Skip to main content

The Role of Iron in Retinal Diseases

  • Chapter
  • First Online:
Studies on Retinal and Choroidal Disorders

Abstract

Iron is a potent free radical generator in a number of tissues including the retina. Iron levels build up in the macula with age, exacerbating age-related oxidative damage. Several retinal diseases are associated with elevated systemic and local iron levels, and intraocular iron foreign bodies can lead to retinal degeneration. Retinal degenerations have also been observed in hereditary diseases of iron homeostasis, such as aceruloplasminemia, Friedreich’s ataxia, and pantothenate kinase-associated neurodegeneration resulting in iron overload. Similarly, mice with targeted mutations resulting in age-dependent retinal iron overload have features resembling age-related macular degeneration. Both in vitro and in vivo experiments have demonstrated iron in the retinal pigment epithelium and retina is chelatable, protecting against cell damage or death. This has potential clinical applications in the treatment and prevention of age-related macular degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wigglesworth JM, Baum H (1988) Iron-dependent enzymes in the brain. In: Youdim MBH (ed) Topics in neurochemistry and neuropharmacology. Taylor & Francis, London, pp 25–66

    Google Scholar 

  2. Poss KD, Tonegawa S (1997) Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA 94:10919–10924

    Article  PubMed  CAS  Google Scholar 

  3. LeVine SM, Macklin WB (1990) Iron-enriched oligodendrocytes: a reexamination of their spatial distribution. J Neurosci Res 26:508–512

    Article  PubMed  CAS  Google Scholar 

  4. Morris CM, Candy JM, Oakley AE, Bloxham CA, Edwardson JA (1992) Histochemical distribution of non-haem iron in the human brain. Acta Anat (Basel) 144:235–257

    Article  CAS  Google Scholar 

  5. Youdim MBH (1990) Neuropharmacological and neurobiochemical aspects of iron deficiency. In: Dobbing J (ed) Brain, behavior, and iron in the infant diet. Springer, London, pp 83–106

    Google Scholar 

  6. Drayer B, Burger P, Hurwitz B, Dawson D, Cain J (1987) Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? Am J Roentgenol (AJR) 149:357–363

    CAS  Google Scholar 

  7. Roncagliolo M, Garrido M, Walter T, Peirano P, Lozoff B (1998) Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 mo: delayed maturation of auditory brainstem responses. Am J Clin Nutr 68:683–690

    PubMed  CAS  Google Scholar 

  8. Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci USA 102:12413–12418

    Article  PubMed  CAS  Google Scholar 

  9. Schichi H (1969) Microsomal electron transport system of bovine retinal pigment epithelium. Exp Eye Res 8:60–68

    Article  Google Scholar 

  10. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

  11. Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94:9866–9868

    Article  PubMed  CAS  Google Scholar 

  12. Baker E, Morgan EH (1994) Iron transport. In: Brock J, Halliday JH, Pippard MH, Powell LW (eds) Iron metabolism in health and disease. W.B. Saunders, Philadelphia, pp 63–95

    Google Scholar 

  13. Sipe DM, Murphy RF (1991) Binding to cellular receptors results in increased iron release from transferrin at mildly acidic pH. J Biol Chem 266:8002–8007

    PubMed  CAS  Google Scholar 

  14. Aisen P, Enns C, Wessling-Resnick M (2001) Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 33:940–959

    Article  PubMed  CAS  Google Scholar 

  15. Hunt RC, Davis AA (1992) Release of iron by human retinal pigment epithelial cells. J Cell Physiol 152:102–110

    Article  PubMed  CAS  Google Scholar 

  16. Dautry-Varsat A, Ciechanover A, Lodish HF (1983) pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci USA 80:2258–2262

    Article  PubMed  CAS  Google Scholar 

  17. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  PubMed  CAS  Google Scholar 

  18. Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912

    Article  PubMed  CAS  Google Scholar 

  19. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-­regulatedtransporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309

    Article  PubMed  CAS  Google Scholar 

  20. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the Sla mouse. Nat Genet 21:195–199

    Article  PubMed  CAS  Google Scholar 

  21. Hentze MW, Kuhn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93:8175–8182

    Article  PubMed  CAS  Google Scholar 

  22. Rouault TA (2002) Post-transcriptional regulation of human iron metabolism by iron regulatory proteins. Blood Cells Mol Dis 29:309–314

    Article  PubMed  CAS  Google Scholar 

  23. Yefimova MG, Jeanny JC, Guillonneau X, Keller N, Nguyen-Legros J, Sergeant C, Guillou F, Courtois Y (2000) Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina. Invest Ophthalmol Vis Sci 41:2343–2351

