Skip to main content

Molecular Biology of Mu Opioid Receptors

  • Chapter
  • First Online:

Part of the book series: The Receptors ((REC))

Abstract

The cloning of the Mu opioid receptor has led to the identification of a large series of splice variants. The gene is complex, with two independent promoters responsible for two distinct sets of splice variants. The primary promoter, associated with exon 1, encodes the majority of the variants, while a second promoter upstream of the first is associated with exon 11 (E11). The majority of the variants generated by the exon 1 promoter involve splicing at the C-terminus of the receptor, without any changes in the transmembrane domains or binding pocket. Most of the variants produced by the E11 promoter have unusual structures with six transmembrane domains. However, both sets of variants are functionally important, as shown by the actions of opioids in their respective knockout mice, providing a new perspective on understanding complex Mu opioid actions in animals and humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beckett AH, Casy AF (1965) Analgesics and their antagonists: biochemical aspects and structure–activity relationships. Prog Med Chem 4:171–218

    Article  PubMed  CAS  Google Scholar 

  2. Martin WR (1967) Opioid antagonists. Pharmacol Rev 19:463–521

    PubMed  CAS  Google Scholar 

  3. Houde RW, Wallenstein SL (1956) Clinical studies of morphine–nalorphine combinations. Fed Proc 15:440–441

    Google Scholar 

  4. Lasagna L, Beecher HK (1954) Analgesic effectiveness of nalorphine and nalorphine–morphine combinations in man. J Pharmacol Exp Ther 112:356–363

    PubMed  CAS  Google Scholar 

  5. Martin WR, Eades CG, Thompson JA et al (1976) The effects of morphine and nalorphine-like drugs in the nondependent and morphine=dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  6. Lord JAH, Waterfield AA, Hughes J et al (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    Article  PubMed  CAS  Google Scholar 

  7. Hughes J, Smith TW, Kosterlitz HW et al (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    Article  PubMed  CAS  Google Scholar 

  8. Pasternak GW, Goodman R, Snyder SH (1975) An endogenous morphine like factor in mammalian brain. Life Sci 16:1765–1769

    Article  PubMed  CAS  Google Scholar 

  9. Terenius L, Wahlstrom A (1975) Search for an endogenous ligand for the opiate receptor. Acta Physiol Scand 94:74–81

    Article  PubMed  CAS  Google Scholar 

  10. Pert CB, Pasternak GW, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361

    Article  PubMed  CAS  Google Scholar 

  11. Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    Article  PubMed  CAS  Google Scholar 

  12. Terenius L (1973) Characteristics of the “receptor” for narcotic analgesics in synaptic plasma membrane from rat brain. Acta Pharmacol Toxicol 33:377–384

    Article  CAS  Google Scholar 

  13. Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesice [3H]Etorphine to rat-brain homogenate. Proc Natl Acad Sci USA 70:1947–1949

    Article  PubMed  CAS  Google Scholar 

  14. Paton WDM (1957) The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol 12:119–124

    CAS  Google Scholar 

  15. Lord JAH, Waterfield AA, Hughes J et al (1976) Multiple opiate receptors. In: Kosterlitz HW (ed) Opiates and endogenous opioid peptides. Elsevier, Amsterdam, pp 275–280

    Google Scholar 

  16. Chang K-J, Cuatrecasas P (1979) Multiple opiate receptors. J Biol Chem 254:2610–2618

    PubMed  CAS  Google Scholar 

  17. Reisine T, Pasternak GW (1996) Opioid analgesics and antagonists. In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s: the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 521–556

    Google Scholar 

  18. Pasternak,GW, Snyder,SH. Identification of a novel high affinity opiate receptor binding in rat brain. Nature 253:563–565

    Google Scholar 

  19. Pasternak GW, Childers SR, Snyder SH (1980) Opiate analgesia: evidence for mediation by a subpopulation of opiate receptors. Science 208:514–516

    Article  PubMed  CAS  Google Scholar 

  20. Wolozin BL, Pasternak GW (1981) Classification of multiple morphine and enkephalin binding sites in the central nervous system. Proc Natl Acad Sci USA 78:6181–6185

    Article  PubMed  CAS  Google Scholar 

  21. Jiang Q, Takemori AE, Sultana M et al (1991) Differential antagonism of opiate d antinociception by [D-Ala2, Cys6]enkaphalin and naltrindole-5′-iosothiocyanate: evidence for subtypes. J Pharmacol Exp Ther 257:1069–1075

    PubMed  CAS  Google Scholar 

  22. Zukin RS, Eghbali M, Olive D et al (1988) Characterization and visualization of rat and guinea pig brain Κ opioid receptors: evidence for Κ1 and Κ2 opioid receptors. Proc Natl Acad Sci USA 85:4061–4065

