Skip to main content

Opioid Receptor Signal Transduction Mechanisms

  • Chapter
  • First Online:
The Opiate Receptors

Part of the book series: The Receptors ((REC))

Abstract

The myriad functions of morphine and its congeners are the consequences of the drug interacting with the three opioid receptors. In order to develop a perfect analgesic compound that mediates its function via these receptors, the mechanisms by which signaling occurs and the regulation of the signals must be fully elucidated. Since opioid receptors are members of the G protein-coupled receptor (GPCR) superfamily, many of their signaling processes mimic those of other GPCRs. However, it is apparent from recent proteomic and other studies that opioid receptors, similar to several GPCRs in the rhodopsin subfamily, exist in signaling complexes. These signaling complexes include the oligomerization of the opioid receptors with each other, with other GPCRs, or with other cellular proteins, such as β-arrestin or regulators of G protein signaling (RGS) that could alter or modulate the final receptor signals. In addition, accumulating evidence points to the presence of an agonist-selective signaling process with the opioid receptors. In this chapter, we will review the classical signaling mechanisms of opioid receptors, the various effectors that are regulated by opioid receptors, and their possible roles in the in vivo functions of drugs, and cellular regulators that could influence the amplitude and duration of the signals. We will examine recent data that support the existence of opioid receptor signaling complexes, or “receptosomes,” in the transduction of opioid receptor signals. Finally, evidence for ligand-selective signaling and its implication in future drug development will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldstein A, Lowney LI, Pal BK (1971) Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci USA 68(8):1742–1747

    Article  PubMed  CAS  Google Scholar 

  2. Pert CB, Snyder SH (1973) Properties of opiate-receptor binding in rat brain. Proc Natl Acad Sci USA 70:2243–2247

    Article  PubMed  CAS  Google Scholar 

  3. Simon E, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic (3H)etorphine to rat-brain homogenate. Proc Natl Acad Sci USA 70:1947–1949

    Article  PubMed  CAS  Google Scholar 

  4. Terenius L (1973) Characteristics of the “receptor” for narcotic analgesics in synaptic plasma membrane fraction from rat brain. Acta Pharmacol Toxicol 33:377–384

    Article  CAS  Google Scholar 

  5. Martin WR, Eades CG, Thompson JA, Huppler R, Gilbert PE (1976) The effects of ­morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197(3):517–532

    PubMed  CAS  Google Scholar 

  6. Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 276:495–499

    Article  Google Scholar 

  7. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258(5536):577–580

    Article  PubMed  CAS  Google Scholar 

  8. Li CH, Yamashiro D, Chung D, Doneen BA (1977) Isolation, structure, synthesis and morphine-like activity of beta-endorphin from human pituitary glands. Ann NY Acad Sci 297:158–166

    Article  PubMed  CAS  Google Scholar 

  9. Loh HH, Tseng LF, Wei E, Li CH (1976) Beta-endorphin is a potent analgesic agent. Proc Natl Acad Sci USA 73(8):2895–2898

    Article  PubMed  CAS  Google Scholar 

  10. Ghazarossian VE, Chavkin C, Goldstein A (1980) A specific radioimmunoassay for the novel opioid peptide dynorphin. Life Sci 27(1):75–86

    Article  PubMed  CAS  Google Scholar 

  11. Goldstein A, Ghazarossian VE (1980) Immunoreactive dynorphin in pituitary and brain. Proc Natl Acad Sci USA 77(10):6207–6210

    Article  PubMed  CAS  Google Scholar 

  12. Chang KJ, Cooper BR, Hazum E, Cuatrecasas P (1979) Multiple opiate receptors: different regional distribution in the brain and differential binding of opiates and opioid peptides. Mol Pharmacol 16:91–104

    PubMed  CAS  Google Scholar 

  13. Chang KJ, Hazum E, Killian A, Cuatrecasas P (1981) Interactions of ligands with morphine and enkephalin receptors are differentially affected by guanine nucleotide. Mol Pharmacol 20:1–7

    PubMed  CAS  Google Scholar 

  14. Law PY, Low HH (1978) 3H-Leu5-enkephalin specific binding to synaptic membrane – ­comparison with 3H-dihydromorphine and 3H-naloxone. Res Commun Chem Pathol Pharmacol 21(3):409–434

    PubMed  CAS  Google Scholar 

  15. Schulz R, Wüster M, Kreuss H, Herz A (1980) Selective development of tolerance without dependence in multiple opiate receptors of mouse vas deferens. Nature 285:242–243

    Article  PubMed  CAS  Google Scholar 

  16. Bonner GG, Davis P, Stropova D et al (1997) Opioid peptides: simultaneous delta agonism and mu antagonism in somatostatin analogues. Peptides 18(1):93–100

    Article  PubMed  CAS  Google Scholar 

  17. Portoghese PS, Sultana M, Takemori AE (1988) Naltrindole, a highly selective and potent non-peptide delta opioid receptor antagonist. Eur J Pharmacol 146(1):185–186

    Article  PubMed  CAS  Google Scholar 

  18. Takemori AE, Larson DL, Portoghese PS (1981) The irreversible narcotic antagonistic and reversible agonistic properties of the fumaramate methyl ester derivative of naltrexone. Eur J Pharmacol 70(4):445–451

    Article  PubMed  CAS  Google Scholar 

  19. Takemori AE, Ho BY, Naeseth JS, Portoghese PS (1988) Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther 246(1):255–258

    PubMed  CAS  Google Scholar 

  20. Ward SJ, Portoghese PS, Takemori E (1982) Pharmacological characterization in vivo of the novel opiate, beta-funaltrexamine. J Pharmacol Exp Ther 220(3):494–498

    PubMed  CAS  Google Scholar 

  21. Blume A, Lichtshtein D, Boone G (1979) Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP. Proc Natl Acad Sci USA 76:5626–5630

    Article  PubMed  CAS  Google Scholar 

  22. Griffin MT, Law PY, Loh HH (1985) Involvement of both inhibitory and stimulatory guanine nucleotide binding proteins in the expression of chronic opiate regulation of adenylate cyclase activity in NG108-15 cells. J Neurochem 45(5):1585–1589

    Article  PubMed  CAS  Google Scholar 

  23. Costa T, Aktories K, Schultz G, Wuster M (1983) Pertussis toxin decreases opiate receptor binding and adenylate inhibition in a neuroblastoma x glioma hybrid cell line. Life Sci 33(Suppl 1):219–222

    Article  PubMed  CAS  Google Scholar 

  24. Kurose H, Katada T, Amano T, Ui M (1983) Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via alpha-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells. J Biol Chem 258(8):4870–4875

    PubMed  CAS  Google Scholar 

  25. Hsia JA, Moss J, Hewlett EL, Vaughan M (1984) ADP-ribosylation of adenylate cyclase by pertussis toxin: effects on inhibitory agonist binding. J Biol Chem 259(2):1086–1090

    PubMed  CAS  Google Scholar 

  26. Lujan M, Lopez E, Ramirez R, Aguilar H, Martinez-Olmedo MA, Garcia-Sainz JA (1984) Pertussis toxin blocks the action of morphine, norepinephrine and clonidine on isolated guinea-pig ileum. Eur J Pharmacol 100(3–4):377–380

    Article  PubMed  CAS  Google Scholar 

  27. Parenti M, Tirone F, Giagnoni G, Pecora N, Parolaro D (1986) Pertussis toxin inhibits the antinociceptive action of morphine in the rat. Eur J Pharmacol 124(3):357–359

    Article  PubMed  CAS  Google Scholar 

  28. Evans CJ, Keith DE, Morrison H, Magendzo K, Edwards RH (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955

    Article  PubMed  CAS  Google Scholar 

  29. Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG (1992) The δ-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA 89:12048–12052

    Article  PubMed  CAS  Google Scholar 

  30. Chen Y, Mestek A, Liu J, Hurley JA, Yu L (1993) Molecular cloning and functional expression of a μ-opioid receptor from rat brain. Mol Pharmacol 44:8–12

    PubMed  CAS  Google Scholar 

  31. Meng F, Xie GX, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of a rat kappa-opioid receptor. Proc Natl Acad Sci USA 90:9954–9958

    Article  PubMed  CAS  Google Scholar 

  32. Minami M, Satoh M (1995) Molecular biology of the opioid receptors: structure, functions and distributions. Neurosci Res 23:121–145

    Article  PubMed  CAS  Google Scholar 

  33. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families: phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

  34. Kaufman DL, Xia YR, Kieth DE Jr, Newman D, Evans CJ, Lusis AJ (1994) Localization of the δ-opioid receptor gene to mouse chromosome 4 by linkage analysis. Gemomics 19(2):405–406

    Article  CAS  Google Scholar 

  35. Kozak CA, Filie J, Adamson MC, Chen Y, Yu L (1994) Murine chromosomal location of mu and kappa opioid receptor genes. Gemomics 21:659–661

    Article  CAS  Google Scholar 

  36. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348(8):125–132

    Article  PubMed  CAS  Google Scholar 

  37. Sharma S, Nirenberg M, Klee W (1975) Morphine receptors as regulators of adenylyate cyclase activity. Proc Natl Acad Sci USA 72:590–594

    Article  PubMed  CAS  Google Scholar 

  38. Hescheler J, Rosenthal W, Trautwein W, Schultz G (1987) The GTP-binding protein Go, regulates neuronal calcium channels. Nature 325:445–446

    Article  PubMed  CAS  Google Scholar 

  39. Jin W, Lee N, Loh H, Thayer S (1993) Opioid-induced inhibition of voltage-gated calcium channels parallels expression of omega-conotoxin-sensitive channel subtype during differentiation of NG108-15 cells. Brain Res 607:17–22

    Article  PubMed  CAS  Google Scholar 

  40. Kim CJ, Rhee JS, Akaike N (1997) Modulation of high-voltage activated Ca2+ channels in the rat periaqueductal gray neurons by mu-type opioid agonist. J Neurophysiol 77(3):1418–14124

    PubMed  CAS  Google Scholar 

  41. North R, Williams T, Surprenant A, Christie M (1987) Mu and delta receptors belong to the family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA 84:5487–5491

    Article  PubMed  CAS  Google Scholar 

  42. Connor M, Henderson G (1996) Delta- and mu-opioid receptor mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells. Br J Pharmacol 117(2):333–340

    Article  PubMed  CAS  Google Scholar 

  43. Jin W, Lee N, Loh H, Thayer S (1993) Dual excitatory and inhibitory effects of opioids on intracellular calcium in neuroblastoma x glioma hybrid NG108-15 cells. Mol Pharmacol 42:1083–1089

    Google Scholar 

  44. Fukuda K, Kato S, Morikawa H, Shoda T, Mori K (1996) Functional coupling of the delta-, mu-, and kappa-opioid receptors to mitogen-activated protein kinase and arachidonate release in Chinese hamster ovary cells. J Neurochem 67(3):1309–1316

    Article  PubMed  CAS  Google Scholar 

  45. Li LY, Chang KJ (1996) The stimulatory effect of opioids on mitogen-activated protein kinase in Chinese hamster ovary cells transfected to express mu-opioid receptors. Mol Pharmacol 50:599–602

    PubMed  CAS  Google Scholar 

  46. Mangoura M, Dawson G (1993) Opioid peptides activate phospholipase D and protein kinase C-epsilon in chicken embryo neuron cultures. Proc Natl Acad Sci USA 90(7):2915–2919

    Article  PubMed  CAS  Google Scholar 

  47. Okajima F, Tomura H, Kondo Y (1993) Enkephalin activates the phospholipase C/Ca2+ system through cross-talk between opioid receptors and P2-purinergic or bradykinin receptors in NG 108-15 cells: a permissive role for pertussis toxin-sensitive G-proteins. Biochem J 290(Pt 1):241–247

    PubMed  CAS  Google Scholar 

  48. Smart D, Lambert DG (1995) Mu-opioid activation of phospholipase C in SH-SY5Y cells rapidly desensitizes: mechanistic studies. Biochem Soc Trans 23(3):419S

