid in red blood cells of patients with X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 36:1009–1018

    PubMed  CAS  Google Scholar 

  59. Schaefer EJ, Robins SJ, Patton GM et al (1995) Red blood cell membrane phosphatidylethanolamine fatty acid content in various forms of retinitis pigmentosa. J Lipid Res 36:1427–1433

    PubMed  CAS  Google Scholar 

  60. Rotstein NP, Aveldano MI, Barrantes FJ et al (1996) Docosahexaenoic acid is required for the survival of rat retinal photoreceptors in vitro. J Neurochem 66:1851–1859

    Article  PubMed  CAS  Google Scholar 

  61. Rotstein NP, Aveldano MI, Barrantes FJ et al (1997) Apoptosis of retinal photoreceptors during development in vitro: protective effect of docosahexaenoic acid. J Neurochem 69:504–513

    Article  PubMed  CAS  Google Scholar 

  62. Calon F, Lim GP, Yang F et al (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43:633–645

    Article  PubMed  CAS  Google Scholar 

  63. Young RW (1971) The renewal of the rod and cone outer segments in the rhesus monkey. J Cell Biol 49:303–318

    Article  PubMed  CAS  Google Scholar 

  64. Gao H, Hollyfield JG (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33:1–17

    PubMed  CAS  Google Scholar 

  65. Fliesler SJ, Bok D (1999) Richard W. Young: and the band marched on. Trends Cell Biol 9:280–283

    Article  PubMed  CAS  Google Scholar 

  66. Marmorstein AD (2001) The polarity of the retinal pigment epithelium. Traffic 2:867–872

    Article  PubMed  CAS  Google Scholar 

  67. Ershov AV, Lukiw WJ, Bazan NG (1996) Selective transcription factor induction in retinal pigment epithelial cells during photoreceptor phagocytosis. J Biol Chem 271:28458–28462

    Article  PubMed  CAS  Google Scholar 

  68. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  PubMed  CAS  Google Scholar 

  69. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 101:8491–8496

    Article  PubMed  CAS  Google Scholar 

  70. Bazan NG, Birkle DL, Reddy TS (1984) Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina. Biochem Biophys Res Commun 125:741–747

    Article  PubMed  CAS  Google Scholar 

  71. Bazan NG, Birkle DL, Reddy TS (1985) Biochemical and nutritional aspects of the metabolism of polyunsaturated fatty acids and phospholipids in experimental models of retinal degeneration. In: LaVail MM, Hollyfield JG, Anderson RE (eds) Retinal degeneration: experimental and clinical studies. Alan R. Liss, New York, pp 159–187

    Google Scholar 

  72. Marcheselli VL, Hong S, Lukiw WJ et al (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    Article  PubMed  CAS  Google Scholar 

  73. Bazan NG (2003) Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 44:2221–2233

    Article  PubMed  CAS  Google Scholar 

  74. Aveldano MI, Bazan NG (1974) Displacement into incubation medium by albumin of highly unsaturated retina free fatty acids arising from membrane lipids. FEBS Lett 40:53–56

    Article  PubMed  CAS  Google Scholar 

  75. Aveldano MI, Bazan NG (1975) Differential lipid deacylation during brain ischemia in a homeotherm and a poikilotherm. Content and composition of free fatty acids and triacylglycerols. Brain Res 100:99–110

    Article  PubMed  CAS  Google Scholar 

  76. Horrocks LA, Farooqui AA (1994) NMDA receptor-stimulated release of arachidonic acid: mechanisms for the Bazan effect. In: Municio AM, Miras-Portugal MT (eds) Cell signal transduction, second messengers, and protein phosphorylation in health and disease. Plenum Press, New York, pp 113–128

    Chapter  Google Scholar 

  77. Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45:205–213

    Article  PubMed  CAS  Google Scholar 

  78. Reddy TS, Bazan NG (1984) Activation of polyunsaturated fatty acids by rat tissues in vitro. Lipids 19:987–989

    Article  PubMed  CAS  Google Scholar 

  79. Reddy TS, Bazan NG (1984) Synthesis of arachidonoyl coenzyme A and docosahexaenoyl coenzyme A in retina. Curr Eye Res 3:1225–1232

