Skip to main content

p53 and Ras Mutations in Cancer and Experimental Carcinogenesis

  • Chapter
  • First Online:
Chemical Carcinogenesis

Part of the book series: Current Cancer Research ((CUCR))

  • 1068 Accesses

Abstract

Cancer is initiated and maintained by the accumulation of numerous mutations in specific genes. Rarely, the mutations are inherited but more commonly they occur via exposure to chemical carcinogens. Mutant genes fall into two categories: tumor suppressors and oncogenes. The most commonly mutated tumor suppressor is p53, while one of the most commonly mutated oncogenes is Ras. p53 induces cell cycle arrest and apoptosis in cells that have undergone DNA damage. Mutations in p53 usually result in inactivation of its normal transcriptional ability, leading to unregulated growth of damaged cells. In contrast, mutations in Ras are activating mutations that lead to increased cell proliferation. Among the more commonly studied carcinogens are polycyclic aromatic hydrocarbons (PAH), which are combustion products found in cigarette smoke, and aflatoxins, which are produced by molds. These are not carcinogenic until metabolically activated to compounds known as ultimate carcinogens, which can damage DNA, leading to mutations. Molecular epidemiology and experimental carcinogenesis with Ras and p53 have led to an understanding of the roles of metabolic activation and genetic selection in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adorno, M., Cordenonsi, M., et al. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137: 87–98.

    Article  PubMed  CAS  Google Scholar 

  • Arakawa, H., Wu, F., et al. (2006). Sequence specificity of Cr(III)-DNA adduct formation in the p53 gene: NGG sequences are preferential adduct-forming sites. Carcinogenesis 27: 639–45.

    Article  PubMed  CAS  Google Scholar 

  • Balmain, A. and Pragnell, I.B. (1983). Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303: 72–4.

    Article  PubMed  CAS  Google Scholar 

  • Balmain, A., Ramsden, M., et al. (1984). Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307: 658–60.

    Article  PubMed  CAS  Google Scholar 

  • Barbacid, M. (1987). ras Genes. Annu Rev Biochem 56: 779–827.

    Article  PubMed  CAS  Google Scholar 

  • Bizub, D., Wood, A.W., et al. (1986). Mutagenesis of the Ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons. Proc Natl Acad Sci USA 83: 6048–52.

    Article  PubMed  CAS  Google Scholar 

  • Bos, J.L. (1989). ras oncogenes in human cancer: a review. Cancer Res 49: 4682–4689.

    PubMed  CAS  Google Scholar 

  • Bos, J.L., Fearon, E.R., et al. (1987). Prevalence of ras gene mutations in human colorectal cancers. Nature 327: 293–7.

    Article  PubMed  CAS  Google Scholar 

  • Brachmann, R.K., Vidal, M., et al. (1996). Dominant-negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci USA 93: 4091–4095.

    Article  PubMed  CAS  Google Scholar 

  • Brown, K., Buchmann, A., et al. (1990). Carcinogen-induced mutations in the mouse c-Ha-ras gene provide evidence of multiple pathways for tumor progression. Proc Natl Acad Sci USA 87: 538–42.

    Article  PubMed  CAS  Google Scholar 

  • Buchmann, A., Bauer-Hofmann, R., et al. (1991). Mutational activation of the c-Ha-ras gene in liver tumors of different rodent strains: correlation with susceptibility to hepatocarcinogenesis. Proc Natl Acad Sci USA 88: 911–5.

    Article  PubMed  CAS  Google Scholar 

  • Campomenosi, P., Monti, P., et al. (2001). p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene 20: 3573–9.

    Article  PubMed  CAS  Google Scholar 

  • Cardiff, R.D., Gumerlock, P.H., et al. (1988). c-H-ras-1 expression in 7,12-dimethyl benzanthracene-induced Balb/c mouse mammary hyperplasias and their tumors. Oncogene 3: 205–13.

    PubMed  CAS  Google Scholar 

  • Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Sci STKE 2004: RE13.

    Article  PubMed  Google Scholar 

  • Conney, A.H. (1982). Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons. G.H.A. Clowes Memorial Lecture. Cancer Res 42: 4875–917.

    PubMed  CAS  Google Scholar 

  • Denissenko, M.F., Pao, A., et al. (1996). Preferential formation of benzo[α]pyrene adducts at lung cancer mutation hotspots in P53. Science 274: 430–2.

    Article  PubMed  CAS  Google Scholar 

  • Denissenko, M.F., Koudriakova, T.B., et al. (1998a). The p53 codon 249 mutational hotspot in hepatocellular carcinoma is not related to selective formation or persistence of aflatoxin B1 adducts. Oncogene 17: 3007–14.