    PubMed  CAS  Google Scholar 

  49. Smart D, Smith G, Lambert DG (1994) Mu-opioid receptor stimulation of inositol (1, 4, 5)trisphosphate formation via a pertussis toxin-sensitive G protein. J Neurochem 62(3):1009–1014

    Article  PubMed  CAS  Google Scholar 

  50. Smart D, Smith G, Lambert DG (1995) Mu-opioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening. Biochem J 305(Pt 2):577–581

    PubMed  CAS  Google Scholar 

  51. Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid ­receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430

    Article  PubMed  CAS  Google Scholar 

  52. Offermann S, Schultz G, Rosenthal W (1991) Evidence for opioid receptor-mediated activation of G-proteins, Go and Gi2 in membranes of neuroblastoma x glioma (NG108-15) hybrid cells. J Biol Chem 266:3365–3368

    Google Scholar 

  53. Prather PL, Loh HH, Law PY (1994) Interaction of δ-opioid receptors with multiple G-proteins: a nonrelationship between agonist potency to inhibit adenylyl cyclase and activation of G-proteins. Mol Pharmacol 45:997–1003

    PubMed  CAS  Google Scholar 

  54. Prather PL, McGinn TM, Erickson LJ, Evans CJ, Loh HH, Law PY (1994) Ability of δ-opioid receptors to interact with multiple G-proteins is independent of receptor density. J Biol Chem 269:21293–21302

    PubMed  CAS  Google Scholar 

  55. Prather PL, McGinn TM, Claude PA, Liu-Chen LY, Loh HH, Law PY (1995) Properties of κ-opioid receptor expressed in CHO cells: activation of multiple G-proteins similar to other opioid receptors. Mol Brain Res 29:336–346

    Article  PubMed  CAS  Google Scholar 

  56. Chakrabarti S, Prather PL, Yu L, Law PY, Loh HH (1995) Expression of the μ-opioid receptor in CHO cells: ability of μ-opioid ligands to promote 32P-a-azidoanilido GTP labeling of multiple G protein α-subunits. J Neurochem 64:2534–2543

    Article  PubMed  CAS  Google Scholar 

  57. Roerig SC, Loh HH, Law PY (1992) Identification of three separate G-proteins which interact with the delta opioid receptor in NG108-15 neuroblastoma x glioma hybrid cells. Mol Pharmacol 45:997–1003

    Google Scholar 

  58. Chalecka-Franaszek E, Weems HB, Crowder AT, Cox BM, Cote TE (2000) Immunoprecipitation of high-affinity, guanine nucleotide-sensitive, solubilized mu-opioid receptors from rat brain: coimmunoprecipitation of the G proteins G(alpha o), G(alpha i1), and G(alpha i3). J Neurochem 74(3):1068–1078

    Article  PubMed  CAS  Google Scholar 

  59. Wong YH, Conklin BR, Bourne HR (1992) Gz-mediated inhibition of cAMP accumulation. Science 255:339–342

    Article  PubMed  CAS  Google Scholar 

  60. Ho MK, New DC, Wong YH (2002) Co-expressions of different opioid receptor types ­differentially modulate their signaling via G(16). Neurosignals 11(2):115–122

    Article  PubMed  CAS  Google Scholar 

  61. Ho MK, Yung LY, Chan JS, Chan JH, Wong CS, Wong YH (2001) Gα(14) links a variety of G(i)- and G(s)-coupled receptors to the stimulation of phospholipase C. Br J Pharmacol 132(7):1431–1440

    Article  PubMed  CAS  Google Scholar 

  62. Lee JW, Joshi S, Chan JS, Wong YH (1998) Differential coupling of mu-, delta-, and kappa-opioid receptors to Gα(16)-mediated stimulation of phospholipase C. J Neurochem 70(5):2203–2211

    Article  PubMed  CAS  Google Scholar 

  63. Belcheva MM, Wong YH, Coscia CJ (2000) Evidence for transduction of mu but not kappa opioid modulation of extracellular signal-regulated kinase activity by G(z) and G(12) proteins. Cell Signal 12(7):481–489

    Article  PubMed  CAS  Google Scholar 

  64. McKenzie FR, Milligan G (1990) δ-opioid receptor mediated inhibition of adenylate cyclase is transduced specifically by the guanine-nucleotide-binding protein Gi2. Biochem J 267:391–398

    PubMed  CAS  Google Scholar 

  65. Carter B, Medzihradsky F (1993) Go mediates the coupling of the μ opioid receptor to adenylyl cyclase in cloned neural cells and brains. Proc Natl Acad Sci USA 90:4062–4066

    Article  PubMed  CAS  Google Scholar 

  66. Moises HC, Rusin KI, Macdonald RL (1994) Mu-opioid receptor-mediated reduction of neuronal calcium current occurs via a Go-type GTP-binding protein. J Neurosci 14:3842–3851

    PubMed  CAS  Google Scholar 

  67. Jiang M, Gold MS, Boulay G, Spicher K, Peyton M, Brabet P, Srinivasan Y, Rudolph U, Ellison G, Birnbaumer L (1998) Multiple neurological abnormalities in mice deficient in the G protein Go. Proc Natl Acad Sci USA 95:3269–3274

    Article  PubMed  CAS  Google Scholar 

  68. Moon HE, Cavalli A, Bahia DS, Hoffmann M, Massotte D, Milligan G (2001) The human delta opioid receptor activates G(i1)alpha more efficiently than G(o1)alpha. J Neurochem 76(6):1805–1813

    Article  PubMed  CAS  Google Scholar 

  69. Chan JSC, Chiu TT, Wong YH (1995) Activation of type II adenylyl cyclase by the cloned μ-opioid receptor: coupling to multiple G proteins. J Neurochem 65:2682–2689

    Article  PubMed  CAS  Google Scholar 

  70. Tsu RC, Chan JSC, Wong YH (1995) Regulation of multiple effectors by the cloned δ-opioid receptor: stimulation of phospholipase C and type II adenylyl cyclase. J Neurochem 64:2700–2707

    Article  PubMed  CAS  Google Scholar 

  71. Lai HWL, Minami M, Satoh M, Wong YH (1995) Gz coupling to the rat κ-opioid receptor. FEBS Lett 360:97–99

    Article  PubMed  CAS  Google Scholar 

  72. Law SF, Reisine T (1997) Changes in the association of G protein subunits with the cloned mouse d opioid receptor on agonist stimulation. J Pharmacol Exp Ther 281:1476–1486

    PubMed  CAS  Google Scholar 

  73. Tang T, Kiang JG, Cote TE, Cox BM (1995) Antisense oligonucleotide to the Gi2 protein alpha subunit sequence inhibits an opioid-induced increase in the intracellular free calcium concentration in ND8-47 neuroblastoma x dorsal root ganglion hybrid cells. Mol Pharmacol 48:189–193

    PubMed  CAS  Google Scholar 

  74. Ueda H, Miyamae T, Fukushima N, Takeshima H, Fukuda K, Sasaki Y, Misu Y (1995) Opioid mu- and kappa-receptor mediate phospholipase C activation through Gi1 in Xenopus oocytes. Brain Res Mol Brain Res 32:166–170

    Article  PubMed  CAS  Google Scholar 

  75. Offermanns S, Negulescu P, Hu YH, Simon MI (1995) Gα15 and Gα16 couple a wide variety of receptors to phospholipase C. J Biol Chem 270:15175–15180

    Article  PubMed  CAS  Google Scholar 

  76. Clark MJ, Neubig RR, Traynor JR (2004) Endogenous regulator of G protein signaling proteins suppress Gαo-dependent, mu-opioid agonist-mediated adenylyl cyclase supersensitization. J Pharmacol Exp Ther 310(1):215–222

    Article  PubMed  CAS  Google Scholar 

  77. Kim E, Clark AL, Kiss A et al (2006) Mu- and kappa-opioids induce the differentiation of embryonic stem cells to neural progenitors. J Biol Chem 281(44):33749–33760

    Article  PubMed  CAS  Google Scholar 

  78. Bahia DS, Wise A, Fanelli F, Lee M, Rees S, Milligan G (1998) Hydrophobicity of residue351 of the G protein Gi1 alpha determines the extent of activation by the alpha 2A-adrenoceptor. Biochemistry 37(33):11555–11562

    Article  PubMed  CAS  Google Scholar 

  79. Zhang L, Tetrault J, Wang W, Loh HH, Law PY (2006) Short- and long-term regulation of adenylyl cyclase activity by delta-opioid receptor are mediated by Gαi2 in neuroblastoma N2A cells. Mol Pharmacol 69(6):1810–1819

    Article  PubMed  CAS  Google Scholar 

  80. Yoon SH, Lo TM, Loh HH, Thayer SA (1999) Delta-opioid-induced liberation of Gbetagamma mobilizes Ca2+ stores in NG108-15 cells. Mol Pharmacol 56(5):902–908

    PubMed  CAS  Google Scholar 

  81. Herlitze S, Hockerman GH, Scheuer T, Catterall WA (1997) Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel a1A subunit. Proc Natl Acad Sci USA 94:1512–1516

    Article  PubMed  CAS  Google Scholar 

  82. Ikeda SF (1996) Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380:225–258

    Article  Google Scholar 

  83. Belcheva MM, Vogel Z, Ignatova E, Avidor-Reiss T, Zippel R, Levy R, Young EC, Barg J, Coscia CJ (1998) Opioid modulation of extracellular signal-regulated protein kinase activity is ras-dependent and involves Gbetagamma subunits. J Neurochem 70(2):635–645

    Article  PubMed  CAS  Google Scholar 

  84. Kleuss C, Scherubl H, Hescheler J, Schultz G, Wittig B (1992) Different β subunits determine G protein interaction with transmembrane receptors. Nature 358:424–426

    Article  PubMed  CAS  Google Scholar 

  85. Collier HO, Francis DL (1975) Morphine abstinence is associated with increased brain cyclic AMP. Nature 255(5504):159–162

    Article  PubMed  CAS  Google Scholar 

  86. Collier HOJ, Roy AC (1974) Morphine-like drugs inhibit the stimulation of E prostaglandins of cyclic AMP formation by rat brain homogenate. Nature 248(443):24–27

    Article  PubMed  CAS  Google Scholar 

  87. Law PY, Wu J, Koehler JE, Loh HH (1981) Demonstration and characterization of opiate inhibition of the striatal adenylate cyclase. J Neurochem 36(5):1834–1846

    Article  PubMed  CAS  Google Scholar 

  88. Sharma SK, Klee WA, Nirenberg M (1977) Opiate dependent modulation of adenylate cyclase activity. Proc Natl Acad Sci USA 74:3365–3369

    Article  PubMed  CAS  Google Scholar 

  89. Yoshimura M, Wu PH, Hoffman PL, Tabakoff B (2000) Overexpression of type 7 adenylyl cyclase in the mouse brain enhances acute and chronic actions of morphine. Mol Pharmacol 58(5):1011–1016

    PubMed  CAS  Google Scholar 

  90. Kim KS, Lee KW, Lee KW et al (2006) Adenylyl cyclase type 5 (AC5) is an essential mediator of morphine action. Proc Natl Acad Sci USA 103(10):3908–3913

    Article  PubMed  CAS  Google Scholar 

  91. Tang WJ, Hurley JH (1998) Catalytic mechanism and regulation of mammalian adenylyl cyclases. Mol Pharmacol 54:231–240

    PubMed  CAS  Google Scholar 

  92. Puri SK, Cochin J, Volicer L (1975) Effect of morphine sulfate on adenylate cyclase and phosphodiesterase activities in rat corpus striatum. Life Sci 16:759–768

    Article  PubMed  CAS  Google Scholar 

  93. Cruciani RA, Dvorkin B, Morris SA, Crain SM (1993) Makman, MH Direct coupling of opioid receptors to both stimulatory and inhibitory guanine nucleotide-binding proteins in F-11 neuroblastoma-sensory neuron hybrid cells. Proc Natl Acad Sci USA 90:3019–3023

    Article  PubMed  CAS  Google Scholar 

  94. Olianas MC, Onali P (1995) Participation of δ-opioid receptor subtypes in stimulation of adenylyl cyclase activity in rat olfactory bulb. J Pharmacol Exp Ther 275:1560–1567

