Skip to main content

Cancer Stem Cells in Colorectal Cancer

  • Chapter
  • First Online:
  • 1252 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Colorectal cancer (CRC) is the third most common form of cancer and the second cause of cancer-related death in the Western world. Despite advances in diagnosis, surgery, and new targeted agents for CRC, only a modest improvement in mortality has occurred for advanced disease. A growing body of evidence supports the idea that human cancers arise from a rare population of cells with stem cell-like properties which would be the pathological counterpart of the normal epithelial stem cell. These “cancer stem cells” (CSCs), firstly identified in hematologic malignancies, have been recently isolated in several solid tumors including CRC. The hypothesis that only a subset of cells drives tumor formation in CRC raises questions as to whether current therapies are able to efficiently eradicate the CSC population. This chapter will discuss different aspects of stem cell biology in the context of CRC that may contribute to understanding the mechanisms responsible for tumor development and therapy resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALDH1:

Aldehyde dehydrogenase 1

APC:

Adenomatous polyposis coli

Ascl2:

Achaete scute-like 2

bHLH:

Basic helix-loop-helix

BMP:

Bone morphogenetic protein

BMPR:

Bone morphogenetic protein receptor

CBC:

Crypt base columnar cells

CD:

Cluster of differentiation

CK20:

Cytokeratin 20

COX:

Cytochrome C oxidase

CRC:

Colorectal cancer

CSC:

Cancer stem cell

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EpCAM:

Epithelial cell adhesion molecule

EphB:

Ephrin B receptor

ESA:

Epithelial surface antigen

FAP:

Familial adenomatous polyposis

GFP:

Green fluorescent protein

HNPCC:

Hereditary non-polyposis colon cancer

IL-4:

Interleukin-4

JPS:

Juvenile polyposis syndrome

MLH1:

MutL homolog 1

mPAS:

Mild periodic acid-Schiff reagent staining

Msi-1:

Musashi-1

NOD/SCID:

Non-obese diabetic/severe combined immunodeficiency

OAT:

O-acetyl transferase

OLFM4:

Olfactomedin-4

PDK1:

Phosphoinositide-dependent kinase-1

PI3K:

Phosphatidylinositol 3-kinase

PIP2 :

Phosphatidylinositol biphosphate

PIP3 :

Phosphatidylinositol triphosphate

PTEN:

Phosphatase and tensin homolog

RBP-J:

Recombination signal-binding protein 1 for J-kappa

SC:

Stem cell

VEGF:

Vascular endothelial growth factor

References

  1. Bannister LH (1995) Alimentary system. In: Williams PL (ed) Gray’s Anatomy, 38th edn. Churchill Livingstone, London

    Google Scholar 

  2. Scoville DH, Sato T, He XC, Li L (2008) Current view: intestinal stem cells and signaling. Gastroenterology 134 (3):849–864

    Article  PubMed  CAS  Google Scholar 

  3. Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. International Journal of Experimental Pathology 78 (4):219–243

    Article  PubMed  CAS  Google Scholar 

  4. Booth C, Potten CS (2000) Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest 105 (11):1493–1499

    Article  PubMed  CAS  Google Scholar 

  5. Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. Bioessays 24 (1):91–98

    Article  PubMed  Google Scholar 

  6. Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307 (5717):1904–1909

    Article  PubMed  CAS  Google Scholar 

  7. Sancho E, Batlle E, Clevers H (2004) Signaling pathways in intestinal development and cancer. Annual Review of Cell and Developmental Biology 20:695–723

    Article  PubMed  CAS  Google Scholar 

  8. Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348 (10):919–932

    Article  PubMed  CAS  Google Scholar 

  9. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111 (2):241–250

    Article  PubMed  Google Scholar 

  10. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19 (4):379–383

    Article  PubMed  CAS  Google Scholar 

  11. Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17 (14):1709–1713

    Article  PubMed  CAS  Google Scholar 

  12. Kuhnert F, Davis CR, Wang HT, Chu P, Lee M, Yuan J, Nusse R, Kuo CJ (2004) Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA 101 (1):266–271

    Article  PubMed  CAS  Google Scholar 

  13. Holmberg J, Genander M, Halford MM, Anneren C, Sondell M, Chumley MJ, Silvany RE, Henkemeyer M, Frisen J (2006) EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell 125 (6):1151–1163

    Article  PubMed  CAS  Google Scholar 

  14. Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111 (2):251–263

    Article  PubMed  CAS  Google Scholar 

  15. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435 (7044):959–963

    Article  PubMed  Google Scholar 

  16. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7 (9):678–689

    Article  PubMed  CAS  Google Scholar 

  17. Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD (2000) Control of endodermal endocrine development by Hes-1. Nat Genet 24 (1):36–44

