Skip to main content

Cord Blood Banking for Regenerative Therapy

  • Chapter
  • First Online:
Book cover Regenerative Therapy Using Blood-Derived Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The first successful umbilical cord blood (UCB) transplant in 1989 on a patient with Fanconi anemia sparked the creation of cord blood banks worldwide, including more than 100 public banks and nearly 500,000 banked units. Although cord blood units have been historically collected and stored for use in hematopoietic transplantation, there is increasing attention regarding nonhematopoietic cells within cord blood units and their important regenerative functions, making the prospect of using UCB for vascular repair or regenerative therapy most exciting. In this chapter, we provide an outline of various cell types with regenerative function that are present in UCB units and discuss the potential role of using banked cord blood cells for regenerative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadbeigi N, Seyedjafari E, Gheisari AA, Omidkhoda A, Soleimani M (2010) Surface expression of CXCR4 in unrestricted somatic stem cells and its regulation by growth factors. Cell Biol Int 34:687–692

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  • Atkins (2010) for the treatment of multiple sclerosis. Bone Marrow Transplant 45:1671–1681

    Article  PubMed  CAS  Google Scholar 

  • Au P, Daheron LM, Duda DG et al (2008) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111:1302–1305

    Article  PubMed  CAS  Google Scholar 

  • Brody AR, Salazar KD, Lankford SM (2010) Mesenchymal stem cells modulate lung injury. Proc Am Thorac Soc 7:130–133

    Article  PubMed  Google Scholar 

  • Corselli M, Parodi A, Mogni M et al (2008) Clinical scale ex vivo expansion of cord blood-derived outgrowth endothelial progenitor cells is associated with high incidence of karyotype aberrations. Exp Hematol 36:340–349

    Article  PubMed  CAS  Google Scholar 

  • Delorme B, Basire A, Gentile C et al (2005) Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells. Thromb Haemost 94:1270–1279

    PubMed  CAS  Google Scholar 

  • Duijvestein M, Vos AC, Roelofs H et al (2010) Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59:1662–1669

    Article  PubMed  Google Scholar 

  • Gratwohl A, Baldomero H, Schwendener A et al (2009) The EBMT activity survey 2007 with focus on allogeneic HSCT for AML and novel cellular therapies. Bone Marrow Transplant 43:275–291

    Article  PubMed  CAS  Google Scholar 

  • Gratwohl A, Baldomero H (2010) European survey on clinical use of cord blood for hematopoietic and non-hematopoietic indications. Transfus Apher Sci 42:265–275

    Article  PubMed  Google Scholar 

  • Greschat S, Schira J, Kury P et al (2008) Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype. Stem Cells Dev 17:221–232

    Article  PubMed  CAS  Google Scholar 

  • Jansen BJ, Gilissen C, Roelofs H et al (2010) Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem Cells Dev 19:481–490

    Article  PubMed  CAS  Google Scholar 

  • Kluth SM, Buchheiser A, Houben AP et al (2010) DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood. Stem Cells Dev 19:1471–1483

    Article  PubMed  CAS  Google Scholar 

  • Kogler G, Sensken S, Airey JA et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    Article  PubMed  Google Scholar 

  • Liedtke S, Buchheiser A, Bosch J et al (2010) The HOX Code as a “biological fingerprint” to distinguish functionally distinct stem cell populations derived from cord blood. Stem Cell Res 5:40–50

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Chang L, Solovey A, Healey JF, Lollar P, Hebbel RP (2002) Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood 99:457–462

    Article  PubMed  CAS  Google Scholar 

  • Marmont AM, Burt RK (2008) Hematopoietic stem cell transplantation for systemic lupus erythematosus, the antiphospholipid syndrome and bullous skin diseases. Autoimmunity 41:639–647

    Article  PubMed  CAS  Google Scholar 

  • Murohara T (2001) Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc Med 11:303–307

    Article  PubMed  CAS  Google Scholar 

  • Murohara T (2010) Cord blood derived early-outgrowth endothelial cells. Microvasc Res 79:174–177

    Article  PubMed  CAS  Google Scholar 

  • Nagano M, Kimura K, Yamashita T et al (2010) Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair. Stem Cells Dev 19:1195–1210

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama N, Miyoshi S, Hida N et al (2007) The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells 25:2017–2024

    Article  PubMed  CAS  Google Scholar 

  • Peichev M, Naiyer AJ, Pereira D et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95:952–958

    PubMed  CAS  Google Scholar 

  • Shaw BE, Veys P, Pagliuca A et al (2009) Recommendations for a standard UK approach to incorporating umbilical cord blood into clinical transplantation practice: conditioning protocols and donor selection algorithms. Bone Marrow Transplant 44:7–12

    Article  PubMed  CAS  Google Scholar 

  • Siepe M, Akhyari P, Lichtenberg A, Schlensak C, Beyersdorf F (2008) Stem cells used for cardiovascular tissue engineering. Eur J Cardiothorac Surg 34:242–247

    Article  PubMed  Google Scholar 

  • Sundin M, Barrett AJ, Ringdén O et al (2009) HSCT recipients have specific tolerance to MSC but not to the MSC donor. J Immunother 32:755–764

    Article  PubMed  CAS  Google Scholar 

  • Vanneaux V, El-Ayoubi F, Delmau C et al (2010) In vitro and in vivo analysis of endothelial progenitor cells from cryopreserved umbilical cord blood: are we ready for clinical application? Cell Transplant 19:1143–1155

    Article  PubMed  Google Scholar 

  • Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121:368–374

    Article  PubMed  Google Scholar 

  • Wu LK, Tokarew JM, Chaytor JL et al (2011) Carbohydrate-mediated inhibition of ice recrystallization in cryopreserved human umbilical cord blood. Carbohydrate Res 346:86–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Allan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Klowak, J., Chung, Y., Allan, D.S. (2012). Cord Blood Banking for Regenerative Therapy. In: Allan, D., Strunk, D. (eds) Regenerative Therapy Using Blood-Derived Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-471-1_12

Download citation

Publish with us

Policies and ethics