    PubMed  CAS  Google Scholar 

  95. Makman MH, Dvorkin B, Crain SM (1988) Modulation of adenylate cyclase activity of mouse spinal cord-ganglion explants by opioids, serotonin and pertussis toxin. Brain Res 445:303–313

    Article  PubMed  CAS  Google Scholar 

  96. Federman AD, Conklin BR, Schrader KA, Reed RR, Bourne HR (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein βγ subunits. Nature 356:159–161

    Article  PubMed  CAS  Google Scholar 

  97. Taussig R, Tang WJ, Hepler JR, Gilman AG (1994) Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem 269:6093–6100

    PubMed  CAS  Google Scholar 

  98. Avidor-Reiss T, Nevo I, Levy R, Pfeuffer T, Vogel Z (1996) Chronic opioid treatment induces adenylyl cyclase V superactivation. Involvement of Gbetagamma. J Biol Chem 271(35):21309–21315

    Article  PubMed  CAS  Google Scholar 

  99. Avidor-Reis T, Nevo I, Saya D, Bayerwitch M, Vogel Z (1997) Opiate-induced adenylyl cyclase superactivation is isozyme-specific. J Biol Chem 272:5040–5047

    Article  Google Scholar 

  100. Ammer H, Christ TE (2002) Identity of adenylyl cyclase isoform determines the G protein mediating chronic opioid-induced adenylyl cyclase supersensitivity. J Neurochem 83(4):818–827

    Article  PubMed  CAS  Google Scholar 

  101. Schallmach E, Steiner D, Vogel Z (2006) Adenylyl cyclase type II activity is regulated by two different mechanisms: implications for acute and chronic opioid exposure. Neuropharmacology 50(8):998–1005

    Article  PubMed  CAS  Google Scholar 

  102. Steiner D, Saya D, Schallmach E, Simonds WF, Vogel Z (2006) Adenylyl cyclase type-VIII activity is regulated by Gβγ subunits. Cell Signal 18(1):62–68

    Article  PubMed  CAS  Google Scholar 

  103. Wang HY, Burns LH (2006) Gbetagamma that interacts with adenylyl cyclase in opioid tolerance originates from a Gσ protein. J Neurobiol 66(12):1302–1310

    Article  PubMed  CAS  Google Scholar 

  104. Wang Y, Li JG, Huang P, Xu W, Liu-Chen LY (2003) Differential effects of agonists on adenylyl cyclase superactivation mediated by the kappa opioid receptors: adenylyl cyclase superactivation is independent of agonist-induced phosphorylation, desensitization, internalization, and down-regulation. J Pharmacol Exp Ther 307(3):1127–1134

    Article  PubMed  CAS  Google Scholar 

  105. Crain SM, She KF (1996) Modulatory effects of Gσ-coupled excitatory opioid receptor ­functions on opioid analgesia, tolerance, and dependence. Neurochem Res 21(11):1347–1351

    Article  PubMed  CAS  Google Scholar 

  106. Wang D, Surratt CK, Sadee W (2000) Calmodulin regulation of basal and agonist-stimulated G protein coupling by the mu-opioid receptor (OP(3)) in morphine-pretreated cell. J Neurochem 75(2):763–771

    Article  PubMed  CAS  Google Scholar 

  107. Wang D, Sadee W, Quillan JM (1999) Calmodulin binding to G protein-coupling domain of opioid receptors. J Biol Chem 274(31):22081–22088

    Article  PubMed  CAS  Google Scholar 

  108. Sarne Y, Rubovitch V, Fields A, Gafni M (1998) Dissociation between the inhibitory and stimulatory effects of opioid peptides on cAMP formation in SK-N-SH neuroblastoma cells. Biochem Biophys Res Commun 246(1):128–131

    Article  PubMed  CAS  Google Scholar 

  109. Chakrabarti S, Wang L, Tang W-J, Gintzler AR (1998) Chronic morphine augments adenylyl cyclase phosphorylation: relevance to altered signaling during tolerance/dependence. Mol Pharmacol 54:949–953

    PubMed  CAS  Google Scholar 

  110. Chakrabarti S, Oppermann M, Gintzler AR (2001) Chronic morphine induces the concomitant phosphorylation and altered association of multiple signaling proteins: a novel mechanism for modulating cell signaling. Proc Natl Acad Sci USA 98(7):4209–4214

    Article  PubMed  CAS  Google Scholar 

  111. Chakrabarti S, Rivera M, Yan S-Z, Tang W-J, Gintzler AR (1998) Chronic morphine ­augments G/Gσ stimulation of adenylyl cyclase: relevance to opioid tolerance. Mol Pharmacol 54:655–662

    PubMed  CAS  Google Scholar 

  112. Varg EV, Rubenzik M, Grife V et al (2002) Involvement of Raf-1 in chronic delta-opioid receptor agonist-mediated adenlyl cyclase superactivation. Eur J Pharmacol 451(1):101–102

    Article  Google Scholar 

  113. Varga EV, Rubenzik MK, Stropova D et al (2003) Converging protein kinase pathways ­mediate adenylyl cyclase superactivation upon chronic delta-opioid agonist treatment. J Pharmacol Exp Ther 306(1):109–115

    Article  PubMed  CAS  Google Scholar 

  114. Ammer H, Schulz R (1997) Enhanced stimulatory adenylyl cyclase signaling during opioid dependence is associated with a reduction in palmitoylated Gσ alpha. Mol Pharmacol 52(6):993–999

    PubMed  CAS  Google Scholar 

  115. Rhim H, Miller RJ (1994) Opioid receptors modulate diverse types of calcium channels in the nucleus tractus solitarius. J Neurosci 14:7608–7615

    PubMed  CAS  Google Scholar 

  116. Rhim H, Toth PT, Miller RJ (1996) Mechanism of inhibition of calcium channels in rat nucleus tractus solitarius by neurotransmitters. Br J Pharmacol 118(6):1341–1350

    Article  PubMed  CAS  Google Scholar 

  117. Connor M, Schuller A, Pintar JE, Christie MJ (1999) μ-Opioid receptor modulation of calcium channel current in periaqueductal grey neurons from C57B16/J mice and mutant mice lacking MOR-1. Br J Pharmacol 126:1553–1558

    Article  PubMed  CAS  Google Scholar 

  118. Morikawa H, Mima H, Uga H, Shoda T, Fukuda K (1999) Opioid potentiation of N-type Ca2+ channel currents via pertussis-toxin-sensitive G proteins in NG108-15 cells. Pflugers Arch 438(3):423–426

    PubMed  CAS  Google Scholar 

  119. Morikawa H, Fukuda K, Kato S, Mori K, Higashida H (1995) Coupling of cloned μ-opioid receptor with the ω-conotoxin-sensitive Ca2+ current in NG108-15 cells. J Neurochem 65:1403–1406

    Article  PubMed  CAS  Google Scholar 

  120. Piros ET, Prather PL, Law PY, Evans CJ, Hales TG (1996) Voltage-dependent inhibition of Ca2+ channels in GH3 cells by cloned mu- and delta-opioid receptors. Mol Pharmacol 50(4):947–956

    PubMed  CAS  Google Scholar 

  121. Piros ET, Prather PL, Loh HH, Law PY, Evans CJ, Hales TG (1995) Ca2+ channel and adenylyl cyclase modulation by cloned mu-opioid receptors in GH3 cells. Mol Pharmacol 47:1041–1049

    PubMed  CAS  Google Scholar 

  122. Bourinet E, Soong TW, Stea A, Snutch TP (1996) Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci USA 93(4):1486–1491

    Article  PubMed  CAS  Google Scholar 

  123. Platano OM, Qin D, Noceti N, Birnbaumer F, Toro M, Birnbaumer L, Stefani E, Olcese R (1998) Functional coupling between human E-type Ca2+ channels and mu-opioid receptors expressed in Xenopus oocytes. FEBS Lett 427(1):96–102

    Article  PubMed  Google Scholar 

  124. Safa P, Boulter J, Hales TG (2001) Functional properties of Cav1.3 (alpha1D) L-type Ca2+ channel splice variants expressed by rat brain and neuroendocrine GH3 cells. J Biol Chem 276:38727–38737

    Article  PubMed  CAS  Google Scholar 

  125. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-proteins βγ subunits. Nature 380:258–262

    Article  PubMed  CAS  Google Scholar 

  126. Garcia DE, Li B, Garcia-Ferreiro RE, Hernandez-Ochoa EO, Yan K, Gautam N, Catterall WA, Mackie K, Hille B (1998) G-protein β-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels. J Neurosci 18:9163–9170

    PubMed  CAS  Google Scholar 

  127. Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, Wittig B (1991) Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353:43–48

    Article  PubMed  CAS  Google Scholar 

  128. Grudt TJ, Williams JT (1993) κ-Opioid receptors also increase potassium conductance. Neurobiology 90:11429–11432

    CAS  Google Scholar 

  129. Schneider SP, Eckert WA, Light AR (1998) Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons. J Neurophysiol 80(6):2954–2962

    PubMed  CAS  Google Scholar 

  130. Ma GH, Miller RF, Kuznetsov A, Philipson LH (1995) Κ-opioid receptor activates an inwardly rectifying K+ channel by a G protein-linked mechanism: coexpression in Xenopus oocytes. Mol Pharmacol 47:1035–1040

    PubMed  CAS  Google Scholar 

  131. Henry DJ, Grandy DK, Lester HA, Davidson N, Chavkin C (1995) κ-Opioid receptors couple to inwardly rectifying potassium channels when coexpressed by Xenopus oocytes. Mol Pharmacol 47:551–557

    PubMed  CAS  Google Scholar 

  132. Ikeda K, Kobayashi T, Kumanishi T, Niki H, Yano R (2000) Involvement of ­G-protein-activated inwardly rectifying K (GIRK) channels in opioid-induced analgesia. Neurosci Res 38(1):113–116

    Article  PubMed  CAS  Google Scholar 

  133. Han SH, Cho YW, Kim CJ, Min BI, Rhee JS, Akaike N (1999) Mu-opioid agonist-induced activation of G-protein-coupled inwardly rectifying potassium current in rat periaqueductal gray neurons. Neuroscience 90(1):209–219

    Article  PubMed  CAS  Google Scholar 

  134. Schultz Je-J, Hsu AK, Nagase H, Gross GJ (1998) TAN-67, a delta 1-opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. Am J Physiol 274(3 Pt 2):H909–H914

    CAS  Google Scholar 

  135. Chen X, Marrero HG, Murphy R, Lin YJ, Freedman JE (2000) Altered gating of opiate receptor-modulated K+ channels on amygdala neurons of morphine-dependent rats. Proc Natl Acad Sci USA 97(26):14692–14696

    Article  PubMed  CAS  Google Scholar 

  136. Torrecilla M, Marker CL, Cintora SC, Stoffel M, Williams JT, Wickman K (2002) G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J Neurosci 22(11):4328–4334

    PubMed  CAS  Google Scholar 

  137. Marker CL, Stoffel M, Wickman K (2004) Spinal G-protein-gated K+ channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia. J Neurosci 24(11):2806–2812

    Article  PubMed  CAS  Google Scholar 

  138. Marker CL, Cintora SC, Roman MI, Stoffel M, Wickman K (2002) Hyperalgesia and blunted morphine analgesia in G protein-gated potassium channel subunit knockout mice. NeuroReport 13(18):2509–2513

    Article  PubMed  CAS  Google Scholar 

  139. Wickman K, Iniguez-Lluhi J, Davenport P, Taussig R, Krapivinsky G, Linder M, Gilman A, Clapham D (1994) Recombinant G-protein beta/gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature 368:255–267

    Article  PubMed  CAS  Google Scholar 

  140. Yamada M, Inanobe A, Kurachi Y (1998) G protein regulation of potassium ion channels. Am Soc Pharmacol Exp Ther 50:724–757

    Google Scholar 

  141. Huang C-L, Jan YN, Jan LY (1997) Binding of the G protein βγ subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett 405:291–298