    Article  PubMed  CAS  Google Scholar 

  23. Clark JA, Liu L, Price M et al (1989) Κ opiate receptor multiplicity: evidence for two U50, 488-sensitive kapp a1 subtypes and a novel Κ3 subtype. J Pharmacol Exp Ther 251:461–468

    PubMed  CAS  Google Scholar 

  24. Rothman RB, Bykov V, DeCosta BR et al (1990) Interaction of endogenous opioid peptides and other drugs with four Κ opioid binding sites in guinea pig brain. Peptides 11:311–317

    Article  PubMed  CAS  Google Scholar 

  25. Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700

    Article  PubMed  CAS  Google Scholar 

  26. Zhu YX, King MA, Schuller AGP et al (1999) Retention of supraspinal d-like analgesia and loss of morphine tolerance in δ opioid receptor knockout mice. Neuron 24:243–252

    Article  PubMed  CAS  Google Scholar 

  27. Chang A, Emmel DW, Rossi GC et al (1998) Methadone analgesia in morphine-insensitive CXBK mice. Eur J Pharmacol 351:189–191

    Article  PubMed  CAS  Google Scholar 

  28. Pick CG, Nejat R, Pasternak GW (1993) Independent expression of two pharmacologically distinct supraspinal mu analgesic systems in genetically different mouse strains. J Pharmacol Exp Ther 2265:166–171

    Google Scholar 

  29. Rossi GC, Brown GP, Leventhal L et al (1996) Novel receptor mechanisms for heroin and morphine-6β-glucuronide analgesia. Neurosci Lett 216:1–4

    Article  PubMed  CAS  Google Scholar 

  30. Hahn EF, Pasternak GW (1982) Naloxonazine, a potent, long-acting inhibitor of opiate binding sites. Life Sci 31:1385–1388

    Article  PubMed  CAS  Google Scholar 

  31. Ling GSF, Spiegel K, Lockhart SH et al (1985) Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms. J Pharmacol Exp Ther 232:149–155

    PubMed  CAS  Google Scholar 

  32. Ling GSF, Simantov R, Clark JA et al (1986) Naloxonazine actions in vivo. Eur J Pharmacol 129:33–38

    Article  PubMed  CAS  Google Scholar 

  33. Pasternak GW (1993) Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  34. Pasternak GW, Childers SR, Snyder SH (1980) Naloxazone, long-acting opiate antagonist: effects in intact animals and on opiate receptor binding in vitro. J Pharmacol Exp Ther 214:455–462

    PubMed  CAS  Google Scholar 

  35. Chen Y, Mestek A, Liu J et al (1993) Molecular cloning and functional expression of a μ–opioid receptor from rat brain. Mol Pharmacol 44:8–12

    PubMed  CAS  Google Scholar 

  36. Thompson RC, Mansour A, Akil H et al (1993) Cloning and pharmacological characterization of a rat μ opioid receptor. Neuron 11:903–913

    Article  PubMed  CAS  Google Scholar 

  37. Wang JB, Imai Y, Eppler CM et al (1993) μ Opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci USA 90:10230–10234

    Article  PubMed  CAS  Google Scholar 

  38. Kieffer BL, Befort K, Gaveriaux-Ruff C et al (1992) The μ-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA 89:12048–12052

    Article  PubMed  CAS  Google Scholar 

  39. Evans CJ, Keith DE Jr, Morrison H et al (1992) Cloning of a d opioid receptor by functional expression. Science 258:1952–1955

    Article  PubMed  CAS  Google Scholar 

  40. Chen Y, Mestek A, Liu J et al (1993) Molecular cloning of a rat Κ opioid receptor reveals sequence similarities to the μ and δ opioid receptors. Biochem J 295:625–628

    PubMed  CAS  Google Scholar 

  41. Li S, Zhu J, Chen C et al (1993) Molecular cloning and expression of a rat Κ opioid receptor. Biochem J 295:629–633

    PubMed  CAS  Google Scholar 

  42. Meng F, Xie G-X, Thompson RC et al (1993) Cloning and pharmacological characterization of a rat Κ opioid receptor. Proc Natl Acad Sci USA 90:9954–9958

    Article  PubMed  CAS  Google Scholar 

  43. Bunzow JR, Saez C, Mortrud M et al (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a μ, δ or Κ opioid receptor type. FEBS Lett 347:284–288

    Article  PubMed  CAS  Google Scholar 

  44. Chen Y, Fan Y, Liu J et al (1994) Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Lett 347:279–283

    Article  PubMed  CAS  Google Scholar 

  45. Mollereau C, Parmentier M, Mailleux P et al (1994) ORL-1, a novel member of the opioid family: cloning, functional expression and localization. FEBS Lett 341:33–38