    Article  PubMed  CAS  Google Scholar 

  18. van Es JH, Clevers H (2005) Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 11 (11):496–502

    Article  PubMed  Google Scholar 

  19. Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, Strobl LJ, Honjo T, Clevers H, Radtke F (2008) Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9 (4):377–383

    Article  PubMed  CAS  Google Scholar 

  20. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6 (3):184–192

    Article  PubMed  CAS  Google Scholar 

  21. Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L, Silliman N, Ptak J, Szabo S, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Lengauer C, Velculescu VE (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436 (7052):792

    Article  PubMed  CAS  Google Scholar 

  22. He XC, Yin T, Grindley JC, Tian Q, Sato T, Tao WA, Dirisina R, Porter-Westpfahl KS, Hembree M, Johnson T, Wiedemann LM, Barrett TA, Hood L, Wu H, Li L (2007) PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39 (2):189–198

    Article  PubMed  CAS  Google Scholar 

  23. von Bubnoff A, Cho KW (2001) Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev Biol 239 (1):1–14

    Article  Google Scholar 

  24. Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJ, Clevers H (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303 (5664):1684–1686

    Article  PubMed  CAS  Google Scholar 

  25. He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Mishina Y, Li L (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36 (10):1117–1121

    Article  PubMed  CAS  Google Scholar 

  26. Waite KA, Eng C (2003) From developmental disorder to heritable cancer: it’s all in the BMP/TGF-beta family. Nat Rev Genet 4 (10):763–773

    Article  PubMed  CAS  Google Scholar 

  27. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. The American Journal of Anatomy 141 (4):537–561

    Article  PubMed  CAS  Google Scholar 

  28. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. The American Journal of Anatomy 141 (4):461–479

    Article  PubMed  CAS  Google Scholar 

  29. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. The American Journal of Anatomy 141 (4):503–519

    Article  PubMed  CAS  Google Scholar 

  30. Fuller CE, Davies RP, Williams GT, Williams ED (1990) Crypt restricted heterogeneity of goblet cell mucus glycoprotein in histologically normal human colonic mucosa: a potential marker of somatic mutation. Br J Cancer 61 (3):382–384

    Article  PubMed  CAS  Google Scholar 

  31. Campbell F, Williams GT, Appleton MA, Dixon MF, Harris M, Williams ED (1996) Post-irradiation somatic mutation and clonal stabilisation time in the human colon. Gut 39 (4):569–573

    Article  PubMed  CAS  Google Scholar 

  32. Preston SL, Wong WM, Chan AO, Poulsom R, Jeffery R, Goodlad RA, Mandir N, Elia G, Novelli M, Bodmer WF, Tomlinson IP, Wright NA (2003) Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res 63 (13):3819–3825

    PubMed  CAS  Google Scholar 

  33. Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, Taylor GA, Plusa SM, Needham SJ, Greaves LC, Kirkwood TB, Turnbull DM (2003) Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 112 (9):1351–1360

    PubMed  CAS  Google Scholar 

  34. Potten CS, Hume WJ, Reid P, Cairns J (1978) The segregation of DNA in epithelial stem cells. Cell 15 (3):899–906

    Article  PubMed  CAS  Google Scholar 

  35. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303 (5656):359–363

    Article  PubMed  CAS  Google Scholar 

  36. Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA, Jackson TL, Morrison SJ (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449 (7159):238–242

    Article  PubMed  CAS  Google Scholar 

  37. Potten CS, Kovacs L, Hamilton E (1974) Continuous labelling studies on mouse skin and intestine. Cell and Tissue Kinetics 7 (3):271–283

    PubMed  CAS  Google Scholar 

  38. Potten CS (1977) Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature 269 (5628):518–521

    Article  PubMed  CAS  Google Scholar 

  39. Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. The American Journal of Anatomy 160 (1):77–91

    Article  PubMed  CAS  Google Scholar 

  40. Bjerknes M, Cheng H (1999) Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116 (1):7–14

    Article  PubMed  CAS  Google Scholar 

  41. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121 (7):1109–1121

    Article  PubMed  CAS  Google Scholar 

  42. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439 (7072):84–88

    Article  PubMed  CAS  Google Scholar 

  43. Nakamura M, Okano H, Blendy JA, Montell C (1994) Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron 13 (1):67–81

    Article  PubMed  CAS  Google Scholar 

  44. Potten CS, Booth C, Tudor GL, Booth D, Brady G, Hurley P, Ashton G, Clarke R, Sakakibara S, Okano H (2003) Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71 (1):28–41

    Article  PubMed  CAS  Google Scholar 

  45. Nishimura S, Wakabayashi N, Toyoda K, Kashima K, Mitsufuji S (2003) Expression of Musashi-1 in human normal colon crypt cells: a possible stem cell marker of human colon epithelium. Dig Dis Sci 48 (8):1523–1529