    Article  PubMed  CAS  Google Scholar 

  • Denissenko, M.F., Pao, A., et al. (1998b). Slow repair of bulky DNA adducts along the nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers. Oncogene 16: 1241–7.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, L.E., Guerrero, I., et al. (1988). Concomitant K- and N-ras gene point mutations in clonal murine lymphoma. Mol Cell Biol 8: 2233–6.

    PubMed  CAS  Google Scholar 

  • Feng, Z., Hu, W., et al. (2002). Preferential DNA damage and poor repair determine ras gene mutational hotspot in human cancer. J Natl Cancer Inst 94: 1527–36.

    PubMed  CAS  Google Scholar 

  • Feng, Z., Hu, W., et al. (2003). Chromium(VI) exposure enhances polycyclic aromatic hydrocarbon-DNA binding at the p53 gene in human lung cells. Carcinogenesis 24: 771–8.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Z., Hu, W., et al. (2006). Acrolein is a major cigarette-related lung cancer agent: preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci USA 103: 15404–9.

    Article  PubMed  CAS  Google Scholar 

  • Flaman, J.M., Frebourg, T., et al. (1995). A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci USA 92: 3963–7.

    Article  PubMed  CAS  Google Scholar 

  • Gelboin, H.V. (1980). Benzo[α]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed function oxidases and related enzymes. Physiol Rev 60: 1107–66.

    PubMed  CAS  Google Scholar 

  • Groopman, J.D. and Kensler, T.W. (2005). Role of metabolism and viruses in aflatoxin-induced liver cancer. Toxicol Appl Pharmacol 206: 131–7.

    Article  PubMed  CAS  Google Scholar 

  • Groopman, J.D., Johnson, D., et al. (2005). Aflatoxin and hepatitis B virus biomarkers: a paradigm for complex environmental exposures and cancer risk. Cancer Biomark 1: 5–14.

    PubMed  CAS  Google Scholar 

  • Guerrero, I. and Pellicer, A. (1987). Mutational activation of oncogenes in animal model systems of carcinogenesis. Mutat Res 185: 293–308.

    PubMed  CAS  Google Scholar 

  • Guerrero, I., Calzada, P., et al. (1984). A molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene. Proc Natl Acad Sci USA 81: 202–5.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero, I., Villasante, A., et al. (1985). Loss of the normal N-ras allele in a mouse thymic lymphoma induced by a chemical carcinogen. Proc Natl Acad Sci U  S  A 82: 7810–4.

    Article  PubMed  CAS  Google Scholar 

  • Hainaut, P. and Pfeifer, G.P. (2001). Patterns of p53 G-->T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis 22: 367–74.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, J.J. (1964). An unidentified virus which causes the rapid production of tumours in mice. Nature 204: 1104–5.

    Article  PubMed  CAS  Google Scholar 

  • Hecht, S.S. (1998). Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol 11: 559–603.

    Article  PubMed  CAS  Google Scholar 

  • Hecht, S.S. (1999). Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91: 1194–210.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Boussard, T., Rodriguez-Tome, P., et al. (1999). IARC p53 mutaion database: a relational database to compile and analyze p53 mutations in human tumors and cell lines. International Agency for research in cancer. Hum Mutat 14: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers, J.H.J. (2001). Genome maintenance mechanisms for preventing cancer. Nature 411: 366–74.

    Article  PubMed  CAS  Google Scholar 

  • Hollstein, M., Sidransky, D., et al. (1991). p53 mutations in human cancers. Science 253: 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, I.C., Metcalf, R.A., et al. (1991). Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350: 427–8.

    Article  PubMed  CAS  Google Scholar 

  • Ishioka, C., Frebourg, T., et al. (1993). Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nat Genet 5: 124–9.

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey, A.M., Jennette, K.W., et al. (1976). Benzo[α]pyrene-nucleic acid derivative found in vivo: structure of a benzo[α]pyrene-tetrahydrodiol epoxide-guanosine adduct. J Am Chem Soc 98: 5714–5.

    Article  PubMed  CAS  Google Scholar 

  • Jennette, K.W., Jeffery, A.M., et al. (1977). Nucleoside adducts from the in vitro reaction of benzo[α]pyrene-7,8-dihydrodiol-9,10-oxide or benzo[α]pyrene-4,5-oxide with nucleic acids. Biochemistry 16: 932–8.