    Article  PubMed  CAS  Google Scholar 

  80. Reddy TS, Bazan NG (1985) Synthesis of arachidonoyl coenzyme A and docosahexaenoyl coenzyme A in synaptic plasma membranes of cerebrum and microsomes of cerebrum, cerebellum, and brain stem of rat brain. J Neurosci Res 13:381–390

    Article  PubMed  CAS  Google Scholar 

  81. Reddy TS, Bazan NG (1985) Synthesis of docosahexaenoyl-, arachidonoyl- and palmitoyl-coenzyme A in ocular tissues. Exp Eye Res 41:87–95

    Article  PubMed  CAS  Google Scholar 

  82. Lukiw WJ, Cui JG, Marcheselli VL et al (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    Article  PubMed  CAS  Google Scholar 

  83. Antony R, Lukiw WJ, Bazan NG (2010) Neuroprotectin D1 induces dephosphorylation of Bcl-xL in a PP2A-dependent manner during oxidative stress and promotes retinal pigment epithelial cell survival. J Biol Chem 285(24):18301–18308

    Article  PubMed  CAS  Google Scholar 

  84. Mattson MP, Bazan NG (2006) Apoptosis and necrosis. In: Siegel GJ, Albers RW, Brady ST, Price DL (eds) Basic neurochemistry: molecular, cellular and medical aspects, 7th edn. Elsevier Academic Press, Burlington, pp 603–615

    Google Scholar 

  85. Ershov AV, Bazan NG (1999) Induction of cyclooxygenase-2 gene expression in retinal pigment epithelium cells by photoreceptor rod outer segment phagocytosis and growth factors. J Neurosci Res 58:254–261

    Article  PubMed  CAS  Google Scholar 

  86. Hinton DR, He S, Lopez PF (1998) Apoptosis in surgically excised choroidal neovascular membranes in age-related macular degeneration. Arch Ophthalmol 116:203–209

    PubMed  CAS  Google Scholar 

  87. Mukherjee PK, Marcheselli VL, Barreiro S et al (2007) Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling. Proc Natl Acad Sci USA 104:13152–13157

    Article  PubMed  CAS  Google Scholar 

  88. LaVail MM, Yasumura D, Matthes MT et al (1998) Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39:592–602

    PubMed  CAS  Google Scholar 

  89. Valter K, Bisti S, Gargini C et al (2005) Time course of neurotrophic factor upregulation and retinal protection against light-induced damage after optic nerve section. Invest Ophthalmol Vis Sci 46:1748–1754

    Article  PubMed  Google Scholar 

  90. LaVail MM, Unoki K, Yasumura D et al (1992) Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci USA 89:11249–11253

    Article  PubMed  CAS  Google Scholar 

  91. Politi LE, Rotstein NP, Carri NG (2001) Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid. Invest Ophthalmol Vis Sci 42:3008–3015

    PubMed  CAS  Google Scholar 

  92. Hu J, Bok D (2001) A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers. Mol Vis 7:14–19

    PubMed  CAS  Google Scholar 

  93. Tombran-Tink J, Barnstable CJ (2003) PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci 4:628–636

    Article  PubMed  CAS  Google Scholar 

  94. Bryckaert M, Guillonneau X, Hecquet C et al (1999) Both FGF1 and bcl-x synthesis are necessary for the reduction of apoptosis in retinal pigmented epithelial cells by FGF2: role of the extracellular signal-regulated kinase 2. Oncogene 18:7584–7593

    Article  PubMed  CAS  Google Scholar 

  95. Bilak MM, Shifrin DA, Corse AM et al (1999) Neuroprotective utility and neurotrophic action of neurturin in postnatal motor neurons: comparison with GDNF and persephin. Mol Cell Neurosci 13:326–336