    Article  PubMed  CAS  Google Scholar 

  142. Huang C-L, Slesinger P, Casey P, Jan Y, Jan L (1995) Evidence that direct binding of G-beta/gamma to the GIRK1 G-protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 15(5):1132–1143

    Article  Google Scholar 

  143. Chen J, Devivo M, Dingus J, Harry A, Li J, Sui J, Carty DJ, Blank JL, Exton JH, Stofel RH, Inglese J, Lefkowitz RJ, Logothetis DE, Hidebrandt JD, Iyengar R (1995) A region of adenylyl cyclase 2 critical for regulation by G protein βγ subunits. Science 268:1166–1169

    Article  PubMed  CAS  Google Scholar 

  144. Yan K, Gautam N (1996) A domain on the G protein beta subunit interacts with both adenylyl cyclase 2 and the muscarinic atrial potassium channel. J Biol Chem 271:17597–17600

    Article  PubMed  CAS  Google Scholar 

  145. Lim NF, Dascal N, Labarca C, Davidson N, Lester HA (1995) A G protein-gated K+ channel is activated via ß2-adrenergic receptors and Gbg subunits in Xenopus oocytes. J Gen Physiol 105:421–439

    Article  PubMed  CAS  Google Scholar 

  146. Huang C-L, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbg. Nature 391:803–806

    Article  PubMed  CAS  Google Scholar 

  147. Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218

    Article  PubMed  CAS  Google Scholar 

  148. Tso PH, Yung LY, Wong YH (2000) Regulation of adenylyl cyclase, ERK1/2, and CREB by Gz following acute and chronic activation of the delta-opioid receptor. J Neurochem 74(4):1685–1693

    Article  PubMed  CAS  Google Scholar 

  149. Wilson MA, Burt AR, Milligan G, Anderson NG (1997) Mitogenic signalling by delta opioid receptors expressed in rat-1 fibroblasts involves activation of the p70s6k/p85s6k S6 kinase. Biochem J 325(Pt 1):217–222

    PubMed  CAS  Google Scholar 

  150. Shoda T, Fukuda K, Uga H, Mima H, Morikawa H (2001) Activation of mu-opioid receptor induces expression of c-fos and junB via mitogen-activated protein kinase cascade. Anesthesiology 95(4):983–989

    Article  PubMed  CAS  Google Scholar 

  151. Hawes BE, Fried S, Yao X, Weig B, Graziano MP (1998) Nociceptin (ORL-1) and ­mu-opioid receptors mediate mitogen-activated protein kinase activation in CHO cells through a Gi-coupled signaling pathway: evidence for distinct mechanisms of agonist-mediated desensitization. J Neurochem 71(3):1024–1033

    Article  PubMed  CAS  Google Scholar 

  152. Burt AR, Carr IC, Mullaney I, Anderson NG, Milligan G (1996) Agonist activation of p42 and p44 mitogen-activated protein kinases following expression of the mouse delta opioid receptor in Rat-1 fibroblasts: effects of receptor expression levels and comparisons with G-protein activation. Biochem J 320(Pt 1):227–235

    PubMed  CAS  Google Scholar 

  153. Bohn LM, Belcheva MM, Coscia CJ (2000) Mitogenic signaling via endogenous kappa-opioid receptors in C6 glioma cells: evidence for the involvement of protein kinase C and the mitogen-activated protein kinase signaling cascade. J Neurochem 74(2):564–573

    Article  PubMed  CAS  Google Scholar 

  154. Yuen JW, So IY, Kam AY, Wong YH (2004) Regulation of STAT3 by mu-opioid receptors in human neuroblastoma SH-SY5Y cells. NeuroReport 15(9):1431–1435

    Article  PubMed  CAS  Google Scholar 

  155. Kam AY, Chan AS, Wong YH (2004) Phosphatidylinositol-3 kinase is distinctively required for mu-, but not kappa-opioid receptor-induced activation of c-Jun N-terminal kinase. J Neurochem 89(2):391–402

    Article  PubMed  CAS  Google Scholar 

  156. Kam AY, Chan AS, Wong YH (2003) Rac and Cdc42-dependent regulation of c-Jun N-terminal kinases by the delta-opioid receptor. J Neurochem 84(3):503–513

    Article  PubMed  CAS  Google Scholar 

  157. Bruchas MR, Macey TA, Lowe JD, Chavkin C (2006) Kappa-opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 281(26):18081–18089

    Article  PubMed  CAS  Google Scholar 

  158. Mace G, Miaczynska M, Zerial M, Nebreda AR (2005) Phosphorylation of EEA1 by p38 MAP kinase regulates mu opioid receptor endocytosis. EMBO J 24(18):3235–3246

    Article  PubMed  CAS  Google Scholar 

  159. Fryer RM, Hsu AK, Gross GJ (2001) ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection. Basic Res Cardiol 96(2):136–142

    Article  PubMed  CAS  Google Scholar 

  160. Lesscher HM, Burbach JP, van Ree JM, Gerrits MA (2003) ERK1/2 activation in rat ventral tegmental area by the mu-opioid agonist fentanyl: an in vitro study. Neuroscience 116(1):139–144

    Article  PubMed  CAS  Google Scholar 

  161. Eitan S, Bryant CD, Saliminejad N, Yang YC, Vojdani E, Keith D Jr, Polakiewicz R, Evans CJ (2003) Brain region-specific mechanisms for acute morphine-induced mitogen-activated protein kinase modulation and distinct patterns of activation during analgesic tolerance and locomotor sensitization. J Neurosci 23(23):8360–8369

    PubMed  CAS  Google Scholar 

  162. Narita M, Ioka M, Suzuki M, Suzuki T (2002) Effect of repeated administration of morphine on the activity of extracellular signal regulated kinase in the mouse brain. Neurosci Lett 324(2):97–100

    Article  PubMed  CAS  Google Scholar 

  163. Schultz S, Höllt V (1998) Opioid withdrawal activates MAP kinase in locus coeruleus neurons in morphine-dependent rats in vivo. Eur J Neurosci 10:1196–1201

    Article  Google Scholar 

  164. Ozaki S, Narita M, Narita M, Ozaki M, Khotib J, Suzuki T (2004) Role of extracellular signal-regulated kinase in the ventral tegmental area in the suppression of the morphine-induced rewarding effect in mice with sciatic nerve ligation. J Neurochem 88(6):1389–1397

    Article  PubMed  CAS  Google Scholar 

  165. Schmidt H, Schulz S, Klutzny M, Koch T, Handel M, Hollt V (2000) Involvement of mitogen-activated protein kinase in agonist-induced phosphorylation of the mu-opioid receptor in HEK 293 cells. J Neurochem 74(1):414–422

    Article  PubMed  CAS  Google Scholar 

  166. Polakiewicz RD, Schieferl SM, Dorner LF, Kansra V, Comb MJ (1998) A mitogen-activated protein kinase pathway is required for mu-opioid receptor desensitization. J Biol Chem 273:12402–12406

    Article  PubMed  CAS  Google Scholar 

  167. Eisinger DA, Schulz R (2004) Extracellular signal-regulated kinase/mitogen-activated protein kinases block internalization of delta-opioid receptors. J Pharmacol Exp Ther 309(2):776–785

    Article  PubMed  CAS  Google Scholar 

  168. Tso PH, Wong YH (2001) Role of extracellular signal-regulated kinases in opioid-induced adenylyl cyclase superactivation in human embryonic kidney 293 cells. Neurosci Lett 316(1):13–16

    Article  PubMed  CAS  Google Scholar 

  169. Shahabi NA, Daaka Y, McAllen K, Sharp BM (1999) Delta opioid receptors expressed by stably transfected jurkat cells signal through the map kinase pathway in a ras-independent manner. J Neuroimmunol 94(1–2):48–57

    Article  PubMed  CAS  Google Scholar 

  170. Zhang WB, Zhang Z, Ni YX, Wu YL, Pei G (2003) A novel function of Go: mediation of extracellular signal-regulated kinase activation by opioid receptors in neural cells. J Neurochem 86:1213–1222

    Article  PubMed  CAS  Google Scholar 

  171. Ignatova EG, Belcheva MM, Bohn LM, Neuman MC, Coscia CJ (1999) Requirement of receptor internalization for opioid stimulation of mitogen-activated protein kinase: biochemical and immunofluorescence confocal microscopic evidence. J Neurosci 19(1):56–63

    PubMed  CAS  Google Scholar 

  172. Bohn LM, Belcheva MM, Coscia CJ (2000) Mu-opioid agonist inhibition of kappa-opioid receptor-stimulated extracellular signal-regulated kinase phosphorylation is dynamin-dependent in C6 glioma cells. J Neurochem 74(2):574–581

    Article  PubMed  CAS  Google Scholar 

  173. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by β-arrestins. Science 308:512–517

    Article  PubMed  CAS  Google Scholar 

  174. Rozenfeld R, Devi LA (2007) Receptor heterodimerization leads to a switch in signaling: ß-arrestin2-mediated ERK activation by μ-∂ opioid receptor heterodimers. FASEB J 21:2455–2465

    Article  PubMed  CAS  Google Scholar 

  175. Macey TA, Lowe JD, Chavkin C (2006) Mu-opioid receptor activation of ERK1/2 is GRK3 and arrestin dependent in striatal neurons. J Biol Chem 281(45):34515–34524

    Article  PubMed  CAS  Google Scholar 

  176. Kramer HK, Simon EJ (2000) mu and delta-Opioid receptor agonists induce mitogen-activated protein kinase (MAPK) activation in the absence of receptor internalization. Neuropharmacology 39(10):1707–1719

    Article  PubMed  CAS  Google Scholar 

  177. Trapaidze N, Gomes I, Cvejic S, Bansinath M, Devi LA (2000) Opioid receptor endocytosis and activation of MAP kinase pathway. Brain Res Mol Brain Res 76(2):220–228

    Article  PubMed  CAS  Google Scholar 

  178. Whistler JL, von Zastrow M (1999) Dissociation of functional roles of dynamin in receptor-mediated endocytosis and mitogenic signal transduction. J Biol Chem 274(35):24575–24578

    Article  PubMed  CAS  Google Scholar 

  179. Li JG, Luo LY, Krupnick JG, Benovic JL, Liu-Chen LY (1999) U50, 488H-induced internalization of the human kappa opioid receptor involves a beta-arrestin- and dynamin-dependent mechanism. Kappa receptor internalization is not required for mitogen-activated protein kinase activation. J Biol Chem 274(17):12087–12094

    Article  PubMed  CAS  Google Scholar 

  180. Belcheva MM, Szucs M, Wang D, Sadee W, Coscia CJ (2001) mu-Opioid receptor-mediated ERK activation involves calmodulin-dependent epidermal growth factor receptor transactivation. J Biol Chem 276(36):33847–33853

    Article  PubMed  CAS  Google Scholar 

  181. Belcheva MM, Haas PD, Tan Y, Heaton VM, Coscia CJ (2002) The fibroblast growth factor receptor is at the site of convergence between mu-opioid receptor and growth factor signaling pathways in rat C6 glioma cells. J Pharmacol Exp Ther 303(3):909–918

    Article  PubMed  CAS  Google Scholar 

  182. Belcheva MM, Tan Y, Heaton VM, Clark AL, Coscia CJ (2003) Mu-opioid transactivation and down-regulation of the epidermal growth factor receptor in astrocytes: implications for mitogen-activated protein kinase signaling. Mol Pharmacol 64(6):1391–1401

    Article  PubMed  CAS  Google Scholar 

  183. Kramer HK, Onoprishvili I, Andria ML, Hanna K, Sheinkman K, Haddad LB, Simon EJ (2002) Delta-opioid activation of the mitogen-activated protein kinase cascade does not require transphosphorylation of receptor tyrosine kinases. BMC Pharmacol 2(1):5–15

    Article  PubMed  Google Scholar 

  184. Belcheva MM, Clark AL, Haas PD et al (2005) Mu and kappa opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes. J Biol Chem 280(30):27662–27669

    Article  PubMed  CAS  Google Scholar 

  185. Zhang Z, Xin SM, Wu GX, Zhang WB, Ma L, Pei G (1999) Endogenous delta-opioid and ORL1 receptors couple to phosphorylation and activation of p38 MAPK in NG108-15 cells and this is regulated by protein kinase A and protein kinase C. J Neurochem 73(4):1502–1509

    Article  PubMed  CAS  Google Scholar 

  186. Kramer HK, Simon EJ (1999) Role of protein kinase C (PKC) in agonist-induced mu-opioid receptor down-regulation: II. Activation and involvement of the alpha, epsilon, and zeta isoforms of PKC. J Neurochem 72(2):594–604

    Article  PubMed  CAS  Google Scholar 

  187. Zagon IS, Verderame MF, McLaughlin PJ (2002) The biology of the opioid growth factor receptor (OGFr). Brain Res Brain Res Rev 38(3):351–376

    Article  PubMed  CAS  Google Scholar 

  188. Yin DL, Ren XH, Zheng ZL, Pu L, Jiang LZ, Ma L, Pei G (1997) Etorphine inhibits cell growth and induces apoptosis in SK-N-SH cells: involvement of pertussis toxin-sensitive G proteins. Neurosci Res 29(2):121–127

    Article  PubMed  CAS  Google Scholar 

  189. Hauser KF, Mangoura D (1998) Diversity of the endogenous opioid system in development. Novel signal transduction translates multiple extracellular signals into neural cell growth and differentiation. Perspect Dev Neurobiol 5(4):437–449

    PubMed  CAS  Google Scholar 

  190. Chatzaki E, Makrigiannakis A, Margioris AN, Kouimtzoglou E, Gravanis A (2001) The Fas/FasL apoptotic pathway is involved in kappa-opioid-induced apoptosis of human endometrial stromal cells. Mol Hum Reprod 7(9):867–874

    Article  PubMed  CAS  Google Scholar 

  191. Iglesias M, Segura MF, Comella JX, Olmos G (2003) Mu-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase. Neuropharmacology 44(4):482–492

    Article  PubMed  CAS  Google Scholar 

  192. Singhal PC, Bhaskaran M, Patel J, Patel K, Kasinath BS, Duraisamy S, Franki N, Reddy K, Kapasi AA (2002) Role of p38 mitogen-activated protein kinase phosphorylation and Fas–Fas ligand interaction in morphine-induced macrophage apoptosis. J Immunol 168(8):4025–4033

    PubMed  CAS  Google Scholar 

  193. Persson AI, Thorlin T, Bull C, Eriksson PS (2003) Opioid-induced proliferation through the MAPK pathway in cultures of adult hippocampal progenitors. Mol Cell Neurosci 23(3):360–372

    Article  PubMed  CAS  Google Scholar 

  194. Persson AI, Thorlin T, Bull C, Zarnegar P, Ekman R, Terenius L, Eriksson PS (2003) ­Mu- and delta-opioid receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal progenitors. Eur J Neurosci 17(6):1159–1172

    Article  PubMed  Google Scholar 

  195. Law PY, McGinn TM, Campbell KM, Erickson LE, Loh HH (1997) Agonist activation of δ-opioid receptor but not mu-opioid receptor potentiates fetal calf serum or tyrosine kinase receptor-mediated cell proliferation in a cell-line specific manner. Mol Pharmacol 51:152–160

    PubMed  CAS  Google Scholar 

  196. Persson AI, Thorlin T, Bull C et al (2003) Mu- and delta-opioid receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal ­progenitors. Eur J Neurosci 17(6):1159–1172

    Article  PubMed  Google Scholar 

  197. Goswami R, Dawson SA, Dawson G (2000) Multiple polyphosphoinositide pathways ­regulate apoptotic signalling in a dorsal root ganglion derived cell line. J Neurosci Res 59(1):136–144

    Article  PubMed  CAS  Google Scholar 

  198. Narita M, Ohnishi O, Nemoto M, Yajima Y, Suzuki T (2002) Implications of ­phosphoinositide 3-kinase in the mu- and delta-opioid receptor-mediated supraspinal antinociception in the mouse. Neuroscience 113(3):647–652

    Article  PubMed  CAS  Google Scholar 

  199. Tan M, Groszer M, Tan AM, Pandya A, Liu X, Xie CW (2003) Phosphoinositide 3-kinase cascade facilitates mu-opioid desensitization in sensory neurons by altering G-protein-effector interactions. J Neurosci 23(32):10292–10301

    PubMed  CAS  Google Scholar 

  200. Polakiewicz RD, Schieferl SM, Gingras AC, Sonenberg N, Comb MJ (1998) mu-Opioid receptor activates signaling pathways implicated in cell survival and translational control. J Biol Chem 273(36):23534–23541

    Article  PubMed  CAS  Google Scholar 

  201. Shahabi NA, McAllen K, Sharp BM (2006) delta-Opioid receptors stimulate Akt-dependent phosphorylation of c-jun in T cells. J Pharmacol Exp Ther 316(2):933–939

    Article  PubMed  CAS  Google Scholar 

  202. Shoda T, Fukuda K, Uga H, Mima H, Morikawa H (2001) Activation of mu-opioid receptor induces expression of c-fos and junB via mitogen-activated protein kinase cascade. Anesthesiology 95(4):983–989

    Article  PubMed  CAS  Google Scholar 

  203. Mullaney I, Carr IC, Burt AR, Wilson M, Anderson NG, Milligan G (1997) Agonist-mediated tyrosine phosphorylation of isoforms of the shc adapter protein by the delta opioid receptor. Cell Signal 9(6):423–429

    Article  PubMed  CAS  Google Scholar 

  204. Fryer RM, Pratt PF, Hsu AK, Gross GJ (2001) Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J Pharmacol Exp Ther 296(2):642–649

    PubMed  CAS  Google Scholar 

  205. Fryer RM, Patel HH, Hsu AK, Gross GJ (2001) Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium. Am J Physiol Heart Circ Physiol 281(3):H1184–H1192

    PubMed  CAS  Google Scholar 

  206. Rhee SG (2001) Regulation of phosphinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  PubMed  CAS  Google Scholar 

  207. Smart D, Lambert DG (1996) Tyr-D-Arg2-Phe-sarcosine4 activates phospholipase C-coupled mu2-opioid receptors in SH-SY5Y cells. Eur J Pharmacol 305(1–3):235–238

    Article  PubMed  CAS  Google Scholar 

  208. Diao CT, Li L, Lau SY, Wong TM, Wong NS (2000) kappa-Opioid receptor potentiates apoptosis via a phospholipase C pathway in the CNE2 human epithelial tumor cell line. Biochim Biophys Acta 1499(1–2):49–62

    Article  PubMed  CAS  Google Scholar 

  209. Murthy KS, Makhlouf GM (1996) Opioid mu-, delta-, and kappa-receptor-induced activation of phospholipase C-beta 3 and inhibition of adenylyl cyclase is mediated by Gi2 and G(o) in smooth muscle. Mol Pharmacol 50(4):870–877

    PubMed  CAS  Google Scholar 

  210. Sanchez-Blazquez P, Rodriguez-Diaz M, Frejo MT, Garzon J (1999) Stimulation of mu- and delta-opioid receptors enhances phosphoinositide metabolism in mouse spinal cord: ­evidence for subtypes of delta-receptors. Eur J Neurosci 11(6):2059–2064

    Article  PubMed  CAS  Google Scholar 

  211. Spencer RJ, Jin W, Thayer SA, Chakrabarti S, Law PY, Loh HH (1997) Mobilization of Ca2+ from intracellular stores in transfected neuro2a cells by activation of multiple opioid receptor subtypes. Biochem Pharmacol 54:809–818

    Article  PubMed  CAS  Google Scholar 

  212. Smart D, Hirst RA, Hirota K, Grandy DK, Lambert DG (1997) The effects of recombinant rat mu-opioid receptor activation in CHO cells on phospholipase C, [Ca2+]i and adenylyl cyclase. Br J Pharmacol 120(6):1165–1171

    Article  PubMed  CAS  Google Scholar 

  213. Quillan JM, Carlson KW, Song C, Wang D, Sadee W (2002) Differential effects of ­mu-opioid receptor ligands on Ca2+ signaling. J Pharmacol Exp Ther 302(3):1002–1012

    Article  PubMed  CAS  Google Scholar 

  214. Narita M, Ohsawa M, Mizoguchi H, Aoki T, Suzuki T, Tseng LF (2000) Role of the phosphatidylinositol-specific phospholipase C pathway in delta-opioid receptor-mediated ­antinociception in the mouse spinal cord. Neuroscience 99(2):327–331

    Article  PubMed  CAS  Google Scholar 

  215. Sanchez-Blazquez P, Garzon J (1998) delta-Opioid receptor subtypes activate inositol-­signaling pathways in the production of antinociception. J Pharmacol Exp Ther 285(2):820–827

    PubMed  CAS  Google Scholar 

  216. Xie W, Samoriski GM, McLaughlin JP, Romoser VA, Smrcka A, Hinkle PM, Bidlack JM, Gross RA, Jiang H, Wu D (1999) Genetic alteration of phospholipase C beta3 expression modulates behavioral and cellular responses to mu opioids. Proc Natl Acad Sci USA 96(18):10385–10390

    Article  PubMed  CAS  Google Scholar 

  217. Liu NJ, von Gizycki H, Gintzler AR (2006) Phospholipase Cbeta1 modulates pain ­sensitivity, opioid antinociception and opioid tolerance formation. Brain Res 1069(1):47–53

    Article  PubMed  CAS  Google Scholar 

  218. Bian JS, Zhang WM, Xia Q, Wong TM (1998) Phospholipase C inhibitors attenuate arrhythmias induced by kappa-receptor stimulation in the isolated rat heart. J Mol Cell Cardiol 30(10):2103–2110

    Article  PubMed  CAS  Google Scholar 

  219. Sharp BM, McKean DJ, McAllen K, Shahabi NA (1998) Signaling through delta opioid receptors on murine splenic T cells and stably transfected jurkat cells. Ann NY Acad Sci 840:420–424

    Article  PubMed  CAS  Google Scholar 

  220. Hedin KE, Bell MP, Kalli KR, Huntoon CJ, Sharp B, McKean DJ (1997) δ-Opioid receptors expressed by Jurkat T cells enhance 1L-2 secretion by increasing AP-1 complexes and ­activity of the NF-AT/AP-1-binding promoter element. J Immunol 159:5431–5440

    PubMed  CAS  Google Scholar 

  221. Lou L, Zhou T, Wang P, Pei G (1999) Modulation of Ca2+/calmodulin-dependent protein kinase II activity by acute and chronic morphine administration in rat hippocampus: differential regulation of α and β isoforms. Mol Pharmacol 55:557–563

    PubMed  CAS  Google Scholar 

  222. Koch T, Kroslak T, Averbeck M, Mayer P, Schroder H, Raulf E, Hollt V (2000) Allelic variation S268P of the human mu-opioid receptor affects both desensitization and G protein coupling. Mol Pharmacol 58(2):328–334

    PubMed  CAS  Google Scholar 

  223. Koch T, Kroslak T, Mayer P, Raulf E, Hollt V (1997) Site mutation in the rat mu-opioid receptor demonstrates the involvement of calcium/calmodulin-dependent protein kinase II in agonist-mediated desensitization. J Neurochem 69(4):1767–1770

    Article  PubMed  CAS  Google Scholar 

  224. Fan GH, Zhang WB, Yao CP, Pei G (1997) Modulation by calcium/calmodulin-dependent protein kinase II of functional response of delta opioid receptor in neuroblastoma x glioma hybrid (NG108-15) cells. Neuropharmacology 36(11–12):1763–1769

    Article  PubMed  CAS  Google Scholar 

  225. Kramer HK, Simon EJ (1999) Role of protein kinase C (PKC) in agonist-induced mu-opioid receptor down-regulation: I. PKC translocation to the membrane of SH-SY5Y neuroblastoma cells is induced by mu-opioid agonists. J Neurochem 72(2):585–593

