Skip to main content

Neuroprotection in Huntington’s Disease

  • Chapter
  • First Online:
The Handbook of Neuroprotection
  • 1117 Accesses

Abstract

Huntington’s disease (HD) is an autosomal dominant hereditary disorder characterized by chorea (excessive, spontaneous, irregularly timed, abrupt movements), disturbed voluntary motor performance, behavioral changes, and dementia. Functional capacity slowly declines as a result of increasing motor and cognitive deficits until the patient becomes bedridden. The course is progressive, with death usually occurring 15–20 years after disease onset. Death is most frequently caused by aspiration pneumonia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal N, Pallos J, Slepko N, et al. Identification of combinatorial drug regimens for treatment of Huntington’s disease using Drosophila. Proc Natl Acad Sci U S A 2005;102:3777–81.

    Article  PubMed  CAS  Google Scholar 

  • Bachoud-Levi A, Gaura V, Brugieres P, et al. Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 2006;5:303–9.

    Article  PubMed  Google Scholar 

  • Bloch J, Bachoud-Lévi AC, Déglon N, et al. Neuroprotective gene therapy for Huntington’s ­disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a Phase I Study. Human Gene Ther 2004;15:968–75.

    Article  CAS  Google Scholar 

  • Borlongan CV, Skinner SJM, Geaney M, et al. Neuroprotection by encapsulated choroid plexus in a rodent model of Huntington’s disease. Neuroreport 2004;15:2521–25.

    Article  PubMed  Google Scholar 

  • Borrell-Pages M, Canals JM, Cordelieres FP, et al. Cysteamine and cysteamine increase in brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. J Clin Invest 2006;116:1410–24.

    Article  PubMed  CAS  Google Scholar 

  • Chopra V, Fox JH, Lieberman G, et al. A small-molecule therapeutic lead for Huntington’s disease: preclinical pharmacology and efficacy of C2–8 in the R6/2 transgenic mouse. Proc Natl Acad Sci U S A 2007;104:16685–9.

    Article  PubMed  CAS  Google Scholar 

  • Dubinsky R, Gray C. CTYE-I-HD: phase I dose finding and tolerability study of cysteamine (Cystagon®) in Huntington’s disease. Mov Disord 2006;21:530–3.

    Article  PubMed  Google Scholar 

  • Gu X, Li C, Wei W, et al. pathological cell-cell interactions elicited by a neuropathogenic form of mutant huntingtin contribute to cortical pathogenesis in HD mice. Neuron 2005;46:433–44.

    Article  PubMed  CAS  Google Scholar 

  • Hauser RA, Furtado S, Cimino CR, et al. Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 2002;58:687–95.

    Article  PubMed  CAS  Google Scholar 

  • Hersch SM, Gevorkian S, Marder K, et al. Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2′dG. Neurology 2006;66:250–2.

    Article  PubMed  CAS  Google Scholar 

  • Huntington Study Group. Dosage effects of riluzole in Huntington’s disease. Neurology 2003;61:1551–6.

    Article  Google Scholar 

  • Iijima-Ando K, Wu P, Drier EA, et al. cAMP-response element-binding protein and heat-shock protein 70 additively suppress polyglutamine-mediated toxicity in Drosophila. Proc Natl Acad Sci U S A 2005;102:10261–6.

    Article  PubMed  CAS  Google Scholar 

  • Jin K, LaFevre-Bernt M, Sun Y, et al. FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 2005;102:18189–94.

    Article  PubMed  CAS  Google Scholar 

  • Keene CD, Rodrigues CM, Eich T, et al. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci U S A 2002;90:10671–6.

    Article  Google Scholar 

  • Kells AP, Fong DM, Dragunow M, et al. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 2004;9:682–8.

    Article  PubMed  CAS  Google Scholar 

  • Luthi-Carter R, Taylor DM, Pallos J, et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A 2010;107:7927–32.

    Article  PubMed  CAS  Google Scholar 

  • McBride JL, Ramaswamy S, Gasmi M, et al. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 2006;103:9345–50.

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Fujikake N, Ohno K, et al. Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Hum Mol Genet 2003;12:1253–9.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Hamby A, Massa SM. Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 2005;102:11840–5.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto S, Pouladi MA, Talantova M, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 2009;15:1407–13.

    Article  PubMed  CAS  Google Scholar 

  • Patassini S, Giampà C, Martorana A, et al. Effects of simvastatin on neuroprotection and modulation of Bcl-2 and BAX in the rat quinolinic acid model of Huntington’s disease. Neurosci Lett 2008;448:166–9.

    Article  PubMed  CAS  Google Scholar 

  • Pinto JT, Van Raamsdonk JM, Leavitt BR, et al. Treatment of YAC128 mice and their wild-type littermates with cysteamine does not lead to its accumulation in plasma or brain: implications in the treatment of Huntington disease. Neurochem 2005;94:1087–101.

    Article  CAS  Google Scholar 

  • Puri BK, Leavitt BR, Hayden MR, et al. Ethyl-EPA in Huntington disease: a double-blind, randomized, placebo-controlled trial. Neurology 2005;65:286–92.

    Article  PubMed  CAS  Google Scholar 

  • Roppongi T, Togo T, Nakamura S, et al. Perospirone in treatment of Huntington’s disease: A first case report. Prog Neuropsychopharmacol Biol Psychiatry 2006;31:308–10.

    Article  PubMed  Google Scholar 

  • Sah DW. Therapeutic potential of RNA interference for neurological disorders. Life Sci 2006;79:1773–80.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Perlstein EO, Imarisio S, et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 2007;3:331–8.

    Article  PubMed  CAS  Google Scholar 

  • Tang TS, Slow E, Lupu V, et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci U S A 2005;102:2602–7.

    Article  PubMed  CAS  Google Scholar 

  • Tang TS, Chen X, Liu J, Bezprozvanny I. Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J Neurosci 2007;27:7899–910.

    Article  PubMed  CAS  Google Scholar 

  • The Huntington Study Group. A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 2001;57:397–404.

    Google Scholar 

  • Thomas EA, Coppola G, Desplats PA, et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci U S A 2008;105:15564–9.

    Article  PubMed  CAS  Google Scholar 

  • Wolfgang WJ, Miller TW, Webster JM, et al. Suppression of Huntington’s disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci U S A 2005;102:11563–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Smith DL, Meriin AB, et al. A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci U S A 2005;102:892–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewal K. Jain .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jain, K.K. (2011). Neuroprotection in Huntington’s Disease. In: The Handbook of Neuroprotection. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-049-2_9

Download citation

Publish with us

Policies and ethics