    Article  PubMed  CAS  Google Scholar 

  96. Milbrandt J, de Sauvage FJ, Fahrner TJ et al (1998) Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20:245–253

    Article  PubMed  CAS  Google Scholar 

  97. Kannan R, Zhang N, Sreekumar PG et al (2006) Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress in polarized retinal pigment epithelial cells. Mol Vis 12:1649–1659

    PubMed  CAS  Google Scholar 

  98. Bhutto IA, McLeod DS, Hasegawa T et al (2006) Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Exp Eye Res 82:99–110

    Article  PubMed  CAS  Google Scholar 

  99. Frank RN, Amin RH, Eliott D et al (1996) Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol 122:393–403

    PubMed  CAS  Google Scholar 

  100. Frank RN (1997) Growth factors in age-related macular degeneration: pathogenic and therapeutic implications. Ophthalmic Res 29:341–353

    Article  PubMed  CAS  Google Scholar 

  101. Frank RN, Amin RH, Puklin JE (1999) Antioxidant enzymes in the macular retinal pigment epithelium of eyes with neovascular age-related macular degeneration. Am J Ophthalmol 127:694–709

    Article  PubMed  CAS  Google Scholar 

  102. de Turco EB Rodriguez, Gordon WC, Bazan NG (1992) Light stimulates in vivo inositol lipid turnover in frog retinal pigment epithelial cells at the onset of shedding and phagocytosis of photoreceptor membranes. Exp Eye Res 55:719–725

    Article  Google Scholar 

  103. Chen H, Anderson RE (1993) Metabolism in frog retinal pigment epithelium of docosahexaenoic and arachidonic acids derived from rod outer segment membranes. Exp Eye Res 57:369–377

    Article  PubMed  CAS  Google Scholar 

  104. Anderson RE, Maude MB (1972) Lipids of ocular tissues. 8. The effects of essential fatty acid deficiency on the phospholipids of the photoreceptor membranes of rat retina. Arch Biochem Biophys 151:270–276

    Article  PubMed  CAS  Google Scholar 

  105. Wiegand RD, Koutz CA, Stinson AM et al (1991) Conservation of docosahexaenoic acid in rod outer segments of rat retina during n-3 and n-6 fatty acid deficiency. J Neurochem 57:1690–1699

    Article  PubMed  CAS  Google Scholar 

  106. Stinson AM, Wiegand RD, Anderson RE (1991) Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J Lipid Res 32:2009–2017

    PubMed  CAS  Google Scholar 

  107. Wiegand RD, Koutz CA, Chen H et al (1995) Effect of dietary fat and environmental lighting on the phospholipid molecular species of rat photoreceptor membranes. Exp Eye Res 60:291–306

    Article  PubMed  CAS  Google Scholar 

  108. Scott BL, Bazan NG (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci USA 86:2903–2907

    Article  PubMed  CAS  Google Scholar 

  109. Wheeler TG, Benolken RM, Anderson RE (1975) Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188:1312–1314

    Article  PubMed  CAS  Google Scholar 

  110. Benolken RM, Anderson RE, Wheeler TG (1973) Membrane fatty acids associated with the electrical response in visual excitation. Science 182:1253–1254

    Article  PubMed  CAS  Google Scholar 

  111. Neuringer M, Anderson GJ, Connor WE (1988) The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu Rev Nutr 8:517–541

    Article  PubMed  CAS  Google Scholar 

  112. Uauy R, Peirano P, Hoffman D et al (1996) Role of essential fatty acids in the function of the developing nervous system. Lipids 31(Suppl):S167–S176

    Article  PubMed  CAS  Google Scholar 

  113. Neuringer M, Connor WE, Van Petten C et al (1984) Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 73:272–276

    Article  PubMed  CAS  Google Scholar 

  114. Neuringer M, Connor WE, Lin DS et al (1986) Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci USA 83:4021–4025

    Article  PubMed  CAS  Google Scholar 

  115. Uauy RD, Birch DG, Birch EE et al (1990) Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr Res 28:485–492

    Article  PubMed  CAS  Google Scholar 

  116. Gu X, Meer SG, Miyagi M et al (2003) Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem 278:42027–42035

    Article  PubMed  CAS  Google Scholar 

  117. Hollyfield JG, Salomon RG, Crabb JW (2003) Proteomic approaches to understanding age-related macular degeneration. Adv Exp Med Biol 533:83–89