    Article  PubMed  CAS  Google Scholar 

  226. Xiang B, Yu GH, Guo J, Chen L, Hu W, Pei G, Ma L (2001) Heterologous activation of protein kinase C stimulates phosphorylation of delta-opioid receptor at serine 344, resulting in beta-arrestin- and clathrin-mediated receptor internalization. J Biol Chem 276(7):4709–4716

    Article  PubMed  CAS  Google Scholar 

  227. Murthy KS, Grider JR, Makhlouf GM (2000) Heterologous desensitization of response mediated by selective PKC-dependent phosphorylation of G(i-1) and G(i-2). Am J Physiol Cell Physiol 279(4):C925–C934

    PubMed  CAS  Google Scholar 

  228. Wu YL, Pei G, Fan GH (1998) Inhibition of phospholipase C blocks opioid receptor-mediated activation of Gi proteins. NeuroReport 9(1):99–103

    Article  PubMed  CAS  Google Scholar 

  229. Fan GH, Zhou TH, Zhang WB, Pei G (1998) Suppression of phospholipase C blocks Gi-mediated inhibition of adenylyl cyclase activity. Eur J Pharmacol 341(2–3):317–322

    Article  PubMed  CAS  Google Scholar 

  230. Rubovitch V, Gafni M, Sarne Y (2003) The mu-opioid agonist DAMGO stimulates cAMP production in SK-N-SH cells through a PLC-PKC-Ca++ pathway. Brain Res Mol Brain Res 110(2):261–266

    Article  PubMed  CAS  Google Scholar 

  231. Strassheim D, Law PY, Loh HH (1998) Contribution of phospholipase C-b3 phosphorylation to the rapid attenuation of opioid-activated phosphoinositide response. Mol Pharmacol 53:1047–1053

    PubMed  CAS  Google Scholar 

  232. Misawa H, Udea H, Katada T, Ui M, Satoh M (1995) A subtype of opioid k-receptor is coupled to inhibition of Gi1-mediated phospholipase C activity in the guinea pig cerebellum. FEBS Lett 36:106–110

    Article  Google Scholar 

  233. Joshi S, Lee JW, Wong YH (1999) Stimulation of phospholipase C by the cloned mu, delta, and kappa opioid receptors via chimeric G alpha(q) mutants. Eur J Neurosci 11(2):383–388

    Article  PubMed  CAS  Google Scholar 

  234. Chan JS, Lee JW, Ho MK, Wong YH (2000) Preactivation permits subsequent stimulation of phospholipase C by G(i)-coupled receptors. Mol Pharmacol 57(4):700–708

    PubMed  CAS  Google Scholar 

  235. Yeo A, Samways DS, Fowler CE, Gunn-Moore F, Henderson G (2001) Coincident signalling between the Gi/Go-coupled delta-opioid receptor and the Gq-coupled m3 muscarinic receptor at the level of intracellular free calcium in SH-SY5Y cells. J Neurochem 76(6):1688–1700

    Article  PubMed  CAS  Google Scholar 

  236. Samways DS, Li WH, Conway SJ, Holmes AB, Bootman MD, Henderson G (2003) Co-incident signalling between mu-opioid and M3 muscarinic receptors at the level of Ca2+ release from intracellular stores: lack of evidence for Ins(1, 4, 5)P3 receptor sensitization. Biochem J 375:713–720

    Article  PubMed  CAS  Google Scholar 

  237. Allouche S, Polastron J, Jauzac P (1996) The delta-opioid receptor regulates activity of ryanodine receptors in the human neuroblastoma cell line SK-N-BE. J Neurochem 67(6):2461–2470

    Article  PubMed  CAS  Google Scholar 

  238. Patterson RL, Boehning D, Snyder SH (2004) Inositol 1, 4, 5-triphosphate receptors as signal integrators. Annu Rev Biochem 73:437–465

    Article  PubMed  CAS  Google Scholar 

  239. Pierce KL, Lefkowitz RJ (2001) Classical and new roles of β-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci 2(10):727–733

    Article  PubMed  CAS  Google Scholar 

  240. Lefkowitz RJ (1998) G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J Biol Chem 273(30):18677–18680

    Article  PubMed  CAS  Google Scholar 

  241. Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes [comment]. Science 283(5402):655–661

    Article  PubMed  CAS  Google Scholar 

  242. El Kouhen R, Kouhen OM, Law PY, Loh HH (1999) The absence of a direct correlation between the loss of [D-Ala2, MePhe4,Gly5-ol]enkephalin inhibition of adenylyl cyclase activity and agonist-induced mu-opioid receptor phosphorylation. J Biol Chem 274(14):9207–9215

    Article  PubMed  CAS  Google Scholar 

  243. Yu Y, Zhang L, Yin X, Sun H, Uhl GR, Wang JB (1997) Mu opioid receptor phosphorylation, desensitization, and ligand efficacy. J Biol Chem 272(46):28869–28874

    Article  PubMed  CAS  Google Scholar 

  244. Zhang L, Yu Y, Mackin S, Weight FF, Uhl GR, Wang JB (1996) Differential mu opiate­ receptor phosphorylation and desensitization induced by agonists and phorbol esters. J Biol Chem 271(19):11449–11454

    Article  PubMed  CAS  Google Scholar 

  245. Arden JR, Segredo V, Wang A, Lameh J, Sadee W (1995) Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged mu-opioid receptor expressed in HEK293 cells. J Neurochem 65:1636–1645

    Article  PubMed  CAS  Google Scholar 

  246. Appleyard SM, Patterson TA, Jin W, Chavkin C (1997) Agonist-induced phosphorylation of the κ-opioid receptor. J Neurochem 69:2405–2412

    Article  PubMed  CAS  Google Scholar 

  247. Pei G, Kieffer BL, Lefkowitz RJ, Freedman NJ (1995) Agonist-dependent phosphorylaiton of the mouse ∂-opioid receptor: involvement of G protein-coupled receptor kinases but not protein kinase C. Mol Pharmacol 48:173–177

    PubMed  CAS  Google Scholar 

  248. McLaughlin JP, Xu M, Mackie K, Chavkin C (2003) Phosphorylation of a carboxyl-terminal serine within the kappa-opioid receptor produces desensitization and internalization. J Biol Chem 278(36):34631–34640

    Article  PubMed  CAS  Google Scholar 

  249. Zhang J, Ferguson SS, Barak LS, Bodduluri SR, Laporte SA, Law PY, Caron MG (1998) Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc Natl Acad Sci USA 95(12):7157–7162

    Article  PubMed  CAS  Google Scholar 

  250. Bohn LM, Dykstra LA, Lefkowitz RJ, Caron MG, Barak LS (2004) Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery. Mol Pharmacol 66(1):106–112

    Article  PubMed  CAS  Google Scholar 

  251. Whistler JL, von Zastrow M (1998) Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc Natl Acad Sci USA 95(17):9914–9919

    Article  PubMed  CAS  Google Scholar 

  252. Murray SR, Evans CJ, von Zastrow M (1998) Phosphorylation is not required for dynamin-dependent endocytosis of a truncated mutant opioid receptor. J Biol Chem 273(39):24987–24991

    Article  PubMed  CAS  Google Scholar 

  253. Qui Y, Law PY, Loh HH (2003) μ-Opioid receptor desensitization: role of receptor phosphorylation, internalization and resensitization. J Biol Chem 278:36733–36739

    Article  CAS  Google Scholar 

  254. Law PY, Kouhen OM, Solberg J, Wang W, Erickson LJ, Loh HH (2000) Deltorphin II-induced rapid desensitization of delta-opioid receptor requires both phosphorylation and internalization of the receptor. J Biol Chem 275(41):32057–32065

    Article  PubMed  CAS  Google Scholar 

  255. Cen B, Yu Q, Guo J, Wu Y, Ling K, Cheng Z, Ma L, Pei G (2001) Direct binding of beta-arrestins to two distinct intracellular domains of the delta opioid receptor. J Neurochem 76(6):1887–1894

    Article  PubMed  CAS  Google Scholar 

  256. Haberstock-Debic H, Wein M, Barrot M, Colago EE, Rahman Z, Neve RL, Pickel VM, Nestler EJ, von Zastrow M, Svingos AL (2003) Morphine acutely regulates opioid receptor trafficking selectively in dendrites of nucleus accumbens neurons. J Neurosci 23(10):4324–4332

    PubMed  CAS  Google Scholar 

  257. Haberstock-Debic H, Kim KA, Yu YJ, von Zastrow M (2005) Morphine promotes rapid, arrestin-dependent endocytosis of mu-opioid receptors in striatal neurons. J Neurosci 25(34):7847–7857

    Article  PubMed  CAS  Google Scholar 

  258. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286(5449):2495–2498

    Article  PubMed  CAS  Google Scholar 

  259. Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408(6813):720–723

    Article  PubMed  CAS  Google Scholar 

  260. Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54(3):527–559

    Article  PubMed  CAS  Google Scholar 

  261. Ross EM, Wilkie TM (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69:795–827

    Article  PubMed  CAS  Google Scholar 

  262. Ingi T, Krumins AM, Chidiac P et al (1998) Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J Neurosci 18(18):7178–7188

    PubMed  CAS  Google Scholar 

  263. Mukhopadhyay S, Ross EM (1999) Rapid GTP binding and hydrolysis by Gq promoted by receptor and GTPase-activating proteins. Proc Natl Acad Sci USA 96(17):9539–9544

    Article  PubMed  CAS  Google Scholar 

  264. Liu Z, Chatterjee TK, Fisher RA (2002) RGS6 interacts with SCG10 and promotes neuronal differentiation. Role of the G gamma subunit-like (GGL) domain of RGS6. J Biol Chem 277(40):37832–37839

    Article  PubMed  CAS  Google Scholar 

  265. Liu Z, Fisher RA (2004) RGS6 interacts with DMAP1 and DNMT1 and inhibits DMAP1 transcriptional repressor activity. J Biol Chem 279(14):14120–14128

    Article  PubMed  CAS  Google Scholar 

  266. Witherow DS, Slepak VZ (2003) A novel kind of G protein heterodimer: the G beta5-RGS complex. Recept Channels 9(3):205–212

    Article  PubMed  CAS  Google Scholar 

  267. Abramow-Newerly M, Roy AA, Nunn C, Chidiac P (2006) RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 18(5):579–591

    Article  PubMed  CAS  Google Scholar 

  268. Drenan RM, Doupnik CA, Boyle MP et al (2005) Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. J Cell Biol 169(4):623–633

    Article  PubMed  CAS  Google Scholar 

  269. Martemyanov KA, Yoo PJ, Skiba NP, Arshavsky VY (2005) R7BP, a novel neuronal protein interacting with RGS proteins of the R7 family. J Biol Chem 280(7):5133–5136

    Article  PubMed  CAS  Google Scholar 

  270. Garzon J, Rodriguez-Diaz M, Lopez-Fando A, Sanchez-Blazquez P (2001) RGS9 proteins facilitate acute tolerance to mu-opioid effects. Eur J Neurosci 13(4):801–811

    Article  PubMed  CAS  Google Scholar 

  271. Potenza MN, Gold SJ, Roby-Shemkowitz A, Lerner MR, Nestler EJ (1999) Effects of regulators of G protein-signaling proteins on the functional response of the mu-opioid receptor in a melanophore-based assay. J Pharmacol Exp Ther 291(2):482–491

    PubMed  CAS  Google Scholar 

  272. Clark MJ, Harrison C, Zhong H, Neubig RR, Traynor JR (2003) Endogenous RGS protein action modulates mu-opioid signaling through Galphao. Effects on adenylyl cyclase, extracellular signal-regulated kinases, and intracellular calcium pathways. J Biol Chem 278(11):9418–9425

    Article  PubMed  CAS  Google Scholar 

  273. Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Garcia-Espana A, Sanchez-Blazquez P (2004) RGSZ1 and GAIP regulate mu- but not delta-opioid receptors in mouse CNS: role in tachyphylaxis and acute tolerance. Neuropsychopharmacology 29(6):1091–1104

    Article  PubMed  CAS  Google Scholar 

  274. Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Sanchez-Blazquez P (2005) Activation of mu-opioid receptors transfers control of Gα subunits to the regulator of G-protein signaling RGS9-2: role in receptor desensitization. J Biol Chem 280(10):8951–8960