    Article  PubMed  CAS  Google Scholar 

  • Kato, S., Han, S.Y., et al. (2003). Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100: 8424–9.

    Article  PubMed  CAS  Google Scholar 

  • Kirsten, W.H. and Mayer, L.A. (1967). Morphologic responses to a murine erythroblastosis virus. J Natl Cancer Inst 39: 311–35.

    PubMed  CAS  Google Scholar 

  • Koreeda, M., Moore, P.D., et al. (1978). Binding of benzo[α]pyrene-7,8-diol-9,10-epoxides to DNA, RNA and protein of mouse skin occurs with high stereoselectivity. Science 199: 778–81.

    Article  PubMed  CAS  Google Scholar 

  • Mace, K., Aguilar, F., et al. (1997). Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis 18: 1291–7.

    Article  PubMed  CAS  Google Scholar 

  • Mangues, R. and Pellicer, A. (1992). ras activation in experimental carcinogenesis. Semin Cancer Biol 3: 229–39.

    PubMed  CAS  Google Scholar 

  • Marshall, C.J., Vousden, K.H., et al. (1984). Activation of c-Ha-ras-1 proto-oncogene by in vitro modification with a chemical carcinogen, benzo(a)pyrene diol-epoxide. Nature 310: 586–9.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, S., Sukumar, S., et al. (1990). Transforming c-Ki-ras mutation is a preneoplastic event in mouse mammary carcinogenesis induced in vitro by N-methyl-N-nitrosourea. Mol Cell Biol 10: 1593–9.

    PubMed  CAS  Google Scholar 

  • Olivier, M., Eeles, R., et al. (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–14.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, M.R., Beland, F.A., et al. (1976). The reaction of (±)-7α,8β-dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[α]pyrene with DNA. Int J Cancer 18: 362–8.

    Article  PubMed  CAS  Google Scholar 

  • Oudejans, J.J., Slebos, R.J., et al. (1991). Differential activation of ras genes by point mutation in human colon cancer with metastases to either lung or liver. Int J Cancer 49: 875–9.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.H., Gelhaus, S., et al. (2008a). The pattern of p53 mutations caused by PAH o-quinones is driven by 8-oxo-dGuo formation while the spectrum of mutations is determined by biological selection for dominance. Chem Res Toxicol 21: 1039–49.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.H., Mangal, D., et al. (2008b). Evidence for the aldo-keto reductase pathway of polycyclic aromatic trans-dihydrodiol activation in human lung A549 cells. Proc Natl Acad Sci USA 105: 6846–51.

    Article  PubMed  CAS  Google Scholar 

  • Penning, T.M., Burczynski, M.E., et al. (1999). Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol 12: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Puisieux, A., Lim, S., et al. (1991). Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens. Cancer Res 51: 6185–9.

    PubMed  CAS  Google Scholar 

  • Quinlan, M.P., Quatela, S.E., et al. (2008). Activated Kras, but not Hras or Nras, may initiate tumors of endodermal origin via stem cell expansion. Mol Cell Biol 28: 2659–74.

    Article  PubMed  CAS  Google Scholar 

  • Rajalingam, K., Schreck, R., et al. (2007). Ras oncogenes and their downstream targets. Biochim Biophys Acta 1773: 1177–95.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, E.P., Reynolds, R.K., et al. (1982). A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300: 149–52.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, S.H., Stowers, S.J., et al. (1987). Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment. Science 237: 1309–16.

    Article  PubMed  CAS  Google Scholar 

  • Rodenhuis, S. (1992). ras and human tumors. Semin Cancer Biol 3: 241–7.

    PubMed  CAS  Google Scholar 

  • Rodin, S.N. and Rodin, A.S. (2000). Human lung cancer and p53: the interplay between mutagenesis and selection. Proc Natl Acad Sci USA 97: 12244–9.

    Article  PubMed  CAS  Google Scholar 

  • Rodin, S.N. and Rodin, A.S. (2002). On the origin of p53 G:C --> T:A transversions in lung cancers. Mutat Res 508: 1–19.

    PubMed  CAS  Google Scholar 

  • Rodin, S.N. and Rodin, A.S. (2005). Origins and selection of p53 mutations in lung carcinogenesis. Semin Cancer Biol 15: 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Rodin, S.N., Rodin, A.S., et al. (2002). Cancerous hyper-mutagenesis in p53 genes is possibly associated with transcriptional bypass of DNA lesions. Mutat Res 510: 153–68.

    PubMed  CAS  Google Scholar 

  • Rodriguez, H., Akman, S.A., et al. (2000). Mapping oxidative DNA damage using ligation-mediated polymerase chain reaction technology. Methods 22: 148–56.