    Article  PubMed  CAS  Google Scholar 

  118. Chen M, Forrester JV, Xu H (2007) Synthesis of complement factor H by retinal pigment epithelial cells is down-regulated by oxidized photoreceptor outer segments. Exp Eye Res 84:635–645

    Article  PubMed  CAS  Google Scholar 

  119. Mukherjee PK, Marcheselli VL, de Rivero Vaccari JC et al (2007) Photoreceptor outer segment phagocytosis selectively attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis. Proc Natl Acad Sci USA 104:13158–13163

    Article  PubMed  CAS  Google Scholar 

  120. Ershov AV, Parkins N, Lukiw WJ, Bazan NG (2000) Modulation of early response gene expression by prostaglandins in cultured rat retinal pigment epithelium cells. Curr Eye Res 21:968–974

    Article  PubMed  CAS  Google Scholar 

  121. Bazan NG, Bazan HE, Birkle DL et al (1987) Synthesis of leukotrienes in frog retina and retinal pigment epithelium. J Neurosci Res 18:591–596

    Article  PubMed  CAS  Google Scholar 

  122. Ershov AV, Bazan NG (2000) Photoreceptor phagocytosis selectively activates PPARgamma expression in retinal pigment epithelial cells. J Neurosci Res 60:328–337

    Article  PubMed  CAS  Google Scholar 

  123. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10:S2–S9

    Article  PubMed  CAS  Google Scholar 

  124. Sparrow JR, Cai B (2001) Blue light-induced apoptosis of A2E containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci 42:1356–1362

    PubMed  CAS  Google Scholar 

  125. Bazan NG, Reddy TS, Redmond TM et al (1985) Endogenous fatty acids are covalently and noncovalently bound to interphotoreceptor retinoid-binding protein in the monkey retina. J Biol Chem 260:13677–13680

    PubMed  CAS  Google Scholar 

  126. Bazan NG, Rodriguez de Turco EB (1996) Alterations in plasma lipoproteins and DHA transport in progressive rod-cone degeneration (prcd). In: Kato S, Osborne NN, Tamai M (eds) Retinal degeneration and regeneration. Proceedings of an international symposium in Kanazawa, Japan, 8–9 July 1995. Kugler Publications, Amsterdam, pp 89–97

    Google Scholar 

  127. Zhang K, Kniazeva M, Han M et al (2001) A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 27:89–93

    PubMed  CAS  Google Scholar 

  128. Cho E, Hung S, Willett WC et al (2001) Prospective study of dietary fat and the risk of age-related macular degeneration. Am J Clin Nutr 73:209–218

    PubMed  CAS  Google Scholar 

  129. Eye Disease Case-Control Study Group (1993) Antioxidant status and neovascular age-related macular degeneration. Arch Ophthalmol 111:104–109

    Article  Google Scholar 

  130. Seddon JM, Rosner B, Sperduto RD et al (2001) Dietary fat and risk for advanced age-related macular degeneration. Arch Ophthalmol 119:1191–1199

    PubMed  CAS  Google Scholar 

  131. Seddon JM, Cote J, Rosner B (2003) Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol 121:1728–1737. Erratum in: Arch Ophthalmol 2004;122:426

    Google Scholar 

  132. Mares-Perlman JA, Brady WE, Klein R, Vanden Langen-berg GM, Klein BE, Palta M (1995) Dietary fat and age-related maculopathy. Arch Ophthalmol 113:743–748