    Article  PubMed  CAS  Google Scholar 

  46. Pan Y-X, Cheng J, Xu J et al (1994) Cloning, expression and classification of a Κ3-related opioid receptor using antisense oligodeoxynucleotides. Regul Pept 54:217–218

    Article  CAS  Google Scholar 

  47. Uhl GR, Childers S, Pasternak GW (1994) An opiate-receptor gene family reunion. Trends Neurosci 17:89–93

    Article  PubMed  CAS  Google Scholar 

  48. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  49. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  50. Fredriksson R, Lagerström MC, Lundin LG et al (2003) The G protein-coupled receptors in the human genome form five main families: phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

  51. Attwood TK, Findlay JBC (1994) Fingerprinting G protein-coupled receptors. Protein Eng Des Sel 7:195–203

    Article  CAS  Google Scholar 

  52. Kolakowski LF Jr (1994) GCRDb: a G-protein-coupled receptor database. Receptors Channels 2:1–7

    PubMed  CAS  Google Scholar 

  53. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor [see comments]. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  54. Chavkin C, McLaughlin JP, Celver JP (2001) Regulation of opioid receptor function by chronic agonist exposure: constitutive activity and desensitization. Mol Pharmacol 60:20–25

    PubMed  CAS  Google Scholar 

  55. Law PY, Wong YH, Loh HH (1999) Mutational analysis of the structure and function of opioid receptors. Biopolymers 51:440–455

    Article  PubMed  CAS  Google Scholar 

  56. Minami M, Satoh M (1995) Molecular biology of the opioid receptors: structures, functions and distributions. Neurosci Res 23:121–145

    Article  PubMed  CAS  Google Scholar 

  57. Watson B, Meng F, Akil H (1996) A chimeric analysis of the opioid receptor domains critical for the binding selectivity of µ opioid ligands. Neurobiol Dis 3:87–96

    Article  PubMed  CAS  Google Scholar 

  58. Fukuda K, Terasako K, Kato S et al (1995) Identification of the amino acid residues involved in selective agonist binding in the first extracellular loop of the δ- and μ-opioid receptors. FEBS Lett 373:177–181

    Article  PubMed  CAS  Google Scholar 

  59. Wang WW, Shahrestanifar M, Jin J et al (1995) Studies on mu and d opioid receptor selectivity utilizing chimeric and site-mutagenized receptors. Proc Natl Acad Sci USA 92:12436–12440

    Article  PubMed  CAS  Google Scholar 

  60. Seki T, Minami M, Nakagawa T et al (1998) DAMGO recognizes four residues in the third extracellular loop to discriminate between μ- and κ-opioid receptors. Eur J Pharmacol 350:301–310

    Article  PubMed  CAS  Google Scholar 

  61. Dietrich G, Gaibelet G, Capeyrou R et al (1998) Implication of the first and third extracellular loops of the µ-opioid receptor in the formation of the ligand binding site: a study using chimeric µ-opioid/angiotensin receptors. J Neurochem 70:2106–2111

    Article  PubMed  CAS  Google Scholar 

  62. Fukuda K, Kato S, Mori K (1995) Location of regions of the opioid receptor involved in selective agonist binding. J Biol Chem 270:6702–6709

    Article  PubMed  CAS  Google Scholar 

  63. Minami M, Onogi T, Nakagawa T et al (1995) DAMGO, a μ-opioid receptor selective ligand, distinguishes between μ- and Κ-opioid receptors at a different region from that for the distinction between μ- and δ-opioid receptors. FEBS Lett 364:23–27

    Article  PubMed  CAS  Google Scholar 

  64. Xue J-C, Chen CG, Zhu JM et al (1995) The third extracellular loop of the μ opioid receptor is important for agonist selectivity. J Biol Chem 270:12977–12979

    PubMed  CAS  Google Scholar 

  65. Minami M, Nakagawa T, Seki T et al (1996) A single residue, Lys108, of the d-opioid receptor prevents the µ-opioid-selective ligand [D-Ala2, N-MePhe4, Gly-ol5]enkephalin from binding to the d-opioid receptor. Mol Pharmacol 50:1413–1422

    PubMed  CAS  Google Scholar 

  66. Xue J-C, Chen C, Zhu J et al (1994) Differential binding domains of peptide and non-peptide ligands in the cloned rat Κ opioid receptor. J Biol Chem 269:30195–30199

    PubMed  CAS  Google Scholar 

  67. Zhang PS, Johnson PS, Zöllner C et al (1999) Mutation of human μ opioid receptor extracellular “disulfide cysteine” residues alters ligand binding but does not prevent receptor targeting to the cell plasma membrane. Mol Brain Res 72:195–204