    Article  PubMed  CAS  Google Scholar 

  • Ronai, Z.A., Gradia, S., et al. (1993). G to A transitions and G to T transversions in codon 12 of the Ki-ras oncogene isolated from mouse lung tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and related DNA methylating and pyridyloxobutylating agents. Carcinogenesis 14: 2419–22.

    Article  PubMed  CAS  Google Scholar 

  • Saranath, D., Chang, S.E., et al. (1991). High frequency mutation in codons 12 and 61 of H-ras oncogene in chewing tobacco-related human oral carcinoma in India. Br J Cancer 63: 573–8.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y.M., Troxel, A.B., et al. (2006). Comparison of p53 mutations induced by PAH o-quinones with those caused by anti-benzo[α]pyrene diol epoxide in vitro: role of reactive oxygen and biological selection. Chem Res Toxicol 19: 1441–50.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, T., Hayes, C.L., et al. (1996). Activation of chemically diverse procarcinogens by human cytochrome P450 1B1. Cancer Res 56: 2979–84.

    PubMed  CAS  Google Scholar 

  • Smela, M.E., Currier, S.S., et al. (2001). The chemistry and biology of aflatoxin B(1): from mutational spectrometry to carcinogenesis. Carcinogenesis 22: 535–45.

    Article  PubMed  CAS  Google Scholar 

  • Sukumar, S., Notario, V., et al. (1983). Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306: 658–61.

    Article  PubMed  CAS  Google Scholar 

  • Sutter, T.R., Tang, Y.M., et al. (1994). cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J Biol Chem 269: 13092–9.

    PubMed  CAS  Google Scholar 

  • Tabin, C.J., Bradley, S.M., et al. (1982). Mechanism of activation of a human oncogene. Nature 300: 143–9.

    Article  PubMed  CAS  Google Scholar 

  • Taparowsky, E., Suard, Y., et al. (1982). Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300: 762–5.

    Article  PubMed  CAS  Google Scholar 

  • To, M.D., Wong, C.E., et al. (2008). Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nat Genet 40: 1240–4.

    Article  PubMed  CAS  Google Scholar 

  • Toyooka, S., Tsuda, T., et al. (2003). The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 21: 229–39.

    Article  PubMed  CAS  Google Scholar 

  • Tretyakova, N., Matter, B., et al. (2002). Formation of benzo[α]pyrene diol epoxide-DNA adducts at specific guanines within K-ras and p53 gene sequences: stable isotope-labeling mass spectrometry approach. Biochemistry 41: 9535–44.

    Article  PubMed  CAS  Google Scholar 

  • Wei, S.J., Chang, R.L., et al. (1993). Dose-dependent differences in the profile of mutations induced by (+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo(α)pyrene in the coding region of the hypoxanthine (guanine) phosphoribosyltransferase gene in Chinese hamster V-79 cells. Cancer Res 53: 3294–301.

    PubMed  CAS  Google Scholar 

  • Xie, Z., Braithwaite, E., et al. (2003). Mutagenesis of benzo[a]pyrene diol-epoxide in yeast: requirement for DNA polymerase ξ and involvement of DNA polmerase η. Biochemistry 42: 11253–62.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J.H., Lee, C.S., et al. (2003). Simulated sunlight and benzo[α]pyrene diol epoxide induced mutagenesis in the human p53 gene evaluated by the yeast functional assay: lack of correspondence to tumor mutation spectra. Carcinogenesis 24: 113–9.

    Article  PubMed  CAS  Google Scholar 

  • You, M., Candrian, U., et al. (1989). Activation of the Ki-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc Natl Acad Sci USA 86: 3070–4.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D., Berlin, J.A., et al. (2002). Reactive oxygen species generated by PAH o-quinones cause change-in-function mutations in p53. Chem Res Toxicol 15: 832–42.

    Article  PubMed  CAS  Google Scholar 

  • Zarbl, H., Sukumar, S., et al. (1985). Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315: 382–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants R01 GM48241 and R01 ES015662, and pilot project support from 1P30 ES013508–01 to J.F. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Abedin, Z., Sen, S., Morocco, E., Field, J. (2011). p53 and Ras Mutations in Cancer and Experimental Carcinogenesis. In: Penning, T. (eds) Chemical Carcinogenesis. Current Cancer Research. Humana Press. https://doi.org/10.1007/978-1-61737-995-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-995-6_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-994-9

  • Online ISBN: 978-1-61737-995-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics