Skip to main content

Concepts to Facilitate Umbilical Cord Blood Transplantation

  • Chapter
  • First Online:
  • 865 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Blood stem cell transplantation aims to regenerate the entire hematopoietic system. Until recently, a significant proportion of patients in need of a hematopoietic cell transplant could not undergo transplantation due to the lack of a suitable matched related or unrelated adult donor. With the advent of umbilical cord blood harvesting and processing technology, the majority of patients can now receive a suitable transplant. This chapter will review current cord blood engineering strategies with a particular focus on novel concepts to facilitate blood stem cell engraftment and hematopoietic reconstitution. Because blood stem cell transplantation serves as the model system for many novel regenerative stem cell therapy strategies, the concepts described are considered to be applicable to nonhematopoietic stem cell therapy as well. Groundbreaking laboratory-based cell processing technologies and strategies to improve engraftment will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams GB, Martin RP, Alley IR et al (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25:238–243

    PubMed  CAS  Google Scholar 

  • Allen TD, Dexter TM (1984) The essential cells of the hemopoietic microenvironment. Exp Hematol 12:517–521

    PubMed  CAS  Google Scholar 

  • Allen TD, Simons PJ, Dexter TM (1984) Haemopoietic microenvironments in vitro–which cells are involved? Blood Cells 10:467–471

    PubMed  CAS  Google Scholar 

  • Andrade PZ, Dos Santos F, Almeida-Porada G, Da Silva CL, S Cabral JM (2010) Systematic delineation of optimal cytokine concentrations to expand hematopoietic stem/progenitor cells in co-culture with mesenchymal stem cells. Mol Biosyst 6:1207–1215

    PubMed  CAS  Google Scholar 

  • Arai F, Suda T (2007) Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann N Y Acad Sci 1106:41–53

    PubMed  CAS  Google Scholar 

  • Arai F, Yoshihara H, Hosokawa K et al (2009) Niche regulation of hematopoietic stem cells in the endosteum. Ann N Y Acad Sci 1176:36–46

    PubMed  CAS  Google Scholar 

  • Avecilla ST, Hattori K, Heissig B et al (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71

    PubMed  CAS  Google Scholar 

  • Barker JN, Weisdorf DJ, Wagner JE (2001) Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N Engl J Med 344:1870–1871

    PubMed  CAS  Google Scholar 

  • Bensidhoum M, Chapel A, Francois S et al (2004) Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103:3313–3319

    PubMed  CAS  Google Scholar 

  • Boitano AE, Wang J, Romeo R et al (2010) Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329:1345–1348

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE, Douglas GW, Hangoc G et al (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 86:3828–3832

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE, Kohli L, Kim CH et al (2003) Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells. J Leukoc Biol 73:630–638

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE, Mejia JA, Hangoc G, Barese C, Dinauer M, Cooper S (2007) SDF-1/CXCL12 enhances in vitro replating capacity of murine and human multipotential and macrophage progenitor cells. Stem Cells Dev 16:589–596

    PubMed  CAS  Google Scholar 

  • Butler JM, Nolan DJ, Vertes EL et al (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6:251–264

    PubMed  CAS  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    PubMed  CAS  Google Scholar 

  • Campbell TB, Hangoc G, Liu Y, Pollok K, Broxmeyer HE (2007) Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells Dev 16:347–354

    PubMed  CAS  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    PubMed  CAS  Google Scholar 

  • Castello S, Podesta M, Menditto VG et al (2004) Intra-bone marrow injection of bone marrow and cord blood cells: an alternative way of transplantation associated with a higher seeding efficiency. Exp Hematol 32:782–787

    PubMed  Google Scholar 

  • Christopherson KW, Hangoc G 2ND, Broxmeyer HE (2002) Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 169:7000–7008

    PubMed  CAS  Google Scholar 

  • Christopherson KW, Hangoc G 2ND, Mantel CR, Broxmeyer HE (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305:1000–1003

    PubMed  CAS  Google Scholar 

  • Christopherson KW, Paganessi LA 2ND, Napier S, Porecha NK (2007) CD26 inhibition on CD34+ or lineage- human umbilical cord blood donor hematopoietic stem cells/hematopoietic progenitor cells improves long-term engraftment into NOD/SCID/Beta2null immunodeficient mice. Stem Cells Dev 16:355–360

    PubMed  CAS  Google Scholar 

  • Chute JP, Muramoto GG, Salter AB et al (2007) Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood 109:2365–2372

    PubMed  CAS  Google Scholar 

  • Cohen YC, Scaradavou A, Stevens CE et al (2010) Factors affecting mortality following myeloablative cord blood transplantation in adults: a pooled analysis of three international registries. Bone Marrow Transplant 1:70–76

    Google Scholar 

  • De Lima M, Mcmannis J, Gee A et al (2008) Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant 41:771–778

    PubMed  Google Scholar 

  • Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID (2010) Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 16:232–236

    PubMed  CAS  Google Scholar 

  • Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID (2005) Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 106:2693–2699

    PubMed  CAS  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG (1977a) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344

    PubMed  CAS  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG, Schofield R, Lord BI (1973) Stimulation of differentiation and proliferation of haemopoietic cells in vitro. J Cell Physiol 82:461–473

    PubMed  CAS  Google Scholar 

  • Dexter TM, Moore MA, Sheridan AP (1977b) Maintenance of hemopoietic stem cells and production of differentiated progeny in allogeneic and semiallogeneic bone marrow chimeras in vitro. J Exp Med 145:1612–1616

    PubMed  CAS  Google Scholar 

  • Dexter TM, Testa NG (1976) Differentiation and proliferation of hemopoietic cells in culture. Methods Cell Biol 14:387–405

    PubMed  CAS  Google Scholar 

  • Dexter TM, Wright EG, Krizsa F, Lajtha LG (1977c) Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures. Biomedicine 27:344–349

    PubMed  CAS  Google Scholar 

  • Foeken LM, Green A, Hurley CK, Marry E, Wiegand T, Oudshoorn M (2010) Monitoring the international use of unrelated donors for transplantation: the WMDA annual reports. Bone Marrow Transplant 45:811–818

    PubMed  CAS  Google Scholar 

  • Frassoni F, Gualandi F, Podesta M et al (2008) Direct intrabone transplant of unrelated cord-blood cells in acute leukaemia: a phase I/II study. Lancet Oncol 9:831–839

    PubMed  CAS  Google Scholar 

  • Frassoni F, Podesta M, Maccario R et al (2003) Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation. Blood 102:1138–1141

    PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974a) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340

    PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Deriglasova UF, Kulagina NN et al (1974b) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92

    PubMed  CAS  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    PubMed  CAS  Google Scholar 

  • Gluckman E (2009) History of cord blood transplantation. Bone Marrow Transplant 44:621–626

    PubMed  CAS  Google Scholar 

  • Gluckman E, Broxmeyer HA, Auerbach AD et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178

    PubMed  CAS  Google Scholar 

  • Gluckman E, Rocha V, Arcese W et al (2004) Factors associated with outcomes of unrelated cord blood transplant: guidelines for donor choice. Exp Hematol 32:397–407

    PubMed  CAS  Google Scholar 

  • Herr AL, Kabbara N, Bonfim CM et al (2010) Long-term follow-up and factors influencing outcomes after related HLA-identical cord blood transplantation for patients with malignancies: an analysis on behalf of Eurocord-EBMT. Blood 116:1849–1856

    PubMed  CAS  Google Scholar 

  • Hiwase SD, Dyson PG, To LB, Lewis ID (2009) Cotransplantation of placental mesenchymal stromal cells enhances single and double cord blood engraftment in nonobese diabetic/severe combined immune deficient mice. Stem Cells 27:2293–2300

    PubMed  Google Scholar 

  • Hoggatt J, Singh P, Sampath J, Pelus LM (2009) Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113:5444–5455

    PubMed  CAS  Google Scholar 

  • Hooper AT, Butler JM, Nolan DJ et al (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4:263–274

    PubMed  CAS  Google Scholar 

  • Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105:2783–2786

    PubMed  CAS  Google Scholar 

  • Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    PubMed  CAS  Google Scholar 

  • Kiel MJ, Morrison SJ (2006) Maintaining hematopoietic stem cells in the vascular niche. Immunity 25:862–864

    PubMed  CAS  Google Scholar 

  • Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8:290–301

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Butler JM, O’donnell R et al (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 12:1046–1056

    PubMed  CAS  Google Scholar 

  • Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    PubMed  CAS  Google Scholar 

  • Kopp HG, Hooper AT, Avecilla ST, Rafii S (2009) Functional heterogeneity of the bone marrow vascular niche. Ann N Y Acad Sci 1176:47–54

    PubMed  CAS  Google Scholar 

  • Kushida T, Inaba M, Hisha H et al (2001) Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood 97:3292–3299

    PubMed  CAS  Google Scholar 

  • Lazzari L, Lucchi S, Porretti L et al (2001a) Comparison of different serum-free media for ex vivo expansion of HPCs from cord blood using thrombopoietin, Flt-3 ligand, IL-6, and IL-11. Transfusion 41:718–719

    PubMed  CAS  Google Scholar 

  • Lazzari L, Lucchi S, Rebulla P et al (2001b) Long-term expansion and maintenance of cord blood haematopoietic stem cells using thrombopoietin, Flt3-ligand, interleukin (IL)-6 and IL-11 in a serum-free and stroma-free culture system. Br J Haematol 112:397–404

    PubMed  CAS  Google Scholar 

  • Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5:485–489

    PubMed  Google Scholar 

  • Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    PubMed  Google Scholar 

  • Lemischka IR, Moore KA (2003) Stem cells: interactive niches. Nature 425:778–779

    PubMed  CAS  Google Scholar 

  • Lewis ID, Almeida-Porada G, Du J et al (2001) Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system. Blood 97:3441–3449

    PubMed  CAS  Google Scholar 

  • Lo Celso C, Fleming HE, Wu JW et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96

    PubMed  CAS  Google Scholar 

  • Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9:841–848

    PubMed  CAS  Google Scholar 

  • McNiece I, Harrington J, Turney J, Kellner J, Shpall EJ (2004) Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 6:311–317

    PubMed  CAS  Google Scholar 

  • McNiece IK, Almeida-Porada G, Shpall EJ, Zanjani E (2002) Ex vivo expanded cord blood cells provide rapid engraftment in fetal sheep but lack long-term engrafting potential. Exp Hematol 30:612–616

    PubMed  Google Scholar 

  • Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    PubMed  CAS  Google Scholar 

  • Milner LA, Kopan R, Martin DI, Bernstein ID (1994) A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood 83:2057–2062

    PubMed  CAS  Google Scholar 

  • Mohamed AA, Ibrahim AM, El-Masry MW et al (2006) Ex vivo expansion of stem cells: defining optimum conditions using various cytokines. Lab Hematol 12:86–93

    PubMed  CAS  Google Scholar 

  • Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263

    PubMed  CAS  Google Scholar 

  • Noort WA, Kruisselbrink AB, In’t Anker PS et al (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 30:870–878

    PubMed  Google Scholar 

  • North TE, Goessling W, Walkley CR et al (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011

    PubMed  CAS  Google Scholar 

  • Ohishi K, Varnum-Finney B, Bernstein ID (2002) Delta-1 enhances marrow and thymus repopulating ability of human CD34(+)CD38(-) cord blood cells. J Clin Invest 110:1165–1174

    PubMed  CAS  Google Scholar 

  • Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33:387–399

    PubMed  CAS  Google Scholar 

  • Pecora AL, Stiff P, Jennis A et al (2000) Prompt and durable engraftment in two older adult patients with high risk chronic myelogenous leukemia (CML) using ex vivo expanded and unmanipulated unrelated umbilical cord blood. Bone Marrow Transplant 25:797–799

    PubMed  CAS  Google Scholar 

  • Peled T, Landau E, Mandel J et al (2004a) Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Exp Hematol 32:547–555

    PubMed  CAS  Google Scholar 

  • Peled T, Landau E, Prus E, Treves AJ, Nagler A, Fibach E (2002) Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells. Br J Haematol 116:655–661

    PubMed  CAS  Google Scholar 

  • Peled T, Mandel J, Goudsmid RN et al (2004b) Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy 6:344–355

    PubMed  CAS  Google Scholar 

  • Petropoulos D, Chan KW (2009) Carlecortemcel-l: an ex vivo expanded umbilical cord blood cell graft for allogeneic transplantation. Expert Opin Biol Ther 9:1437–1444