    Article  PubMed  CAS  Google Scholar 

  68. Xu H, Lu YF, Partilla JS et al (1999) Opioid peptide receptor studies, 11: involvement of Tyr148, Trp318 and His319 of the rat μ-opioid receptor in binding of μ-selective ligands. Synapse 32:23–28

    Article  PubMed  CAS  Google Scholar 

  69. Ulens C, Van Boven M, Daenens P et al (2000) Interaction of p-fluorofentanyl on cloned d Śoid receptor selectivity. J Pharmacol Exp Ther 294:1024–1033

    PubMed  CAS  Google Scholar 

  70. Bonner G, Meng F, Akil H (2000) Selectivity of µ receptor determined by interfacial residues near third extracellular loop. Eur J Pharmacol 403:37–44

    Article  PubMed  CAS  Google Scholar 

  71. Li J, Huang P, Chen C et al (2001) Constitutive activation of the µ opioid receptor by mutation of D3.49(164), but not D3.32(147): D3.49(164) is critical for stabilization of the inactive form of the receptor and for its expression. Biochemistry 40:12039–12050

    Article  PubMed  CAS  Google Scholar 

  72. Liu-Chen L-Y, Chen C, Phillips CA (1993) Beta-[3H]Funaltrexamine-labeled μ-opioid receptors: species variations in molecular mass and glycosylation by complex-type, N-linked oligosaccharides. Mol Pharmacol 44:749–756

    PubMed  CAS  Google Scholar 

  73. Liu-Chen LY, Phillips CA (1987) Covalent labeling of µ opioid binding site by [3H]beta-funaltrexamine. Mol Pharmacol 32:321–329

    PubMed  CAS  Google Scholar 

  74. Huang P, Chen C, Xu W et al (2008) Brain region-specific N-glycosylation and lipid rafts association of the rat µ opioid receptor. Biochem Biophys Res Commun 365:82–88

    Article  PubMed  CAS  Google Scholar 

  75. Ohno S (1999) Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Semin Cell Dev Biol 10:517–522

    Article  PubMed  CAS  Google Scholar 

  76. Lundin LG, Larhammar D, Hallbook F (2003) Numerous groups of chromosomal regional paralogies strongly indicate two genome doublings at the root of the vertebrates. J Struct Funct Genomics 3:53–63

    Article  PubMed  CAS  Google Scholar 

  77. Escriva H, Manzon L, Youson J et al (2002) Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution. Mol Biol Evol 19:1440–1450

    Article  PubMed  CAS  Google Scholar 

  78. Stevens CW (2009) The evolution of vertebrate opioid receptors. Front Biosci 14:1247–1269

    Article  PubMed  CAS  Google Scholar 

  79. Larhammar D, Dreborg S, Larsson TA et al (2009) Early duplications of opioid receptor and peptide genes in vertebrate evolution. Ann N Y Acad Sci 1163:451–453

    Article  PubMed  Google Scholar 

  80. Dreborg S, Sundstrom G, Larsson TA et al (2008) Evolution of vertebrate opioid receptors. Proc Natl Acad Sci USA 105:15487–15492

    Article  PubMed  CAS  Google Scholar 

  81. Herrero-Turrion MJ, Rodriguez RE (2008) Bioinformatic analysis of the origin, sequence and diversification of μ-opioid receptors in vertebrates. Mol Phylogenet Evol 49:877–892

    Article  PubMed  CAS  Google Scholar 

  82. Pan YX, Xu J, Mahurter L et al (2001) Generation of the µ-opioid receptor (MOR-1) protein by three new splice variants of the OPRM gene. Proc Natl Acad Sci USA 98:14084–14089

    Article  PubMed  CAS  Google Scholar 

  83. Xu J, Xu M, Hurd YL et al (2009) Isolation and characterization of new exon 11-associated N-terminal splice variants of the human µ opioid receptor gene. J Neurochem 108:962–972

    Article  PubMed  CAS  Google Scholar 

  84. Xu J, Xu MM Matulonis J, Rossi G, Pasternak G, Pan Y-X (2007) Identification and characterization of seven new alternatively spliced variants from the rat mu opioid receptor gene. OPRM Soc Neurosci 37:353.10

    Google Scholar 

  85. Pan YX, Xu J, Xu M et al (2009) Involvement of exon 11-associated variants of the mu opioid receptor MOR-1 in heroin, but not morphine, actions. Proc Natl Acad Sci USA 106:4917–4922

    Article  PubMed  CAS  Google Scholar 

  86. Pan YX, Xu J, Bolan E et al (1999) Identification and characterization of three new alternatively spliced µ-opioid receptor isoforms. Mol Pharmacol 56:396–403

    PubMed  CAS  Google Scholar 

  87. Pan YX, Xu J, Bolan E et al (2000) Isolation and expression of a novel alternatively spliced µ opioid receptor isoform, MOR-1F. FEBS Lett 466:337–340

