Skip to main content

The Cancer Stem Cell Paradigm

  • Chapter
  • First Online:
  • 985 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Following the discovery that leukemic cells exhibit properties of hematopoietic stem cells, the prospective isolation of stem-like cells with high tumorigenicity has been reported for a variety of tumors. These “cancer stem cells” (CSCs) are so named because they exhibit the capacity for sustained self-renewal and possess the ability to regenerate transplanted tumor masses resembling the primary tumor in immunodeficient mice. However, the existence of CSCs remains contentious in the field of cancer biology, in part because of the application of inconsistent and inaccurate definitions and disputes over terminology. Herein, we review the discovery of CSCs, examine in detail their physical and functional characteristics, the mechanisms that lead to their formation, and how their contribution to solid tumor formation impacts cancer therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AML:

Acute myeloid leukemia

APML:

Acute promyelocytic leukemia

CML:

Chronic myeloid leukemia

CSC:

Cancer stem cell

ECM:

Extracellular matrix

FACS:

Fluorescence-activated cell sorting

HIF:

Hypoxia-inducible factor

HSC:

Hematopoietic stem cell

LSC:

Leukemic stem cell

RGC:

Radial glial cells

SSEA-1:

Stage-specific embryonic antigen 1

SVZ:

Subventricular zone

TNFAIP3:

Tumor necrosis factor inducible protein 3

VEGF:

Vascular endothelial growth factor

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    CAS  PubMed  Google Scholar 

  • Alvero AB, Fu HH, Holmberg J et al (2009) Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells 27:2405–2013

    CAS  PubMed  Google Scholar 

  • Bailey P, Cushing H (1926) A Classification of the Tumors of the Glioma Group on a Histogenetic Basis with a Correlated Study of Prognosis. Philadelphia: Lippincott

    Google Scholar 

  • Bansal N, Banerjee D (2009) Tumor initiating cells. Curr Pharm Biotechnol 10:192–196

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, Li Z et al (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68:6043–6048

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE et al (2006a) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, Sathornsumetee S et al (2006b) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848

    CAS  PubMed  Google Scholar 

  • Barker N, Ridgway RA, van Es JH et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611

    CAS  PubMed  Google Scholar 

  • Barr RD, Fialkow PJ (1973) Clonal origin of chronic myelocytic leukemia. N Engl J Med 289:307–309

    CAS  PubMed  Google Scholar 

  • Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    CAS  PubMed  Google Scholar 

  • Bertolini G, Roz L, Perego P et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 106:16281–16286

    CAS  PubMed  Google Scholar 

  • Bertout JA, Patel SA, and Simon MC (2008). The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975

    CAS  PubMed  Google Scholar 

  • Bleau AM, Hambardzumyan D, Ozawa T et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235

    CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    CAS  PubMed  Google Scholar 

  • Brecher G, Pallavicini MG, Cronkite EP (1993) Competitive repopulation in leukemic and normal bone marrow. Blood Cells 19:691–697

    CAS  PubMed  Google Scholar 

  • Brown D, Kogan S, Lagasse E et al (1997) A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 94:2551–2556

    CAS  PubMed  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    CAS  PubMed  Google Scholar 

  • Campos LS, Leone DP, Relvas JB et al (2004) Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development 131:3433–3444

    CAS  PubMed  Google Scholar 

  • Cao Y, Lathia JD, Eyler CE et al (2010) Erythropoietin receptor signaling through Stat3 is required for glioma stem cell maintenance. Genes Cancer 1:50–61

    CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    CAS  PubMed  Google Scholar 

  • Ceteci F, Ceteci S, Karreman C et al (2007) Disruption of tumor cell adhesion promotes angiogenic switch and progression to micrometastasis in RAF-driven murine lung cancer. Cancer Cell 12:145–159

    CAS  PubMed  Google Scholar 

  • Chu P, Clanton DJ, Snipas TS et al (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 124:1312–1321