    PubMed  Google Scholar 

  • Piacibello W, Sanavio F, Severino A et al (1999) Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood 93:3736–3749

    PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    PubMed  CAS  Google Scholar 

  • Rafii S, Oz MC, Seldomridge JA et al (1995) Characterization of hematopoietic cells arising on the textured surface of left ventricular assist devices. Ann Thorac Surg 60:1627–1632

    PubMed  CAS  Google Scholar 

  • Rafii S, Shapiro F, Rimarachin J et al (1994) Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84:10–19

    PubMed  CAS  Google Scholar 

  • Reinisch A, Bartmann C, Rohde E et al (2007) Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application. Regen Med 2:371–382

    PubMed  Google Scholar 

  • Reinisch A, Hofmann NA, Obenauf AC et al (2009) Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood 113:6716–6725

    PubMed  CAS  Google Scholar 

  • Robinson SN, Ng J, Niu T et al (2006) Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant 37:359–366

    PubMed  CAS  Google Scholar 

  • Rocha V, Labopin M, Ruggeri A et al (2010) Unrelated Cord Blood Transplantation: Comparison After Single Unit Cord Blood Intrabone Injection and Double Unit Cord Blood Transplantation In Patients with Hematological Malignant Disorders. A Eurocord-EBMT Analysis, Blood 116: 223

    PubMed  CAS  Google Scholar 

  • Sackstein R (2009) Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration. Immunol Rev 230:51–74

    PubMed  CAS  Google Scholar 

  • Salter AB, Meadows SK, Muramoto GG et al (2009) Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113:2104–2107

    PubMed  CAS  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    PubMed  CAS  Google Scholar 

  • Shpall EJ, Quinones R, Giller R et al (2002) Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant 8:368–376

    PubMed  Google Scholar 

  • Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    PubMed  CAS  Google Scholar 

  • Thomas ED, Lochte HL JR, Lu WC, Ferrebee JW (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257:491–496

    PubMed  CAS  Google Scholar 

  • Tyndall A, Walker UA, Cope A et al (2007) Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Res Ther 9:301

    PubMed  Google Scholar 

  • Wagner JE, Barker JN, DeFor TE et al (2002) Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 100:1611–1618

    PubMed  CAS  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    PubMed  CAS  Google Scholar 

  • Xia L, McDaniel JM, Yago T, Doeden A, McEever RP (2004) Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 104:3091–3096

    PubMed  CAS  Google Scholar 

  • Xie Y, Yin T, Wiegraebe W et al (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457:97–101

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Hirayama F, Kanai M et al (2001) Serum-free coculture system for ex vivo expansion of human cord blood primitive progenitors and SCID mouse-reconstituting cells using human bone marrow primary stromal cells. Exp Hematol 29:174–182

    PubMed  CAS  Google Scholar 

  • Yao CL, Chu IM, Hsieh TB, Hwang SM (2004) A systematic strategy to optimize ex vivo expansion medium for human hematopoietic stem cells derived from umbilical cord blood mononuclear cells. Exp Hematol 32:720–727

    PubMed  CAS  Google Scholar 

  • Yao CL, Feng YH, Lin XZ, Chu IM, Hsieh TB, Hwang SM (2006) Characterization of serum-free ex vivo-expanded hematopoietic stem cells derived from human umbilical cord blood CD133(+) cells. Stem Cells Dev 15:70–78

    PubMed  CAS  Google Scholar 

  • Zhang CC, Kaba M, Ge G et al (2006) Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12:240–245

    PubMed  Google Scholar 

  • Zhang CC, Kaba M, Iizuka S, Huynh H, Lodish HF (2008) Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 111:3415–3423

    PubMed  CAS  Google Scholar 

  • Zhang CC, Lodish HF (2004) Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells. Blood 103:2513–2521

    PubMed  CAS  Google Scholar 

  • Zhang CC, Lodish HF (2008) Cytokines regulating hematopoietic stem cell function. Curr Opin Hematol 15:307–311

    PubMed  CAS  Google Scholar 

  • Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Strunk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reinisch, A., Strunk, D. (2012). Concepts to Facilitate Umbilical Cord Blood Transplantation. In: Allan, D., Strunk, D. (eds) Regenerative Therapy Using Blood-Derived Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-471-1_11

Download citation

Publish with us

Policies and ethics