    Article  PubMed  CAS  Google Scholar 

  88. Doyle GA, Rebecca Sheng X, Lin SS et al (2007) Identification of three mouse micro-opioid receptor (MOR) gene (OPRM-1) splice variants containing a newly identified alternatively spliced exon. Gene 388:135–147

    Article  PubMed  CAS  Google Scholar 

  89. Doyle GA, Sheng XR, Lin SS et al (2007) Identification of five mouse µ-opioid receptor (MOR) gene (OPRM-1) splice variants containing a newly identified alternatively spliced exon. Gene 395:98–107

    Article  PubMed  CAS  Google Scholar 

  90. Pan YX (2005) Diversity and complexity of the mu opioid receptor gene: alternative pre-mRNA splicing and promoters. DNA Cell Biol 24:736–750

    Article  PubMed  CAS  Google Scholar 

  91. Newman LC, Sands SS, Wallace DR et al (2002) Characterization of µ, Κ, and d opioid binding in amphibian whole brain tissue homogenates. J Pharmacol Exp Ther 301:364–370

    Article  PubMed  CAS  Google Scholar 

  92. Newman LC, Wallace DR, Stevens CW (2000) Selective opioid receptor agonist and antagonist displacement of [3H]naloxone binding in amphibian brain. Eur J Pharmacol 397:255–262

    Article  PubMed  CAS  Google Scholar 

  93. Darlison MG, Greten FR, Harvey RJ et al (1997) Opioid receptors from a lower vertebrate (Catostomus commersoni): sequence, pharmacology, coupling to a G protein-gated inward-rectifying potassium channel (GIRK1), and evolution. Proc Natl Acad Sci USA 94:8214–8219

    Article  PubMed  CAS  Google Scholar 

  94. Surratt CK, Johnson PS, Moriwaki A et al (1994) μ-Opiate receptor: charged transmembrane domain amino acids are critical for agonist recognition and intrinsic activity. J Biol Chem 269:20548–20553

    PubMed  CAS  Google Scholar 

  95. Bot G, Blake AD, Li SX et al (1998) Fentanyl and its analogs desensitize the cloned mu opioid receptor. J Pharmacol Exp Ther 285:1207–1218

    PubMed  CAS  Google Scholar 

  96. Xu W, Ozdener F, Li JG et al (1999) Functional role of the spatial proximity of Asp114(2.50) in TMH2 and Asn332(7.49) in TMH7 of the μ opioid receptor. FEBS Lett 447:318–324

    Article  PubMed  CAS  Google Scholar 

  97. Li JG, Chen CG, Yin JL et al (1999) Asp147 in the third transmembrane helix of the rat μ opioid receptor forms ion-pairing with morphine and naltrexone. Life Sci 65:175–185

    Article  PubMed  CAS  Google Scholar 

  98. Xu W, Chen C, Huang P et al (2000) The conserved cysteine 7.38 residue is differentially accessible in the binding-site crevices of the µ, d, and Κ opioid receptors. Biochemistry 39:13904–13915

    Article  PubMed  CAS  Google Scholar 

  99. Ulens C, Van Boven M, Daenens P et al (2000) Interaction of p-fluorofentanyl on cloned human opioid receptors and exploration of the role of Trp-318 and His-319 in μ-opioid receptor selectivity. J Pharmacol Exp Ther 294:1024–1033

    PubMed  CAS  Google Scholar 

  100. Bunzow JR, Zhang G, Bouvier C et al (1995) Characterization and distribution of a cloned rat μ-opioid receptor. J Neurochem 64:14–24

    Article  PubMed  CAS  Google Scholar 

  101. Wang JB, Johnson PS, Persico AM et al (1994) Human µ opiate receptor. cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett 338:217–222

    Article  PubMed  CAS  Google Scholar 

  102. Raynor K, Kong H, Mestek A et al (1995) Characterization of the cloned human µ opioid receptor. J Pharmacol Exp Ther 272:423–428

    PubMed  CAS  Google Scholar 

  103. Pan YX, Xu J, Mahurter L et al (2003) Identification and characterization of two new human µ opioid receptor splice variants, hMOR-1O and hMOR-1X. Biochem Biophys Res Commun 301:1057–1061

    Article  PubMed  CAS  Google Scholar 

  104. Kaufman DL, Keith DE Jr, Anton B et al (1995) Characterization of the murine μ opioid receptor gene. J Biol Chem 270:15877–15883

    Article  PubMed  CAS  Google Scholar 

  105. Gomes I, Jordan BA, Gupta A et al (2000) Heterodimerization of micro and d opioid receptors: a role in opiate synergy. J Neurosci 20:1–5

