Skip to main content

Topographic Cell Responses

  • Chapter
  • First Online:

Abstract

Tissue cells have an ability to respond not only to biochemical ­characteristics of the ­extracellular matrix, but also to its geometric configuration, the matrix surface topography. Such topographic features as curvature, orderly grooves and ridges, discontinuities, or some other microscale or nanoscale geometries affect cell adhesion and spreading, cell shapes and orientation, direction of migration, and also proliferation and synthetic activities of the cells. The cell responses to the geometric configuration of the substratum surface, which the cells are attached to and spread on so-called “topographic cell responses,” are altered as a result of oncogenic transformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Weiss P (1941) Nerve pattern: The mechanics of nerve growth. Growth (suppl.5): 163–203

    Google Scholar 

  2. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF (1999) Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20(6):573–588. doi:10.1016/S0142-9612(98)00209-9 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  3. Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ (2000) Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res 299(1):39–46. doi:10.1007/s004410050004 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  4. Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18(24):1573–1583. doi:10.1016/S0142-9612(97)00144-0 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  5. Curtis ASG, Clark P (1990) The effects of topographic and mechanical properties of materials on cell behavior. Crit. Rev Biocompat 5: 343–362.

    CAS  Google Scholar 

  6. Norman JJ, Desai TA (2006) Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann Biomed Eng 34(1):89–101. doi:10.1007/s10439-005-9005-4 DOI:dx.doi.org

    Article  PubMed  Google Scholar 

  7. Kriparamanan R, Aswath P, Zhou A, Tang L, Nguyen KT (2006) Nanotopography: cellular responses to nanostructured materials. J Nanosci Nanotechnol 6(7):1905–1919. doi:10.1166/jnn.2006.330 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  8. Yap FL, Zhang Y (2007) Protein and cell micropatterning and its integration with micro/nanoparticles assembly. Biosens Bioelectron 22(6):775–788. doi:10.1016/j.bios.2006.03.016 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  9. Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl 48(30):5406–5415. doi:10.1002/anie.200805179 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt RC, Healy KE (2009) Controlling biological interfaces on the nanometer length scale. J Biomed Mater Res A 90(4):1252–1261. doi:10.1002/jbm.a.32501 DOI:dx.doi.org

    PubMed  Google Scholar 

  11. von der Mark K, Park J, Bauer S, Schmuki P (2010) Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res 339(1):131–153. doi:10.1007/s00441-009-0896-5 DOI:dx.doi.org

    Article  PubMed  Google Scholar 

  12. Svitkina TM, Rovensky YA, Bershadsky AD, Vasiliev JM (1995) Transverse pattern of microfilament bundles induced in epitheliocytes by cylindrical substrata. J Cell Sci 108 (Pt 2):735–745.

    PubMed  CAS  Google Scholar 

  13. Rovensky YuA, Samoilov VI (1994) Morphogenetic response of cultured normal and transformed fibroblasts, and epitheliocytes, to a cylindrical substratum surface. Possible role for the actin filament bundle pattern. J Cell Sci 107 (Pt 5):1255–1263.

    CAS  Google Scholar 

  14. Levina EM, Domnina LV, Rovensky YA, Vasiliev JM (1996) Cylindrical substratum induces different patterns of actin microfilament bundles in nontransformed and in ras-transformed epitheliocytes. Exp Cell Res 229(1):159–165. doi:10.1006/excr.1996.0354 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  15. Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD (1990) Topographical control of cell behaviour: II. Multiple grooved substrata. Development 108(4):635–644.

    CAS  Google Scholar 

  16. Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD (1991) Cell guidance by ultrafine topography in vitro. J Cell Sci 99 (Pt 1):73–77.

    PubMed  Google Scholar 

  17. Alaerts JA, De Cupere VM, Moser S, Van den Bosh de Aguilar P, Rouxhet PG (2001) Surface characterization of poly(methyl methacrylate) microgrooved for contact guidance of mammalian cells. Biomaterials 22(12):1635–1642. doi:10.1016/S0142-9612(00)00321-5 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  18. Oakley C, Brunette DM (1993) The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata. J Cell Sci 106 (Pt 1):343–354.

    PubMed  Google Scholar 

  19. Kaiser JP, Reinmann A, Bruinink A (2006) The effect of topographic characteristics on cell migration velocity. Biomaterials 27(30):5230–5241. doi:10.1016/j.biomaterials.2006.06.002 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  20. Teixeira AI, McKie GA, Foley JD, Bertics PJ, Nealey PF, Murphy CJ (2006) The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27(21):3945–3954. doi:10.1016/j.biomaterials.2006.01.044 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  21. Rajnicek AM, Foubister LE, McCaig CD (2008) Alignment of corneal and lens epithelial cells by co-operative effects of substratum topography and DC electric fields. Biomaterials 29(13):2082–2095. doi:10.1016/j.biomaterials.2008.01.015 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  22. Rovensky YA, Slavnaja IL, Vasiliev JM (1971) Behaviour of fibroblast-like cells on grooved surfaces. Exp Cell Res 65(1):193–201. doi:10.1016/S0014-4827(71)80066-6 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  23. Rovensky YA, Slavnaya IL (1974) Spreading of fibroblast-like cells on grooved surfaces: a study by scanning electron microscopy. Exp Cell Res 84(1):199–206. doi:10.1016/0014-4827(74)90397-8 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  24. Veselý P, Rovensky YuA, Slavnaya IL (1981) Cinemicrographic analysis of migration of normal and neoplastic rat cells seeded upon the grooved surface. Folia Biol (Praha) 27(2):81–90.