    CAS  PubMed  Google Scholar 

  • Chumsri S, Burger AM (2008) Cancer stem cell targeted agents: therapeutic approaches and consequences. Curr Opin Mol Ther 10:323–333

    CAS  PubMed  Google Scholar 

  • Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, and Wahl GM (2006). Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344

    CAS  PubMed  Google Scholar 

  • Corbeil D, Röper K, Weigmann A et al (1998) AC133 hematopoietic stem cell antigen: human homologue of mouse kidney prominin or distinct member of a novel protein family? Blood 91:2625–2626

    CAS  PubMed  Google Scholar 

  • Curley MD, Therrien VA, Cummings CL et al (2009) CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27:2875–2883

    CAS  PubMed  Google Scholar 

  • de Groot JF, Yung WK (2008) Bevacizumab and irinotecan in the treatment of recurrent malignant gliomas. Cancer J 14:279–285

    PubMed  Google Scholar 

  • Dingli D, Michor F (2006) Successful therapy must eradicate cancer stem cells. Stem Cells 24:2603–2610

    CAS  PubMed  Google Scholar 

  • Du L, Wang H, He L et al (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14:6751–6760.

    CAS  PubMed  Google Scholar 

  • Eyler CE, Foo WC, LaFiura KM et al (2008) Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26:3027–3036

    CAS  PubMed  Google Scholar 

  • Fael Al-Mayhani TM, Ball SL, Zhao JW et al (2009) An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. J Neurosci Methods 176:192–199

    CAS  PubMed  Google Scholar 

  • Fang D, Nguyen TK, Leishear K et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    CAS  PubMed  Google Scholar 

  • Fang DD, Kim YJ, Lee CN et al (2010) Expansion of CD133(+) colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br J Cancer 102:1265–1275

    CAS  PubMed  Google Scholar 

  • Florian S, Sonneck K, Hauswirth AW et al (2006) Detection of molecular targets on the surface of CD34+/CD38– stem cells in various myeloid malignancies. Leuk Lymphoma 47:207–222

    CAS  PubMed  Google Scholar 

  • Folkins C, Shaked Y, Man S et al (2009) Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res 69:7243–7251

    CAS  PubMed  Google Scholar 

  • Fong CY, Chak LL, Subramanian A et al (2009) A three dimensional anchorage independent in vitro system for the prolonged growth of embryoid bodies to study cancer cell behaviour and anticancer agents. Stem Cell Rev 5:410–419

    CAS  PubMed  Google Scholar 

  • Forristal CE, Wright KL, Hanley NA et al (2010) Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction 139:85–97

    CAS  PubMed  Google Scholar 

  • Fujii E, Suzuki M, Matsubara K et al (2008) Establishment and characterization of in vivo human tumor models in the NOD/SCID/gamma(c)(null) mouse. Pathol Int 58:559–567

    PubMed  Google Scholar 

  • Fulci G, Ishii N, Maurici D et al (2002) Initiation of human astrocytoma by clonal evolution of cells with progressive loss of p53 functions in a patient with a 283H TP53 germ-line mutation: evidence for a precursor lesion. Cancer Res 62:2897–2905

    CAS  PubMed  Google Scholar 

  • Gallia GL, Tyler BM, Hann CL et al (2009) Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Mol Cancer Ther 8:386–393.

    CAS  PubMed  Google Scholar 

  • Gao JX (2008) Cancer stem cells: the lessons from pre-cancerous stem cells. J Cell Mol Med 12:67–96

    CAS  PubMed  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    CAS  PubMed  Google Scholar 

  • Gottardi CJ, Wong E, Gumbiner BM (2001) E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol 153:1049–1060

    CAS  PubMed  Google Scholar 

  • Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012

    CAS  PubMed  Google Scholar 

  • Hall PE, Lathia JD, Caldwell MA et al (2008) Laminin enhances the growth of human neural stem cells in defined culture media. BMC Neurosci 9:71

    PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  • Haraguchi N, Ohkuma M, Sakashita H et al (2008) CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol 15:2927–2933

    PubMed  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE et al (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284

    CAS  PubMed  Google Scholar 

  • Helczynska K, Kronblad A, Jögi A et al (2003) Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Res 63:1441–1444

    CAS  PubMed  Google Scholar 

  • Held MA, Curley DP, Dankort D et al (2010) Characterization of melanoma cells capable of propagating tumors from a single cell. Cancer Res 70:388–397

    CAS  PubMed  Google Scholar 

  • Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    CAS  PubMed  Google Scholar 

  • Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233

    CAS  PubMed  Google Scholar 

  • Hjelmeland AB, Wu Q, Wickman S et al (2010) Targeting A20 decreases glioma stem cell survival and tumor growth. PLoS Biol 8(2):e1000319

    PubMed  Google Scholar 

  • Hu L, McArthur C, Jaffe RB (2010) Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 102:1276–1283

    CAS  PubMed  Google Scholar 

  • Huang EH, Hynes MJ, Zhang T et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69:3382–3389

    CAS  PubMed  Google Scholar 

  • Iwasaki H, Suda T (2009) Cancer stem cells and their niche. Cancer Sci 100:1166–1172

    CAS  PubMed  Google Scholar 

  • Iyer NV, Leung SW, Semenza GL (1998) The human hypoxia-inducible factor 1alpha gene: HIF1A structure and evolutionary conservation. Genomics 52:159–165

    CAS  PubMed  Google Scholar 

  • Izumoto S, Ohnishi T, Arita N et al (1996) Gene expression of neural cell adhesion molecule L1 in malignant gliomas and biological significance of L1 in glioma invasion. Cancer Res 56:1440–1444

    CAS  PubMed  Google Scholar 

  • Jamieson CH, Ailles LE, Dylla SJ et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667

    CAS  PubMed  Google Scholar 

  • Jin L, Hope KJ, Zhai Q et al (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    PubMed  Google Scholar 

  • Komuro H, Saihara R, Shinya M et al (2007) Identification of side population cells (stem-like cell population) in pediatric solid tumor cell lines. J Pediatr Surg 42:2040–2045

    PubMed  Google Scholar 

  • Krause DS, Lazarides K, von Andrian UH et al (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12:1175–1180

    CAS  PubMed  Google Scholar 

  • Lacassagne A (1954) Anoxia as a factor of radioresistance. J Radiol Electrol Arch Electr Medicale 35:12–15

    CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    CAS  PubMed  Google Scholar 

  • Lathia JD, Gallagher J, Heddleston JM, et al (2010). Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6:421–432

    CAS  PubMed  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    CAS  PubMed  Google Scholar 

  • Levings PP, McGarry SV, Currie TP et al (2009) Expression of an exogenous human Oct-4 promoter identifies tumor-initiating cells in osteosarcoma. Cancer Res 69:5648–5655

    CAS  PubMed  Google Scholar 

  • Li C, Heidt DG, Dalerba P et al (2007) Identificationof pancreatic cancer stem cells. Cancer Res 67:1030–1037

    CAS  PubMed  Google Scholar 

  • Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553–4557

    CAS  PubMed  Google Scholar 

  • Li Z, Bao S, Wu Q et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513

    CAS  PubMed  Google Scholar 

  • Liu M, Casimiro MC, Wang C et al (2009) p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proc Natl Acad Sci USA 106:19035–19039

    CAS  PubMed  Google Scholar 

  • Lobo NA, Shimono Y, Qian D et al (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699

    CAS  PubMed  Google Scholar 

  • Ma L, Young J, Prabhala H et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–256

    CAS  PubMed  Google Scholar 

  • Mammoto A, Ingber DE (2009) Cytoskeletal control of growth and cell fate switching. Curr Opin Cell Biol 21:864–870

    CAS  PubMed  Google Scholar 

  • Mitsiades CS, Hideshima T, Chauhan D et al (2009) Emerging treatments for multiple myeloma: beyond immunomodulatory drugs and bortezomib. Semin Hematol 46:166–175

    CAS  PubMed  Google Scholar 

  • Moeller BJ, Cao Y, Li CY et al (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429–441

    CAS  PubMed  Google Scholar 

  • Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2:247–250

    CAS  PubMed  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    CAS  PubMed  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    PubMed  Google Scholar 

  • Pandit TS, Kennette W, Mackenzie L et al (2009) Lymphatic metastasis of breast cancer cells is associated with differential gene expression profiles that predict cancer stem cell-like properties and the ability to survive, establish and grow in a foreign environment. Int J Oncol 35:297–308

    CAS  PubMed  Google Scholar 

  • Passeguè E, Jamieson CH, Ailles LE et al (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA Suppl 1:11842–11849

    Google Scholar 

  • Perez-Caro M, Cobaleda C, Gonz lez-Herrero I et al (2009) Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J 28:8–20

    CAS  PubMed  Google Scholar 

  • Platet N, Liu SY, Atifi ME et al (2007) Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett 258:286–290

    CAS  PubMed  Google Scholar 

  • Pollard SM, Yoshikawa K, Clarke ID et al (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568–580

    CAS  PubMed  Google Scholar 

  • Puglisi MA, Sgambato A, Saulnier N et al (2009) Isolation and characterization of CD133+ cell population within human primary and metastatic colon cancer. Eur Rev Med Pharmacol Sci Suppl 1:55–62

    Google Scholar 

  • Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    CAS  PubMed  Google Scholar 

  • Read TA, Fogarty MP, Markant SL et al (2009) Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15:135–147

    CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    CAS  PubMed  Google Scholar 

  • Ropolo M, Daga A, Griffero F et al (2009) Comparative analysis of DNA repair in stem and nonstem glioma cell cultures. Mol Cancer Res 7:383–392

    CAS  PubMed  Google Scholar 

  • Saltz LB, Clarke S, DÌaz-Rubio E et al (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26:2013–2019

    CAS  PubMed  Google Scholar 

  • Seidel S, Garvalov BK, Wirta V et al (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2alpha. Brain 133:983–995

    PubMed  Google Scholar 

  • Sell S, Pierce GB (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70:6–22

    CAS  PubMed  Google Scholar 

  • Semenza GL, Artemov D, Bedi A et al (2001) The metabolism of tumours’: 70 years later. Novartis Found Symp 240:251–260

    CAS  PubMed  Google Scholar 

  • Shen Q, Wang Y, Kokovay E et al (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300

    CAS  PubMed  Google Scholar 

  • Shukla V, Vaissière T, Herceg Z (2008) Histone acetylation and chromatin signature in stem cell identity and cancer. Mutat Res 637:1–15

    CAS  PubMed  Google Scholar 

  • Silván U, Díez-Torre A, Arluzea J et al (2009) Hypoxia and pluripotency in embryonic and embryonal carcinoma stem cell biology. Differentiation 78:159–168

    PubMed  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    CAS  PubMed  Google Scholar 

  • Sirard C, Lapidot T, Vormoor J et al (1996) Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 87:1539–1548

    CAS  PubMed  Google Scholar 

  • Soeda A, Park M, Lee D et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949–3959

    CAS  PubMed  Google Scholar 

  • Son MJ, Woolard K, Nam DH et al (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440–452

    CAS  PubMed  Google Scholar 

  • Sottoriva A, Verhoeff JJ, Borovski T et al (2010) Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res 70:46–56

    CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  • Sun Y, Pollard S, Conti L et al (2008) Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Mol Cell Neurosci 38:245–258

    CAS  PubMed  Google Scholar 

  • Sutherland HJ, Blair A, Zapf RW (1996) Characterization of a hierarchy in human acute myeloid leukemia progenitor cells. Blood 87:4754–4761