    Article  PubMed  CAS  Google Scholar 

  133. Heuberger RA, Mares-Perlman JA, Klein R et al (2001) Relationship of dietary fat to age-related maculopathy in the Third National Health and Nutrition Examination Survey. Arch Ophthalmol 119:1833–1838

    PubMed  CAS  Google Scholar 

  134. Smith W, Mitchell P, Leeder SR (2000) Dietary fat and fish intake and age-related maculopathy. Arch Ophthalmol 118:401–404

    PubMed  CAS  Google Scholar 

  135. Kris-Etherton PM, Harris WS, Appel LJ, Nutrition Committee (2003) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 23:e20–e30

    Article  PubMed  CAS  Google Scholar 

  136. Berson EL, Rosner B, Sandberg MA et al (2004) Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol 122:1306–1314

    Article  PubMed  CAS  Google Scholar 

  137. Belayev L, Marcheselli VL, Khoutorova L et al (2005) DHA complexed to albumin elicits high-grade ischemic neuroprotection. Stroke 36:118–123

    Article  PubMed  CAS  Google Scholar 

  138. Sahel JA (2005) Saving cone cells in hereditary rod diseases: a possible role for rod-derived cone viability factor (RdCVF) therapy. Retina 25:S38–S39

    Article  PubMed  Google Scholar 

  139. Leveillard T, Mohand-Said S, Lorentz O et al (2004) Identification and characterization of rod-derived cone viability factor. Nat Genet 36:755–759

    Article  PubMed  CAS  Google Scholar 

  140. Shen J, Yang X, Dong A et al (2005) Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. J Cell Physiol 203:457–464

    Article  PubMed  CAS  Google Scholar 

  141. Komeima K, Rogers BS, Lu L et al (2006) Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci USA 103:11300–11305

    Article  PubMed  CAS  Google Scholar 

  142. Sun M, Finnemann SC, Febbraio M et al (2006) Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress conditions. J Biol Chem 281:4222–4230

    Article  PubMed  CAS  Google Scholar 

  143. Hoppe G, O’Neil J, Hoff HF et al (2004) Products of lipid peroxidation induce missorting of the principal lysosomal protease in retinal pigment epithelium. Biochim Biophys Acta 1689:33–41

    PubMed  CAS  Google Scholar 

  144. Kaemmerer E, Schutt F, Krohne TU et al (2007) Effects of lipid peroxidation-related protein modifications on RPE lysosomal functions and POS phagocytosis. Invest Ophthalmol Vis Sci 48:1342–1347

    Article  PubMed  Google Scholar 

  145. Hoppe G, O’Neil J, Hoff HF et al (2004) Accumulation of oxidized lipid-protein complexes alters phagosome maturation in retinal pigment epithelium. Cell Mol Life Sci 61:1664–1674

    Article  PubMed  CAS  Google Scholar 

  146. Coleman H, Chew E (2007) Nutritional supplementation in age-related macular degeneration. Curr Opin Ophthalmol 18:220–223

    Article  PubMed  Google Scholar 

  147. Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL, Age-Related Eye Disease Study Research Group (2005) Risk factors for the incidence of advanced age-related macular degeneration in the age-related eye disease study (AREDS) AREDS report no. 19. Ophthalmology 112:533–539

    Article  PubMed  Google Scholar 

  148. Dentchev T, Milam AH, Lee VM et al (2003) Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis 14:184–190

    Google Scholar 

  149. Luibl V, Isas JM, Kayed R et al (2006) Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 116:378–385

    Article  PubMed  CAS  Google Scholar 

  150. Bazan NG (2007) Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid (DHA): the Proctor lecture. Invest Ophthalmol Vis Sci 48:4866–4881

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas G. Bazan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bazan, N.G., Halabi, A. (2012). Docosahexaenoic Acid Signalolipidomics in the Homeostatic Modulation of Photoreceptor/Retinal Pigment Epithelial Cell Integrity During Oxidative Stress. In: Stratton, R., Hauswirth, W., Gardner, T. (eds) Studies on Retinal and Choroidal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-606-7_7

Download citation

Publish with us

Policies and ethics