    Google Scholar 

  25. Karuri NW, Liliensiek S, Teixeira AI, Abrams G, Campbell S, Nealey PF, Murphy CJ (2004) Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J Cell Sci 117(Pt 15):3153–3164. doi:10.1242/jcs.01146 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  26. Diehl KA, Foley JD, Nealey PF, Murphy CJ (2005) Nanoscale topography modulates corneal epithelial cell migration. J Biomed Mater Res A 75(3):603–611. doi:10.1002/jbm.a.30467 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  27. Khung YL, Barritt G, Voelcker NH (2008) Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Exp Cell Res 314(4):789–800. doi:10.1016/j.yexcr.2007.10.015 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  28. Rovensky YA, Domnina LV, Ivanova OY, Vasiliev JM (1999) Locomotory behaviour of epitheliocytes and fibroblasts on metallic grids. J Cell Sci 112 (Pt 8):1273–1282.

    PubMed  CAS  Google Scholar 

  29. Rovensky YuA, Domnina LV, Ivanova OYu, Vasiliev JM (2001) Responses of epithelial and fibroblast-like cells to discontinuous configuration of the culture substrate. Membr Cell Biol 14(5):617–627.

    PubMed  Google Scholar 

  30. Rovensky YA, Bershadsky AD, Givargizov EI, Obolenskaya LN, Vasiliev JM (1991) Spreading of mouse fibroblasts on the substrate with multiple spikes. Exp Cell Res 197(1):107–112. doi:10.1016/0014-4827(91)90486-E DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  31. Lim JY, Donahue HJ (2007) Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng 13(8):1879–1891. doi:10.1089/ten.2006.0154 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  32. Hamilton DW, Brunette DM (2007) The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. Biomaterials 28(10):1806–1819. doi:10.1016/j.biomaterials.2006.11.041 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  33. Curtis AS, Casey B, Gallagher JO, Pasqui D, Wood MA, Wilkinson CD (2001) Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys Chem 94(3):275–283. doi:10.1016/S0301-4622(01)00247-2 DOI:dx.doi.org

  34. Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, Kern D (2004) Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs 178(1):13–22. doi:10.1159/000081089 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  35. Zheng Z, Zhang L, Kong L, Wang A, Gong Y, Zhang X (2009) The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: Effect of nanotopography, surface chemistry, and wettability. J Biomed Mater Res A 89(2):453–465. doi:10.1002/jbm.a.31979 DOI:dx.doi.org

    PubMed  Google Scholar 

  36. Liliensiek SJ, Campbell S, Nealey PF, Murphy CJ (2006) The scale of substratum topographic features modulates proliferation of corneal epithelial cells and corneal fibroblasts. J Biomed Mater Res A 79(1):185–192. doi:10.1002/jbm.a.30744 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  37. Kawahara H, Soeda Y, Niwa K, Takahashi M, Kawahara D, Araki N (2004) In vitro study on bone formation and surface topography from the standpoint of biomechanics. J Mater Sci Mater Med 15(12):1297–1307. doi:10.1007/s10856-004-5738-0 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  38. Lim JY, Hansen JC, Siedlecki CA, Runt J, Donahue HJ (2005) Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. J R Soc Interface 2(2):97–108. doi:10.1098/rsif.2004.0019 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  39. Goto T, Brunette DM (1998) Surface topography and serum concentration affect the appearance of tenascin in human gingival fibroblasts in vitro. Exp Cell Res 244(2):474–480. doi:10.1006/excr.1998.4196 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  40. Chou L, Firth JD, Uitto VJ, Brunette DM (1998) Effects of titanium substratum and grooved surface topography on metalloproteinase-2 expression in human fibroblasts. J Biomed Mater Res 39(3):437–445. doi:10.1002/(SICI)1097-4636(19980305)39:3<437::AID-JBM13>3.0.CO;2-7 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  41. Dunn GA, Heath JP (1976) A new hypothesis of contact guidance in tissue cells. Exp Cell Res 101(1):1–14. doi:10.1016/0014-4827(76)90405-5 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  42. Dunn GA (1991) How do cells respond to ultrafine surface contours? Bioessays 13(10):541–543. doi:10.1002/bies.950131008 DOI:dx.doi.org

    Article  PubMed  CAS  Google Scholar 

  43. Curtis A, Wilkinson C (1999) New depths in cell behaviour: reactions of cells to nanotopography. Biochem Soc Symp 65:15–26.

    PubMed  CAS  Google Scholar 

  44. Yim EK, Leong KW (2005) Significance of synthetic nanostructures in dictating cellular response. Nanomedicine 1(1):10–21. doi:10.1016/j.nano.2004.11.008 DOI:dx.doi.org

    PubMed  CAS  Google Scholar 

  45. Tobasnick G, Curtis AS (2001) Chloride channels and the reactions of cells to topography. Eur Cell Mater 2:49–61.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury A. Rovensky M.D., Ph.D., D.Sci .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rovensky, Y.A. (2011). Topographic Cell Responses. In: Adhesive Interactions in Normal and Transformed Cells. Humana Press. https://doi.org/10.1007/978-1-61779-304-2_8

Download citation

Publish with us

Policies and ethics