    Article  PubMed  CAS  Google Scholar 

  46. Kayahara T, Sawada M, Takaishi S, Fukui H, Seno H, Fukuzawa H, Suzuki K, Hiai H, Kageyama R, Okano H, Chiba T (2003) Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett 535 (1-3):131–135

    Article  PubMed  CAS  Google Scholar 

  47. Juliano RL, Varner JA (1993) Adhesion molecules in cancer: the role of integrins. Curr Opin Cell Biol 5 (5):812–818

    Article  PubMed  CAS  Google Scholar 

  48. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73 (4):713–724

    Article  PubMed  CAS  Google Scholar 

  49. Shinohara T, Avarbock MR, Brinster RL (1999) Beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 96 (10):5504–5509

    Article  PubMed  CAS  Google Scholar 

  50. Fujimoto K, Beauchamp RD, Whitehead RH (2002) Identification and isolation of candidate human colonic clonogenic cells based on cell surface integrin expression. Gastroenterology 123 (6):1941–1948

    Article  PubMed  CAS  Google Scholar 

  51. van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H, van der Valk M, Deschamps J, Sofroniew M, van Lohuizen M, et al. (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 8 (7):757–769

    Article  PubMed  Google Scholar 

  52. Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40 (7):915–920

    Article  PubMed  CAS  Google Scholar 

  53. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449 (7165):1003–1007

    Article  PubMed  CAS  Google Scholar 

  54. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459 (7244):262–265

    Article  PubMed  CAS  Google Scholar 

  55. van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE, Begthel H, van den Born M, Guryev V, Oving I, van Es JH, Barker N, Peters PJ, van de Wetering M, Clevers H (2009) Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136 (5):903–912

    Article  PubMed  Google Scholar 

  56. Calleja M, Renaud O, Usui K, Pistillo D, Morata G, Simpson P (2002) How to pattern an epithelium: lessons from achaete-scute regulation on the notum of Drosophila. Gene 292 (1-2):1–12

    Article  PubMed  CAS  Google Scholar 

  57. Zhang J, Liu WL, Tang DC, Chen L, Wang M, Pack SD, Zhuang Z, Rodgers GP (2002) Identification and characterization of a novel member of olfactomedin-related protein family, hGC-1, expressed during myeloid lineage development. Gene 283 (1-2):83–93

    Article  PubMed  CAS  Google Scholar 

  58. Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, Leung SY, Chen X (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 104 (39):15418–15423

    Article  PubMed  CAS  Google Scholar 

  59. van der Flier LG, Haegebarth A, Stange DE, van de Wetering M, Clevers H (2009) OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137 (1):15–17

    Article  PubMed  Google Scholar 

  60. Morson BC (1974) Evolution of cancer of the colon and rectum. Proc Inst Med Chic 30 (4):145–148

    PubMed  CAS  Google Scholar 

  61. Herrera L, Kakati S, Gibas L, Pietrzak E, Sandberg AA (1986) Gardner syndrome in a man with an interstitial deletion of 5q. Am J Med Genet 25 (3):473–476

    Article  PubMed  CAS  Google Scholar 

  62. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M, et al. (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66 (3):589–600

    Article  PubMed  CAS  Google Scholar 

  63. Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D, et al. (1991) Identification of FAP locus genes from chromosome 5q21. Science 253 (5020):661–665

    Article  PubMed  CAS  Google Scholar 

  64. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359 (6392):235–237

    Article  PubMed  CAS  Google Scholar 

  65. Miyoshi Y, Nagase H, Ando H, Horii A, Ichii S, Nakatsuru S, Aoki T, Miki Y, Mori T, Nakamura Y (1992) Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1 (4):229–233

    Article  PubMed  CAS  Google Scholar 

  66. Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ, Leitao CN, Fodde R, Smits R (2002) The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet 11 (13):1549–1560

    Article  PubMed  CAS  Google Scholar 

  67. Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, Vass JK, Athineos D, Clevers H, Clarke AR (2007) Myc deletion rescues Apc deficiency in the small intestine. Nature 446 (7136):676–679

    Article  PubMed  CAS  Google Scholar 

  68. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275 (5307):1787–1790

    Article  PubMed  CAS  Google Scholar 

  69. Lynch HT, Smyrk T, Lynch JF (1996) Overview of natural history, pathology, molecular genetics and management of HNPCC (Lynch Syndrome). Int J Cancer 69 (1):38–43

    Article  PubMed  CAS  Google Scholar 

  70. Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A, et al. (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368 (6468):258–261

    Article  PubMed  CAS  Google Scholar 

  71. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M, et al. (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75 (6):1215–1225

    Article  PubMed  CAS  Google Scholar 

  72. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445 (7123):106–110

    Article  PubMed  Google Scholar 

  73. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445 (7123):111–115

    Article  PubMed  CAS  Google Scholar 

  74. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90 (12):5002–5012

    PubMed  CAS  Google Scholar 

  75. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97 (26):14720–14725

    Article  PubMed  CAS  Google Scholar 

  76. Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275 (8):5512–5520

    Article  PubMed  CAS  Google Scholar 

  77. Corbeil D, Roper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2 (2):82–91

    Article  PubMed  CAS  Google Scholar 

  78. Roper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2 (9):582–592

    Article  PubMed  CAS  Google Scholar 

  79. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104 (24):10158–10163

    Article  PubMed  CAS  Google Scholar 

  80. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, Fields JZ, Wicha MS, Boman BM (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69 (8):3382–3389

    Article  PubMed  CAS  Google Scholar 

  81. Yoshida A, Rzhetsky A, Hsu LC, Chang C (1998) Human aldehyde dehydrogenase gene family. Eur J Biochem 251 (3):549–557

    Article  PubMed  CAS  Google Scholar 

  82. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, Chadburn A, Murphy AJ, Valenzuela DM, Gale NW, Thurston G, Yancopoulos GD, D’Angelica M, Kemeny N, Lyden D, Rafii S (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 118 (6):2111–2120

    PubMed  CAS  Google Scholar 

  83. Horst D, Kriegl L, Engel J, Kirchner T, Jung A (2008) CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer 99 (8):1285–1289

    Article  PubMed  CAS  Google Scholar 

  84. Horst D, Kriegl L, Engel J, Jung A, Kirchner T (2009) CD133 and nuclear beta-catenin: the marker combination to detect high risk cases of low stage colorectal cancer. Eur J Cancer 45 (11):2034–2040

    Article  PubMed  CAS  Google Scholar 

  85. Artells R, Moreno I, Diaz T, Martinez F, Gel B, Navarro A, Ibeas R, Moreno J, Monzo M (2010) Tumour CD133 mRNA expression and clinical outcome in surgically resected colorectal cancer patients. Eur J Cancer 46 (3):642–649

    Article  PubMed  CAS  Google Scholar 

  86. Horst D, Kriegl L, Engel J, Kirchner T, Jung A (2009) Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Invest 27 (8):844–850

    Article  PubMed  Google Scholar 

  87. Horst D, Scheel SK, Liebmann S, Neumann J, Maatz S, Kirchner T, Jung A (2009) The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol 219 (4):427–434

    Article  PubMed  CAS  Google Scholar 

  88. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457 (7229):608–611

    Article  PubMed  CAS  Google Scholar 

  89. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457 (7229):603–607

    Article  PubMed  CAS  Google Scholar 

  90. Uchida H, Yamazaki K, Fukuma M, Yamada T, Hayashida T, Hasegawa H, Kitajima M, Kitagawa Y, Sakamoto M (2010) Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci 101 (7):1731–1737

    Article  PubMed  CAS  Google Scholar 

  91. Du J, Li Y, Li J, Zheng J (2010) Polycomb group protein Bmi1 expression in colon cancers predicts the survival. Med Oncol 27:1273–1276

    Article  PubMed  CAS  Google Scholar 

  92. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, Pickell K, Aguilar J, Lazetic S, Smith-Berdan S, Clarke MF, Hoey T, Lewicki J, Gurney AL (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3 (6):e2428

    Article  PubMed  Google Scholar 

  93. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101 (39):14228–14233

    Article  PubMed  CAS  Google Scholar 

  94. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1 (4):389–402

    Article  PubMed  CAS  Google Scholar 

  95. Boman BM, Wicha MS, Fields JZ, Runquist OA (2007) Symmetric division of cancer stem cells–a key mechanism in tumor growth that should be targeted in future therapeutic approaches. Clin Pharmacol Ther 81 (6):893–898

    Article  PubMed  CAS  Google Scholar 

  96. Fang DD, Kim YJ, Lee CN, Aggarwal S, McKinnon K, Mesmer D, Norton J, Birse CE, He T, Ruben SM, Moore PA (2010) Expansion of CD133(+) colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br J Cancer 102 (8):1265–1275

    Article  PubMed  CAS  Google Scholar 

  97. Baiocchi M, Biffoni M, Ricci-Vitiani L, Pilozzi E, De Maria R (2010) New models for cancer research: human cancer stem cell xenografts. Current Opinion in Pharmacology 10 (4):380–384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Ricci-Vitiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Biffoni, M., Fabrizi, E., Ricci-Vitiani, L. (2011). Cancer Stem Cells in Colorectal Cancer. In: Allan, A. (eds) Cancer Stem Cells in Solid Tumors. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-246-5_4

Download citation

Publish with us

Policies and ethics