    Article  PubMed  CAS  Google Scholar 

  275. Sanchez-Blazquez P, Rodriguez-Munoz M, Montero C, Garzon J (2005) RGS-Rz and RGS9-2 proteins control mu-opioid receptor desensitisation in CNS: the role of activated Galphaz subunits. Neuropharmacology 48(1):134–150

    Article  PubMed  CAS  Google Scholar 

  276. Garzon J, Rodriguez-Munoz M, Sanchez-Blazquez P (2005) Morphine alters the selective association between mu-opioid receptors and specific RGS proteins in mouse periaqueductal gray matter. Neuropharmacology 48(6):853–868

    Article  PubMed  CAS  Google Scholar 

  277. Georgoussi Z, Leontiadis L, Mazarakou G, Merkouris M, Hyde K, Hamm H (2006) Selective interactions between G protein subunits and RGS4 with the C-terminal domains of the mu- and delta-opioid receptors regulate opioid receptor signaling. Cell Signal 18(6):771–782

    Article  PubMed  CAS  Google Scholar 

  278. Garnier M, Zaratin PF, Ficalora G et al (2003) Up-regulation of regulator of G protein signaling 4 expression in a model of neuropathic pain and insensitivity to morphine. J Pharmacol Exp Ther 304(3):1299–1306

    Article  PubMed  CAS  Google Scholar 

  279. Zachariou V, Georgescu D, Sanchez N et al (2003) Essential role for RGS9 in opiate action. Proc Natl Acad Sci USA 100(23):13656–13661

    Article  PubMed  CAS  Google Scholar 

  280. Gold SJ, Han MH, Herman AE et al (2003) Regulation of RGS proteins by chronic morphine in rat locus coeruleus. Eur J Neurosci 17(5):971–980

    Article  PubMed  Google Scholar 

  281. Lopez-Fando A, Rodriguez-Munoz M, Sanchez-Blazquez P, Garzon J (2005) Expression of neural RGS-R7 and Gbeta5 proteins in response to acute and chronic morphine. Neuropsychopharmacology 30(1):99–110

    Article  PubMed  CAS  Google Scholar 

  282. Rodriguez-Munoz M, Bermudez D, Sanchez-Blazquez P, Garzon J (2007) Sumoylated RGS-Rz proteins act as scaffolds for Mu-opioid receptors and G-protein complexes in mouse brain. Neuropsychopharmacology 32(4):842–850

    Article  PubMed  CAS  Google Scholar 

  283. Song JH, Waataja JJ, Martemyanov KA (2006) Subcellular targeting of RGS9-2 is controlled by multiple molecular determinants on its membrane anchor, R7BP. J Biol Chem 281(22):15361–15369

    Article  PubMed  CAS  Google Scholar 

  284. Anderson GR, Semenov A, Song JH, Martemyanov KA (2007) The membrane anchor R7BP controls the proteolytic stability of the striatal specific RGS protein, RGS9-2. J Biol Chem 282(7):4772–4781

    Article  PubMed  CAS  Google Scholar 

  285. Blumer JB, Smrcka AV, Lanier SM (2007) Mechanistic pathways and biological roles for receptor-independent activators of G protein signaling. Pharmacol Ther 113:488–506

    Article  PubMed  CAS  Google Scholar 

  286. Bowers MS, McFarland K, Lake RW et al (2004) Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron 42(2):269–281

    Article  PubMed  CAS  Google Scholar 

  287. De Vries L, Fischer T, Tronchere H et al (2000) Activator of G protein signaling 3 is a guanine dissociation inhibitor for Gα i subunits. Proc Natl Acad Sci USA 97(26):14364–14369

    Article  PubMed  Google Scholar 

  288. Yao L, McFarland K, Fan P, Jiang Z, Inoue Y, Diamond I (2005) Activator of G protein signaling 3 regulates opiate activation of protein kinase A signaling and relapse of heroin-seeking behavior. Proc Natl Acad Sci USA 102(24):8746–8751

    Article  PubMed  CAS  Google Scholar 

  289. Clark MJ, Traynor JR (2006) Mediation of adenylyl cyclase sensitization by PTX-insensitive GalphaoA, Galphai1, Galphai2 or Galphai3. J Neurochem 99(6):1494–1504

    Article  PubMed  CAS  Google Scholar 

  290. Clark MJ, Furman CA, Gilson TD, Traynor JR (2006) Comparison of the relative efficacy and potency of mu-opioid agonists to activate Galpha(i/o) proteins containing a pertussis toxin-insensitive mutation. J Pharmacol Exp Ther 317(2):858–864

    Article  PubMed  CAS  Google Scholar 

  291. Ostrom RS (2002) New determinants of receptor-effector coupling: trafficking and compartmentalization in membrane microdomains. Mol Pharmacol 61:473–476

    Article  PubMed  CAS  Google Scholar 

  292. Zhao H, Loh HH, Law PY (2006) Adenylyl cyclase superactivation induced by long-term treatment with opioid agonist is dependent on receptor localized within lipid rafts and is independent of receptor internalization. Mol Pharmacol 69(4):1421–1432

    Article  PubMed  CAS  Google Scholar 

  293. Xu W, Yoon SI, Huang P et al (2006) Localization of the kappa opioid receptor in lipid rafts. J Pharmacol Exp Ther 317(3):1295–1306

    Article  PubMed  CAS  Google Scholar 

  294. Head BP, Patel HH, Roth DM et al (2005) G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J Biol Chem 280(35):31036–31044

    Article  PubMed  CAS  Google Scholar 

  295. Huang P, Xu W, Yoon SI, Chen C, Chong PL, Liu-Chen LY (2007) Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem Pharmacol 73(4):534–549

    Article  PubMed  CAS  Google Scholar 

  296. Hall RA, Lefkowitz RJ (2002) Regulation of G protein-coupled receptor signaling by scaffold proteins. Circ Res 91(8):672–680

    Article  PubMed  CAS  Google Scholar 

  297. Brady AE, Limbird LE (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14(4):297–309

    Article  PubMed  CAS  Google Scholar 

  298. Tsunoda S, Sierralta J, Sun Y, Bodner R, Suzuki E, Becker A, Socolich M, Zuker CS (1997) A multivalent PDZ-domain protein assembles signaling complexes in a G protein-coupled cascade. Nature 388:243–249

    Article  PubMed  CAS  Google Scholar 

  299. Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA (2001) Beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J Biol Chem 276(44):41310–41317

    Article  PubMed  CAS  Google Scholar 

  300. Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ, Hall RA (2000) beta 1-Adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J Biol Chem 275(49):38659–38666

    Article  PubMed  CAS  Google Scholar 

  301. Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ, Grinstein S, Lefkowitz RJ (1998) The ß2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392:626–630

    Article  PubMed  CAS  Google Scholar 

  302. Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M (1999) A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401(6750):286–290

    Article  PubMed  CAS  Google Scholar 

  303. Huang P, Steplock D, Weinman EJ, Hall RA, Ding Z, Li J, Wang Y, Liu-Chen LY (2004) kappa-Opioid receptor interacts with Na+/H+-exchanger regulatory factor-1/Ezrin-radixin-moesin-binding phosphoprotein-50 (NHERF-1/EBP50) to stimulate Na+/H+ exchange independent of Gi/Go proteins. J Biol Chem 279(24):25002–25009

    Article  PubMed  CAS  Google Scholar 

  304. Li JG, Chen C, Liu-Chen LY (2002) Ezrin-radixin-moesin-binding phosphoprotein-50/Na+/H+ exchanger regulatory factor (EBP50/NHERF) blocks U50, 488H-induced down-regulation of the human kappa opioid receptor by enhancing its recycling rate. J Biol Chem 277(30):27545–27552

    Article  PubMed  CAS  Google Scholar 

  305. Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) ß-Arrestin2, a novel member of the arrestin/∫-arrestin gene family. J Biol Chem 267:17882–17890

    PubMed  CAS  Google Scholar 

  306. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) ß-Arrestin: a protein that regulates ß-adrenergic receptor function. Science 248:1547–1550

    Article  PubMed  CAS  Google Scholar 

  307. Goodman OB, Krupnick JK, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) ß-Arrestin acts a clathrin adaptor in endocytosis of the ß2-adrenergic receptor. Nature 383:447–450

    Article  PubMed  CAS  Google Scholar 

  308. Laporte SA, Miller WE, Kim KM, Caron MG (2002) beta-Arrestin/AP-2 interaction in G protein-coupled receptor internalization: identification of a beta-arrestin binging site in beta 2-adaptin. J Biol Chem 277(11):9247–9254

    Article  PubMed  CAS  Google Scholar 

  309. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem 275(30):23120–23126

    Article  PubMed  CAS  Google Scholar 

  310. Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ (2001) beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem 276(45):42509–42513

    Article  PubMed  CAS  Google Scholar 

  311. McDonald PH, Cote NL, Lin FT, Premont RT, Pitcher JA, Lefkowitz RJ (1999) Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation. J Biol Chem 274(16):10677–10680

    Article  PubMed  CAS  Google Scholar 

  312. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294(5545):1307–1313

    Article  PubMed  CAS  Google Scholar 

  313. Miller WE, Maudsley S, Ahn S, Khan KD, Luttrell LM, Lefkowitz RJ (2000) beta-Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J Biol Chem 275(15):11312–11319

    Article  PubMed  CAS  Google Scholar 

  314. Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ (2001) Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3. J Biol Chem 276(30):27770–27777

    Article  PubMed  CAS  Google Scholar 

  315. McDonald PH, Chow CW, Miller WE et al (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3 [comment]. Science 290(5496):1574–1577

    Article  PubMed  CAS  Google Scholar 

  316. DeFea KA, Vaughn ZD, O’Bryan EM, Nishijima D, Dery O, Bunnett NW (2000) The proliferative and antiapoptotic effects of substance P are facilitated by formation of a ß-arrestin-dependent scaffolding complex. Proc Natl Acad Sci USA 97:11086–11091

    Article  PubMed  CAS  Google Scholar 

  317. Luttrell LM, Roudabush FL, Choy EW et al (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 98(5):2449–2454

    Article  PubMed  CAS  Google Scholar 

  318. Elenko E, Fischer T, Niesman I, Harding T, McQuistan T, Von Zastrow M, Farquhar MG (2003) Spatial regulation of Galphai protein signaling in clathrin-coated membrane microdomains containing GAIP. Mol Pharmacol 64(1):11–20

    Article  PubMed  CAS  Google Scholar 

  319. Ott S, Costa T, Herz A (1988) Sodium modulates opioid receptors through a membrane component different from G-proteins. Demonstration by target size analysis. J Biol Chem 263:10524–10533

    PubMed  CAS  Google Scholar 

  320. Law PY, Tine SJ, McLeod LA, Loh HH (2000) Association of a lower molecular weight protein to the μ-opioid receptor demonstrated by 125β-endorphin cross-linking studies. J Neurochem 75:164–173

    Article  PubMed  CAS  Google Scholar 

  321. Guang W, Wang H, Su Y, Weinstein IB, Wang JB (2004) Role of mPKCI, a novel μ-opioid receptor interactive protein, in receptor desensitization, phosphorylation, and morphine-induced analgesia. Mol Pharmacol 66(5):1285–1292

    Article  PubMed  CAS  Google Scholar 

  322. Koch T, Brandenburg LO, Schulz S, Liang Y, Klein J, Hollt V (2003) ADP-ribosylation factor-dependent phospholipase D2 activation is required for agonist-induced mu-opioid receptor endocytosis. J Biol Chem 278(11):9979–9985

    Article  PubMed  CAS  Google Scholar 

  323. Onoprishvili I, Andria ML, Kramer HK, Ancevska-Taneva N, Hiller JM, Simon EJ (2003) Interaction between μ-opioid receptor and filamin A is involved in receptor regulation and trafficking. Mol Pharmacol 64:1092–1100

    Article  PubMed  CAS  Google Scholar 

  324. Whistler JL, Enquist J, Marley A, Fong J, Gladher F, Tsuruda P, Murray SR, von Zastrow M (2002) Modulation of postendocytic sorting of G protein-coupled receptors [comment]. Science 297(5581):615–620