    PubMed  CAS  Google Scholar 

  24. Tripathi RC, Millard CB, Tripathi BJ, Chailertborisuth NS, Neely KA, Ernest JT (1990) Aqueous humor of cat contains fibroblast growth factor and transferrin similar to those in man. Exp Eye Res 50:109–112

    Article  PubMed  CAS  Google Scholar 

  25. Yu TC, Okamura R (1988) Quantitative study of characteristic aqueous humor transferrin, serum transferrin and desialized serum transferrin in aqueous humor. Jpn J Ophthalmol 32:268–274

    PubMed  CAS  Google Scholar 

  26. Hawkins KN (1986) Contribution of plasma proteins to the vitreous of the rat. Curr Eye Res 5:655–663

    Article  PubMed  CAS  Google Scholar 

  27. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal–ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  28. Rouault TA, Cooperman S (2006) Brain iron metabolism. Semin Pediatr Neurol 13:142–148

    Article  PubMed  Google Scholar 

  29. Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66:1198–1207

    Article  PubMed  CAS  Google Scholar 

  30. Burdo JR, Martin J, Menzies SL, Dolan KG, Romano MA, Fletcher RJ, Garrick MD, Garrick LM, Connor JR (1999) Cellular distribution of iron in the brain of the Belgrade rat. Neuroscience 93:1189–1196

    Article  PubMed  CAS  Google Scholar 

  31. Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE III, Papadopoulos V, Snyder SH (2006) NMDA receptor—nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51:431–440

    Article  PubMed  CAS  Google Scholar 

  32. Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A, Sanford D, Arosio P, Drysdale J (2001) A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276:24437–24440

    Article  PubMed  CAS  Google Scholar 

  33. Hahn P, Dentchev T, Qian Y, Rouault T, Harris ZL, Dunaief JL (2004) Immunolocalization and regulation of iron handling proteins ferritin and ferroportin in the retina. Mol Vis 10:598–607

    PubMed  CAS  Google Scholar 

  34. Osaki S (1966) Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin). J Biol Chem 241:5053–5059

    PubMed  CAS  Google Scholar 

  35. Chen L, Dentchev T, Wong R, Hahn P, Wen R, Bennett J, Dunaief JL (2003) Increased expression of ceruloplasmin in the retina following photic injury. Mol Vis 9:151–158

    PubMed  CAS  Google Scholar 

  36. Hahn P, Qian Y, Dentchev T, Chen L, Beard J, Harris ZL, Dunaief JL (2004) Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci USA 101: 13850–13855

    Article  PubMed  CAS  Google Scholar 

  37. Levin LA, Geszvain KM (1998) Expression of ceruloplasmin in the retina: induction after optic nerve crush. Invest Ophthalmol Vis Sci 39:157–163

    PubMed  CAS  Google Scholar 

  38. Miyahara T, Kikuchi T, Akimoto M, Kurokawa T, Shibuki H, Yoshimura N (2003) Gene microarray analysis of experimental glaucomatous retina from cynomologous monkey. Invest Ophthalmol Vis Sci 44:4347–4356

    Article  PubMed  Google Scholar 

  39. Farkas RH, Chowers I, Hackam AS, Kageyama M, Nickells RW, Otteson DC, Duh EJ, Wang C, Valenta DF, Gunatilaka TL, Pease ME, Quigley HA, Zack DJ (2004) Increased expression of iron-regulating genes in monkey and human glaucoma. Invest Ophthalmol Vis Sci 45: 1410–1417

    Article  PubMed  Google Scholar 

  40. Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P (2005) Expression of acute-phase response proteins in retinal Muller cells in diabetes. Invest Ophthalmol Vis Sci 46:349–357

    Article  PubMed  Google Scholar 

  41. Li D, Ma W, Sun F, Pavlidis P, Spector A (2004) Cluster analysis of genes with significant change in expression in cells conditioned to survive TBOOH. Exp Eye Res 78:301–308

    Article  PubMed  CAS  Google Scholar 

  42. Sarkar J, Seshadri V, Tripoulas NA, Ketterer ME, Fox PL (2003) Role of ceruloplasmin in macrophage iron efflux during hypoxia. J Biol Chem 278:44018–44024

    Article  PubMed  CAS  Google Scholar 

  43. Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M (2005) Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA 102:1324–1328

    Article  PubMed  CAS  Google Scholar 

  44. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  PubMed  CAS  Google Scholar 

  45. Hadziahmetovic M, Song Y, Wolkow N, Iacovelli J, Grieco S, Lee J, Lyubarsky A, Pratico D, Connelly J, Spino M, Harris ZL, Dunaief JL (2011) The oral iron chelator deferiprone protects against iron overload-induced retinal degeneration. Invest Ophthalmol Vis Sci. 52(2):959–968

    Google Scholar 

  46. Rogers BS, Symons RC, Komeima K, Shen J, Xiao W, Swaim ME, Gong YY, Kachi S, Campochiaro PA (2007) Differential sensitivity of cones to iron-mediated oxidative damage. Invest Ophthalmol Vis Sci 48:438–445

    Article  PubMed  Google Scholar 

  47. Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S (2002) Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 22:6578–6586

    PubMed  CAS  Google Scholar 

  48. Dunaief JL, Richa C, Franks EP, Schultze RL, Aleman TS, Schenck JF, Zimmerman EA, Brooks DG (2005) Macular degeneration in a patient with aceruloplasminemia, a disease associated with retinal iron overload. Ophthalmology 112:1062–1065

    Article  PubMed  Google Scholar 

  49. Yefimova MG, Jeanny JC, Keller N, Sergeant C, Guillonneau X, Beaumont C, Courtois Y (2002) Impaired retinal iron homeostasis associated with defective phagocytosis in Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 43:537–545

    PubMed  Google Scholar 

  50. Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  PubMed  CAS  Google Scholar 

  51. Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598–614

    Article  PubMed  Google Scholar 

  52. AREDS (2001) A randomized, placebo-controlled, clinical trial of highdose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119:1417–1436

    Google Scholar 

  53. Hahn P, Milam AH, Dunaief JL (2003) Maculas affected by age related macular degeneration contain increased chelatable iron in the retinal pigment epithelium and Bruch’s membrane. Arch Ophthalmol 121:1099–1105

    Article  PubMed  Google Scholar 

  54. Dentchev T, Hahn P, Dunaief JL (2005) Strong labeling for iron and the iron-handling proteins ferritin and ferroportin in the photoreceptor layer in age-related macular degeneration. Arch Ophthalmol 123:1745–1746

    Article  PubMed  Google Scholar 

  55. Hahn P, Ying GS, Beard J, Dunaief JL (2006) Iron levels in human retina: sex difference and increase with age. Neuroreport 17:1803–1806

    Article  PubMed  CAS  Google Scholar 

  56. Chowers I, Wong R, Dentchev T, Farkas RH, Iacovelli J, Gunatilaka TL, Medeiros NE, Presley JB, Campochiaro PA, Curcio CA, Dunaief JL, Zack DJ (2006) The iron carrier transferrin is upregulated in retinas from patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 47:2135–2140

    Article  PubMed  Google Scholar 

  57. Harris ZL, Takahashi Y, Miyajima H, Serizawa M, MacGillivray RT, Gitlin JD (1995) Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci USA 92:2539–2543

    Article  PubMed  CAS  Google Scholar 

  58. Pietrangelo A (2006) Hereditary hemochromatosis. Biochim Biophys Acta 1763:700–710

    Article  PubMed  CAS  Google Scholar 

  59. Feder JN, Penny DM, Irrinki A, Lee VK, Lebron JA, Watson N, Tsuchihashi Z, Sigal E, Bjorkman PJ, Schatzman RC (1998) The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci USA 95:1472–1477

    Article  PubMed  CAS  Google Scholar 

  60. Pietrangelo A (2004) The ferroportin disease. Blood Cells Mol Dis 32:131–138

    Article  PubMed  CAS  Google Scholar 

  61. Pietrangelo A (2005) Non-HFE hemochromatosis. Semin Liver Dis 25:450–460

    Article  PubMed  CAS  Google Scholar 

  62. Nemeth E, Ganz T (2006) Regulation of iron metabolism by hepcidin. Annu Rev Nutr 26:323–342

    Article  PubMed  CAS  Google Scholar 

  63. Roth AM, Foos RY (1972) Ocular pathologic changes in primary hemochromatosis. Arch Ophthalmol 87:507–514

    Article  PubMed  CAS  Google Scholar 

  64. Porter N, Downes SM, Fratter C, Anslow P, Nemeth AH (2007) Catastrophic visual loss in a patient with Friedreich ataxia. Arch Ophthalmol 125:273–274

    Article  PubMed  Google Scholar 

  65. Koeppen AH, Dickson AC (2001) Iron in the Hallervorden–Spatz syndrome. Pediatr Neurol 25:148–155

    Article  PubMed  CAS  Google Scholar 

  66. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden–Spatz syndrome. Nat Genet 28:345–349

    Article  PubMed  CAS  Google Scholar 

  67. Newell FW, Johnson RO II, Huttenlocher PR (1979) Pigmentary degeneration of the retina in the Hallervorden–Spatz syndrome. Am J Ophthalmol 88:467–471

    PubMed  CAS  Google Scholar 

  68. Luckenbach MW, Green WR, Miller NR, Moser HW, Clark AW, Tennekoon G (1983) Ocular clinicopathologic correlation of Hallervorden–Spatz syndrome with acanthocytosis and pigmentary retinopathy. Am J Ophthalmol 95:369–382

    PubMed  CAS  Google Scholar 

  69. Kuo YM, Duncan JL, Westaway SK, Yang H, Nune G, Xu EY, Hayflick SJ, Gitschier J (2005) Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum Mol Genet 14:49–57

    Article  PubMed  CAS  Google Scholar 

  70. Cibis PA, Yamashita T, Rodriguez F (1959) Clinical aspects of ocular siderosis and hemosiderosis. AMA Arch Ophthalmol 62:180–187

    PubMed  CAS  Google Scholar 

  71. Talamo JH, Topping TM, Maumenee AE, Green WR (1985) Ultrastructural studies of cornea, iris and lens in a case of siderosis bulbi. Ophthalmology 92:1675–1680

    PubMed  CAS  Google Scholar 

  72. Sneed SR (1988) Ocular siderosis. Arch Ophthalmol 106:997

    Article  PubMed  CAS  Google Scholar 

  73. Knave B (1969) Electroretinography in eyes with retained intraocular metallic foreign bodies. Acta Ophthalmol 100(Suppl):4–63

    Google Scholar 

  74. Declercq SS, Meredith PC, Rosenthal AR (1977) Experimental siderosis in the rabbit: correlation between electroretinography and histopathology. Arch Ophthalmol 95:1051–1058

    Article  PubMed  CAS  Google Scholar 

  75. Gillies A, Lahav M (1983) Absorption of retinal and subretinal hemorrhages. Ann Ophthalmol 15:1068–1074

    PubMed  CAS  Google Scholar 

  76. Glatt H, Machemer R (1982) Experimental subretinal hemorrhage in rabbits. Am J Ophthalmol 94:762–773

    Article  PubMed  CAS  Google Scholar 

  77. Youssef TA, Trese MT, Hartzer M, Mahgoub M, Raza H, Azrak M, Allredge C (2002) Deferoxamine reduced retinal toxicity from subretinal blood. Invest Ophthalmol 43 (E-abstract)

    Google Scholar 

  78. Bhisitkul RB, Winn BJ, Lee O, Wong J, de Souza Pereira D, Porco TC, He X, Hahn P, Dunaief JL (2008) Neuroprotective effect of intravitreal triamcinolone acetonide against photoreceptor apoptosis in a rabbit model of subretinal hemorrhage. Invest Ophthalmol Vis Sci 49:4071–4077

    Article  PubMed  Google Scholar 

  79. Ito T, Nakano M, Yamamoto Y, Hiramitsu T, Mizuno Y (1995) Hemoglobin-induced lipid peroxidation in the retina: a possiblemechanism for macular degeneration. Arch Biochem Biophys 316:864–872

    Article  PubMed  CAS  Google Scholar 

  80. Kalinowski DS, Richardson DR (2005) The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 57:547–583

    Article  PubMed  CAS  Google Scholar 

  81. Maxton DG, Bjarnason I, Reynolds AP, Catt SD, Peters TJ, Menzies IS (1986) Lactulose, 51Cr-labelled ethylenediaminetetraacetate, l-rhamnose and polyethyleneglycol 400 [corrected] as probe markers for assessment in vivo of human intestinal permeability. Clin Sci (London) 71:71–80

    CAS  Google Scholar 

  82. Liu ZD, Hider RC (2002) Design of clinically useful iron(III)-selective chelators. Med Res Rev 22:26–64

    Article  PubMed  CAS  Google Scholar 

  83. Lukinova N, Iacovelli J, Dentchev T, Wolkow N, Hunter A, Amado D, Ying GS, Sparrow JR, Dunaief JL (2009) Iron chelation protects the retinal pigment epithelial cell line ARPE-19 against cell death triggered by diverse stimuli. Invest Ophthalmol Vis Sci 50:1440–1447

    Article  PubMed  Google Scholar 

  84. Kurz T, Karlsson M, Brunk UT, Nilsson SE, Frennesson C (2009) ARPE-19 retinal pigment epithelial cells are highly resistant to oxidative stress and exercise strict control over their lysosomal redox-active iron. Autophagy 5(4):494–501

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua L. Dunaief .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mehta, S., Dunaief, J.L. (2012). The Role of Iron in Retinal Diseases. In: Stratton, R., Hauswirth, W., Gardner, T. (eds) Studies on Retinal and Choroidal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-606-7_12

Download citation

Publish with us

Policies and ethics