    CAS  PubMed  Google Scholar 

  • Tamaki S, Eckert K, He D et al (2002) Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J Neurosci Res 69:976–986

    CAS  PubMed  Google Scholar 

  • Tamase A, Muraguchi T, Naka K et al (2009) Identification of tumor-initiating cells in a highly aggressive brain tumor using promoter activity of nucleostemin. Proc Natl Acad Sci USA 106:17163–17168

    CAS  PubMed  Google Scholar 

  • Taylor MD, Poppleton H, Fuller C et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    CAS  PubMed  Google Scholar 

  • Teschendorff AE, Menon U, Gentry-Maharaj A et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446

    CAS  PubMed  Google Scholar 

  • Tirino V, Camerlingo R, Franco R et al (2009) The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. Eur J Cardiothorac Surg 36:446–453

    PubMed  Google Scholar 

  • Tirino V, Desiderio V, d’Aquino R et al (2008) Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLOS One 3:33469

    Google Scholar 

  • Tomuleasa C, Soritau O, Rus-Ciuca D et al (2010) Isolation and characterization of hepatic cancer cells with stem-like properties from hepatocellular carcinoma. J Gastrointestin Liver Dis 19:61–67

    PubMed  Google Scholar 

  • Uchida N, Buck DW, He D et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725

    CAS  PubMed  Google Scholar 

  • Virchow R (1963) Cellular pathology as based on physiological and pathological histology. J B Lippincott, Philadelphia

    Google Scholar 

  • Voog J, Jones DL (2010) Stem cells and the niche: a dynamic duo. Cell Stem Cell 6:103–115

    CAS  PubMed  Google Scholar 

  • Wang H, Lathia JD, Wu Q et al (2009a) Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27:2393–2404

    CAS  PubMed  Google Scholar 

  • Wang J, Guo LP, Chen LZ et al (2007) Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 67:3716–3724

    CAS  PubMed  Google Scholar 

  • Wang J, Wakeman TP, Lathia JD et al (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28:17–28

    CAS  PubMed  Google Scholar 

  • Wang J, Wang H, Li Z et al (2008) c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 3:e3769

    PubMed  Google Scholar 

  • Wang Y, Yang J, Zheng H et al (2009b) Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15:514–526

    CAS  PubMed  Google Scholar 

  • Wang YH, Li F, Luo B et al (2009c) A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics. Neoplasma 56:371–378

    CAS  PubMed  Google Scholar 

  • Ward RJ, Lee L, Graham K et al (2009) Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res 69:4682–4690

    CAS  PubMed  Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    CAS  PubMed  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    CAS  PubMed  Google Scholar 

  • Wright MH, Calcagno AM, Salcido CD et al (2008) Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10:R10

    PubMed  Google Scholar 

  • Yao J, Cai HH, Wei JS et al (2010) Side population in the pancreatic cancer cell lines SW1990 and CFPAC-1 is enriched with cancer stem-like cells. Oncol Rep 23:1375–1382

    CAS  PubMed  Google Scholar 

  • Yeung TM, Gandhi SC, Wilding JL et al (2010) Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA 107:3722–3727

    CAS  PubMed  Google Scholar 

  • Yuan Y, Zhou L, Miyamoto T et al (2001) AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 98:10398–10403

    CAS  PubMed  Google Scholar 

  • Zhang M, Behbod F, Atkinson RL et al (2008) Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 68:4674–4682

    CAS  PubMed  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    CAS  PubMed  Google Scholar 

  • Zhu L, Gibson P, Currle DS et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607

    CAS  PubMed  Google Scholar 

  • Zhu Z, Hao X, Yan M et al (2010) Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer 126:2067–2078

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy N. Rich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eyler, C.E. et al. (2011). The Cancer Stem Cell Paradigm. In: Phinney, D. (eds) Adult Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-002-7_10

Download citation

Publish with us

Policies and ethics