    Article  PubMed  CAS  Google Scholar 

  325. Chen C, Li JG, Chen Y, Huang P, Wang Y, Liu-Chen LY (2006) GEC1 interacts with the kappa opioid receptor and enhances expression of the receptor. J Biol Chem 281(12):7983–7993

    Article  PubMed  CAS  Google Scholar 

  326. Heydorn A, Sondergaard BP, Ersboll B et al (2004) A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J Biol Chem 279(52):54291–54303

    Article  PubMed  CAS  Google Scholar 

  327. Michell R, McCullock D, Lutz E, Johnson M, MacKenzie C, Fennell M, Fink G, Zhou W, Sealfon SC (1998) Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature 392:411–414

    Article  Google Scholar 

  328. Wang D, Quillan JM, Winans K, Lucas JL, Sadee W (2001) Single nucleotide polymorphisms in the human mu-opioid receptor gene alter basal G protein coupling and calmodulin binding. J Biol Chem 276(37):34624–34630

    Article  PubMed  CAS  Google Scholar 

  329. Kroslak T, Koch T, Kahl E, Hollt V (2001) Human phosphatidylethanolamine-binding protein facilitates heterotrimeric G protein-dependent signaling. J Biol Chem 276(43):39772–39778

    Article  PubMed  CAS  Google Scholar 

  330. Ali MS, Sayeski PP, Dirksen LB, Hayzer DJ, Marrero MB, Bernstein KE (1997) Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J Biol Chem 272:23382–23388

    Article  PubMed  CAS  Google Scholar 

  331. Marrero MB, Venema VJ, Ju H, Eaton DC, Venema RC (1998) Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. Am J Physiol 275:C1216–C1223

    PubMed  CAS  Google Scholar 

  332. Ali MS, Sayeski PP, Bernstein KE (2000) Jak2 acts as both a STAT1 kinase and as a molecular bridge linking STAT1 to the angiotensin II AT1 receptor. J Biol Chem 275:15586–15593

    Article  PubMed  CAS  Google Scholar 

  333. Sayeski PP, Ali MS, Frank SJ, Bernstein KE (2001) The angiotensin II-dependent nuclear translocation of Stat1 is mediated by the Jak2 protein motif 231YRFRR. J Biol Chem 276:10556–10563

    Article  PubMed  CAS  Google Scholar 

  334. Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Sanchez-Blazquez P (2005) The RGSZ2 protein exists in a complex with mu-opioid receptors and regulates the desensitizing capacity of Gz proteins. Neuropsychopharmacology 30(9):1632–1648

    Article  PubMed  CAS  Google Scholar 

  335. Garzon J, Lopez-Fando A, Sanchez-Blazquez P (2003) The R7 subfamily of RGS proteins assists tachyphylaxis and acute tolerance at mu-opioid receptors. Neuropsychopharmacology 28(11):1983–1990

    Article  PubMed  CAS  Google Scholar 

  336. Sanchez-Blazquez P, Rodriguez-Diaz M, Lopez-Fando A, Rodriguez-Munoz M, Garzon J (2003) The Gβ5 subunit that associates with the R7 subfamily of RGS proteins regulates mu-opioid effects. Neuropharmacology 45(1):82–95

    Article  PubMed  CAS  Google Scholar 

  337. Simonin F, Karcher P, Boeuf JJM, Matifas A, Kieffer BL (2004) Identification of a novel family of G protein-coupled receptor associated sorting proteins. J Neurochem 89:766–775

    Article  PubMed  CAS  Google Scholar 

  338. Martini L, Waldhoer M, Pusch M, Kharazia V, Fong V, Freissmuth C, Whistler JL (2007) Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 21(3):802–811

    Article  CAS  PubMed  Google Scholar 

  339. Ge X, Loh HH, Law PY (2009) mu-Opioid receptor cell surface expression is regulated by its direct interaction with ribophorin1. Mol Pharmacol 75:1307–1316

    Article  PubMed  CAS  Google Scholar 

  340. Ge X, Qiu Y, Loh HH, Law PY (2009) GRIN1 regulates μ-opioid receptor activities by tethering the receptor and G protein in the lipid raft. J Biol Chem 284(52):36521–36534

    Article  PubMed  CAS  Google Scholar 

  341. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278(24):21655–21662

    Article  PubMed  CAS  Google Scholar 

  342. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  PubMed  CAS  Google Scholar 

  343. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998) GABA (B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    Article  PubMed  CAS  Google Scholar 

  344. Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao W-J, Johnson M, Gunwaldsen C, Huang L-Y, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396:674–679

    Article  PubMed  CAS  Google Scholar 

  345. Wang D, Sun X, Bohn LM, Sadee W (2005) Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Mol Pharmacol 67(6):2173–2184

    Article  PubMed  CAS  Google Scholar 

  346. Gomes I, Filipovska J, Devi LA (2003) Opioid receptor oligomerization. Detection and functional characterization of interacting receptors. Methods Mol Med 84:157–183

    PubMed  CAS  Google Scholar 

  347. Cvejic S, Devi LA (1997) Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem 272(43):26959–26964

    Article  PubMed  CAS  Google Scholar 

  348. George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G, O’Dowd BF (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 275(34):26128–26135

    Article  PubMed  CAS  Google Scholar 

  349. Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA (2001) Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci USA 98(1):343–348

    PubMed  CAS  Google Scholar 

  350. Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399(6737):697–700

    Article  PubMed  CAS  Google Scholar 

  351. Jordan BA, Cvejic S, Devi LA (2000) Opioids and their complicated receptor complexes. Neuropsychopharmacology 23(4 Suppl):S5–S18

    Article  PubMed  CAS  Google Scholar 

  352. Briet A, Gagnidze K, Devi LA, Lagace M, Bouvier M (2006) Simultaneous activation of the delta-opioid receptor (deltaOR)/sensory neuron-specific receptor-4 (SNSR-4) hetero-oligomer by the mixed bivalent agonist bovine adrenal medulla peptide 22 activates SNSR-4 but inhibits deltaOR signaling. Mol Pharmacol 70(2):686–696

    Article  CAS  Google Scholar 

  353. Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL (2005) A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc Natl Acad Sci USA 102(25):9050–9055

    Article  PubMed  CAS  Google Scholar 

  354. Pfieffer M, Kirscht S, Stumm R, Koch T, Wu D, Laugsch M, Schroder H, Hollt V, Schulz S (2003) Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization. J Biol Chem 278(5):51630–51637

    Article  CAS  Google Scholar 

  355. Gomes T, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA (2004) A role for heterodimerization of μ and ∂ opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA 101(14):5135–5139

    Article  PubMed  CAS  Google Scholar 

  356. Gomes I, Jordan A, Gupta A, Trapaidze N, Nagy V, Devi LA (2000) Heterodimerization of μ and δ opioid receptors: a role in opiate synergy. J Neurosci 20:RC110

    PubMed  CAS  Google Scholar 

  357. Abdelhamid EE, Santana M, Portoghese PS, Takemori AE (1991) Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther 258(1):299–303

    PubMed  CAS  Google Scholar 

  358. Hepburn MJ, Little PJ, Gingras J, Kuhn CM (1997) Differential effects of naltrindole on morphine-induced tolerance and physical dependence in rats. J Pharmacol Exp Ther 281:1350–1356

    PubMed  CAS  Google Scholar 

  359. Fundytus ME, Schiller PW, Shapiro M, Weltrowska G, Coderre TJ (1995) Attenuation of morphine tolerance and dependence with the highly selective delta-opioid receptor antagonist, TIPP[psi]. Eur J Pharmacol 286:105–108

    Article  PubMed  CAS  Google Scholar 

  360. Barrett RW, Vaught JL (1982) The effects of receptor selective opioid peptides on morphine-induced analgesia. Eur J Pharmacol 80:427–430

    Article  PubMed  CAS  Google Scholar 

  361. Vaught JL, Takemori AE (1979) Differential effects of leucine enkephalin and methionine enkephalin on morphine-induced analgesia, acute tolerance and dependence. J Pharmacol Exp Ther 208:86–94

    PubMed  CAS  Google Scholar 

  362. Felder CC, Kanterman RY, Ma AL, Axelrod J (1990) Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositol phospholipid hydrolysis. Proc Natl Acad Sci USA 87:2187–2191

    Article  PubMed  CAS  Google Scholar 

  363. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International Union of Pharmacology classification of receptors by 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  364. Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP (1998) Effector ­pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-direct trafficking of receptor stimulus. Mol Pharmacol 54:94–104

    PubMed  CAS  Google Scholar 

  365. Urban JD, Clarke WP, von Zastrow M et al (2007) Functional selectivity and classical ­concepts of quantitative pharmacology. J Pharmacol Exp Ther 320(1):1–13

    Article  PubMed  CAS  Google Scholar 

  366. Trester-Zedlitz M, Burlingame A, Kobika B, von Zastrow M (2005) Mass spectrometric analysis of agonist effects on post-translational modifications of the ß2-adrenoreceptor in mammalian cells. Biochemistry 44(16):6133–6143

    Article  PubMed  CAS  Google Scholar 

  367. Ahn S, Shenoy SK, Wei H, Lefkowitz RJ (2004) Differential kinetic and spatial patterns of β-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279(34):35518–35525

    Article  PubMed  CAS  Google Scholar 

  368. Wei H, Ahn S, Shenoy SK et al (2003) Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 100(19):10782–10787

    Article  PubMed  CAS  Google Scholar 

  369. Zhai P, Yamamoto M, Galeotti J et al (2005) Cardiac-specific overexpression of AT1 receptor mutant lacking G alpha q/G alpha i coupling causes hypertrophy and bradycardia in transgenic mice. J Clin Invest 115(11):3045–3056

    Article  PubMed  CAS  Google Scholar 

  370. Bisello A, Chorev M, Rosenblatt M, Monticelli L, Mierke DF, Ferrari SL (2002) Selective ligand-induced stabilization of active and desensitized parathyroid hormone type 1 receptor conformations. J Biol Chem 277(41):38524–38530

    Article  PubMed  CAS  Google Scholar 

  371. Gesty-Palmer D, Chen M, Reiter E et al (2006) Distinct β-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 281(16):10856–10864

    Article  PubMed  CAS  Google Scholar 

  372. Keith DE, Murray SR, Zaki PA, Chu PC, Lissin DV, Kang L, Evans CJ, von Zastrow M (1996) Morphine activates opioid receptors without causing their rapid internalization. J Biol Chem 271(32):19021–19024

    Article  PubMed  CAS  Google Scholar 

  373. Chaipatikul V, Loh HH, Law PY (2003) Ligand-selective activation of mu-opioid receptor: demonstrated with deletion and single amino acid mutations of third intracellular loop domain. J Pharmacol Exp Ther 305(3):909–918

    Article  PubMed  CAS  Google Scholar 

  374. Groer CE, Tidgewell K, Moyer RA, Harding WW, Rothman RB, Prisinzano TE, Bohn LE (2007) An opioid agonist that does not induce μ-opioid receptor – arrestin interactions or receptor internalization. Mol Pharmacol 71(2):549–557

    Article  PubMed  CAS  Google Scholar 

  375. Chakrabarti S, Law PY, Loh HH (1998) Distinct differences between morphine- and [d-Ala2, N-MePhe4, Gly-ol5]enkephalin-mu-opioid receptor complexes demonstrated by cyclic AMP-dependent protein kinase phosphorylation. J Neurochem 71:231–239

    Article  PubMed  CAS  Google Scholar 

  376. Zheng H, Zeng Y, Zhang X, Chu J, Loh HH, Law PY (2010) mu-Opioid receptor agonists differentially regulate the expression of miR-190 and NeuroD. Mol Pharmacol 77(1):102–109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The research for this article was supported in part by grants provided by the National Institute on Drug Abuse, DA007339 and DA016674. PYL is a recipient of a Senior Scientist Award from NIDA, K05-DA000513.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-Yee Law .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Law, PY. (2011). Opioid Receptor Signal Transduction Mechanisms. In: Pasternak, G. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-993-2_9

Download citation

Publish with us

Policies and ethics