    Google Scholar 

  106. George SR, Fan T, Xie Z et al (2000) Oligomerization of µ- and d-opioid receptors. J Biol Chem 275:26128–26135

    Article  PubMed  CAS  Google Scholar 

  107. Befort K, Filliol D, Decaillot FM et al (2001) A single nucleotide polymorphic mutation in the human µ-opioid receptor severely impairs receptor signaling. J Biol Chem 276:3130–3137

    Article  PubMed  CAS  Google Scholar 

  108. Minami M, Onogi T, Toya T et al (1994) Molecular cloning and in situ hybridization histochemistry for rat μ-opioid receptor. Neurosci Res 18:315–322

    Article  PubMed  CAS  Google Scholar 

  109. Wu Q, Hwang CK, Yao S et al (2005) A major species of mouse µ-opioid receptor mRNA and its promoter-dependent functional polyadenylation signal. Mol Pharmacol 68:279–285

    Article  PubMed  CAS  Google Scholar 

  110. Ide S, Han W, Kasai S et al (2005) Characterization of the 3′ untranslated region of the human µ-opioid receptor (MOR-1) mRNA. Gene 364:139–145

    Article  PubMed  CAS  Google Scholar 

  111. Brodsky M, Elliott K, Hynansky A et al (1995) Quantitation of μ-opioid receptor (MOR-1) mRNA in selected regions of the rat CNS. Neuroreport 6:725–729

    Article  PubMed  CAS  Google Scholar 

  112. Brodsky M, Elliott K, Hynansky A et al (1995) CNS levels of µ opioid receptor (MOR-1) mRNA during chronic treatment with morphine or naltrexone. Brain Res Bull 38:135–141

    Article  PubMed  CAS  Google Scholar 

  113. Mansour A, Fox CA, Burke S et al (1994) µ, d, and Κ opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350:412–438

    Article  PubMed  CAS  Google Scholar 

  114. Delfs JM, Kong H, Mestek A et al (1994) Expression of µ opioid receptor mRNA in rat brain: an in situ hybridization study at the single cell level. J Comp Neurol 345:46–68

    Article  PubMed  CAS  Google Scholar 

  115. Goodman RR, Pasternak GW (1985) Visualization of mu1 opiate receptors in rat brain using a computerized autoradiographic subtraction technique. Proc Natl Acad Sci USA 82:6667–6671

    Article  PubMed  CAS  Google Scholar 

  116. Waksman G, Hamel E, Fournie-Zaluski MC et al (1986) Autoradiographic comparison of the distribution of the neutral endopeptidase “enkephalinase” and of mu and d opioid receptors in rat brain. Proc Natl Acad Sci USA 83:1523–1527

    Article  PubMed  CAS  Google Scholar 

  117. Mansour A, Khachaturian H, Lewis ME et al (1987) Autoradiographic differentiation of µ, d, and Κ opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445–2464

    PubMed  CAS  Google Scholar 

  118. Mansour A, Fox CA, Akil H et al (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18:22–29

    Article  PubMed  CAS  Google Scholar 

  119. Peckys D, Landwehrmeyer GB (1999) Expression of mu, Κ, and d opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 88:1093–1135

    Article  PubMed  CAS  Google Scholar 

  120. Arvidsson U, Riedl M, Chakrabarti S et al (1995) Distribution and targeting of a μ-opioid receptor (MOR-1) in brain and spinal cord. J Neurosci 15:3328–3341

    PubMed  CAS  Google Scholar 

  121. Mansour A, Fox CA, Burke S et al (1995) Immunohistochemical localization of the cloned μ-opioid receptor in the rat CNS. J Chem Neuroanat 8:283–305

    Article  PubMed  CAS  Google Scholar 

  122. Moriwaki A, Wang JB, Svingos A et al (1996) μ-Opiate receptor immunoreactivity in rat central nervous system. Neurochem Res 21:1315–1331

    Article  PubMed  CAS  Google Scholar 

  123. Ding YQ, Kaneko T, Nomura S et al (1996) Immunohistochemical localization of μ-opioid receptors in the central nervous system of the rat. J Comp Neurol 367:375–402

    Article  PubMed  CAS  Google Scholar 

  124. Rius RA, Barg J, Bem WT et al (1991) The prenatal development profile of expression of opioid peptides and receptors in the mouse brain. Brain Res Dev Brain Res 58:237–241

    Article  PubMed  CAS  Google Scholar 

  125. Zhu YX, Hsu MS, Pintar JE (1998) Developmental expression of the μ, Κ, and δ opioid receptor mRNAs in mouse. J Neurosci 18:2538–2549

    PubMed  CAS  Google Scholar 

  126. Nitsche JF, Pintar JE (2003) Opioid receptor-induced GTPgamma35S binding during mouse development. Dev Biol 253:99–108

    Article  PubMed  CAS  Google Scholar 

  127. Ko JL, Chen HC, Loh HH (2002) Differential promoter usage of mouse µ-opioid receptor gene during development. Brain Res Mol Brain Res 104:184–193

    Article  PubMed  CAS  Google Scholar 

  128. Xu J, Xu M, Pan YX (2006) Characterizing exons 11 and 1 promoters of the µ opioid receptor (OPRM) gene in transgenic mice. BMC Mol Biol 7:41

    Article  PubMed  CAS  Google Scholar 

  129. Georges F, Normand E, Bloch B et al (1998) Opioid receptor gene expression in the rat brain during ontogeny, with special reference to the mesostriatal system: an in situ hybridization study. Dev Brain Res 109:187–199

    Article  CAS  Google Scholar 

  130. Wang JB, Johnson PS, Persico AM et al (1994) Human μ opiate receptor: cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett 338:217–222

    Article  PubMed  CAS  Google Scholar 

  131. Kozak CA, Filie J, Adamson MC et al (1994) Murine chromosomal location of the μ and Κ opioid receptor genes. Genomics 21:659–661

    Article  PubMed  CAS  Google Scholar 

  132. Giros B, Pohl M, Rochelle JM et al (1995) Chromosomal localization of opioid peptide and receptor genes in the mouse. Life Sci 56:PL369–PL375

    Article  PubMed  CAS  Google Scholar 

  133. Belknap JK, Mogil JS, Helms ML et al (1995) Localization to chromosome 10 of a locus influencing morphine analgesia in crosses derived from C57BL/6 and DBA/2 strains. Life Sci 57:PL117–PL124

    Article  PubMed  CAS  Google Scholar 

  134. Berrettini WH, Ferraro TN, Alexander RC et al (1994) Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains. Nat Genet 7:54–58

    Article  PubMed  CAS  Google Scholar 

  135. Min BH, Augustin LB, Felsheim RF et al (1994) Genomic structure and analysis of promoter sequence of a mouse μ opioid receptor gene. Proc Natl Acad Sci USA 91:9081–9085

    Article  PubMed  CAS  Google Scholar 

  136. Liang Y, Mestek A, Yu L et al (1995) Cloning and characterization of the promoter region of the mouse μ opioid receptor gene. Brain Res 679:82–88

    Article  PubMed  CAS  Google Scholar 

  137. Kraus J, Horn G, Zimprich A et al (1995) Molecular cloning and functional analysis of the rat μ opioid receptor gene promoter. Biochem Biophys Res Commun 215:591–597

    Article  PubMed  CAS  Google Scholar 

  138. Mayer P, Schulzeck S, Kraus J et al (1996) Promoter region and alternatively spliced exons of the rat μ-opioid receptor gene. J Neurochem 66:2272–2278

    Article  PubMed  CAS  Google Scholar 

  139. Wendel B, Hoehe MR (1998) The human μ opioid receptor gene: 5′ regulatory and intronic sequences. J Mol Med 76:525–532

    Article  PubMed  CAS  Google Scholar 

  140. Ko JL, Minnerath SR, Loh HH (1997) Dual promoters of mouse μ opioid receptor gene. Biochem Biophys Res Commun 234:351–357

    Article  PubMed  CAS  Google Scholar 

  141. Liang Y, Carr LG (1997) Transcription of the mouse µ-opioid receptor gene is regulated by two promoters. Brain Res 769:372–374

    Article  PubMed  CAS  Google Scholar 

  142. Xu Y, Carr LG (2001) Transcriptional regulation of the human µ opioid receptor (hMOR) gene: evidence of positive and negative cis-acting elements in the proximal promoter and presence of a distal promoter. DNA Cell Biol 20:391–402

    Article  PubMed  CAS  Google Scholar 

  143. Andria ML, Simon EJ (2001) Identification of a neurorestrictive suppressor element (NRSE) in the human µ-opioid receptor gene. Brain Res Mol Brain Res 91:73–80

    Article  PubMed  CAS  Google Scholar 

  144. Kim CS, Hwang CK, Choi HS et al (2004) Neuron-restrictive silencer factor (NRSF) functions as a repressor in neuronal cells to regulate the µ opioid receptor gene. J Biol Chem 279:46464–46473

    Article  PubMed  CAS  Google Scholar 

  145. Kraus J, Borner C, Giannini E et al (2003) The role of nuclear factor κB in tumor necrosis factor-regulated transcription of the human µ-opioid receptor gene. Mol Pharmacol 64:876–884

    Article  PubMed  CAS  Google Scholar 

  146. Ko JL, Liu HC, Minnerath SR et al (1998) Transcriptional regulation of mouse µ-opioid receptor gene. J Biol Chem 273:27678–27685

    Article  PubMed  CAS  Google Scholar 

  147. Lee PW, Lee YM (2003) Transcriptional regulation of µ opioid receptor gene by cAMP pathway. Mol Pharmacol 64:1410–1418

    Article  PubMed  CAS  Google Scholar 

  148. Liang Y, Carr LG (1996) Identification of an octamer-1 transcription factor binding site in the promoter of the mouse µ-opioid receptor gene. J Neurochem 67:1352–1359

    Article  PubMed  CAS  Google Scholar 

  149. Kraus J, Borner C, Giannini E et al (2001) Regulation of µ opioid receptor gene transcription by interleukin-4 and influence of an allelic variation within a STAT6 transcription factor binding site. J Biol Chem 276:43901–43908

    Article  PubMed  CAS  Google Scholar 

  150. Choi HS, Hwang CK, Kim CS et al (2005) Transcriptional regulation of mouse µ opioid receptor gene: Sp3 isoforms (M1, M2) function as repressors in neuronal cells to regulate the µ opioid receptor gene. Mol Pharmacol 67:1674–1683

    Article  PubMed  CAS  Google Scholar 

  151. Choi HS, Song KY, Hwang CK et al (2008) A proteomics approach for identification of single strand DNA-binding proteins involved in transcriptional regulation of mouse micro opioid receptor gene. Mol Cell Proteomics 7:1517–1529

    Article  PubMed  CAS  Google Scholar 

  152. Choi HS, Hwang CK, Kim CS et al (2008) Transcriptional regulation of mouse µ opioid receptor gene in neuronal cells by poly(ADP-ribose) polymerase-1. J Cell Mol Med 12:2319–2333

    Article  PubMed  CAS  Google Scholar 

  153. Kraus J (2009) Regulation of µ-opioid receptors by cytokines. Front Biosci (Schol Ed) 1:164–170

    Google Scholar 

  154. Borner C, Woltje M, Hollt V et al (2004) STAT6 transcription factor binding sites with mismatches within the canonical 5′-TTC...GAA-3′ motif involved in regulation of d- and µ-opioid receptors. J Neurochem 91:1493–1500

    Article  PubMed  CAS  Google Scholar 

  155. Hwang CK, Song KY, Kim CS et al (2007) Evidence of endogenous µ opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol 27:4720–4736

    Article  PubMed  CAS  Google Scholar 

  156. Hwang CK, Song KY, Kim CS et al (2009) Epigenetic programming of µ-opioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodelling factor. J Cell Mol Med 13:3591–3615

    Article  PubMed  Google Scholar 

  157. Pan YX (2002) Identification and characterization of a novel promoter of the mouse µ opioid receptor gene (OPRM) that generates eight splice variants. Gene 295:97–108

    Article  PubMed  CAS  Google Scholar 

  158. International HapMap Consortium (2007) A second-generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  Google Scholar 

  159. Ikeda K, Ide S, Han W et al (2005) How individual sensitivity to opiates can be predicted by gene analyses. Trends Pharmacol Sci 26:311–317

    Article  PubMed  CAS  Google Scholar 

  160. Uhl GR, Sora I, Wang ZJ (1999) The μ opiate receptor as a candidate gene for pain: polymorphisms, variations in expression, nociception, and opiate responses. Proc Natl Acad Sci USA 96:7752–7755

    Article  PubMed  CAS  Google Scholar 

  161. Mayer P, Hollt V (2006) Pharmacogenetics of opioid receptors and addiction. Pharmacogenet Genomics 16:1–7

    Article  PubMed  CAS  Google Scholar 

  162. Kreek MJ, Bart G, Lilly C et al (2005) Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol Rev 57:1–26

    Article  PubMed  CAS  Google Scholar 

  163. Mogil JS, Yu L, Basbaum AI (2000) Pain genes? natural variation and transgenic mutants. Annu Rev Neurosci 23:777–811

    Article  PubMed  CAS  Google Scholar 

  164. Tan EC, Tan CH, Karupathivan U et al (2003) µ opioid receptor gene polymorphisms and heroin dependence in Asian populations. Neuroreport 14:569–572

    Article  PubMed  CAS  Google Scholar 

  165. Bart G, Heilig M, LaForge KS et al (2004) Substantial attributable risk related to a functional µ-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol Psychiatry 9:547–549

    Article  PubMed  CAS  Google Scholar 

  166. Bart G, Kreek MJ, Ott J et al (2005) Increased attributable risk related to a functional µioid receptor gene polymorphism in association with alcohol dependence in central Sweden. Neuropsychopharmacology 30:417–422

    Article  PubMed  CAS  Google Scholar 

  167. Hoehe MR, Kopke K, Wendel B et al (2000) Sequence variability and candidate gene analysis in complex disease: association of µ opioid receptor gene variation with substance dependence. Hum Mol Genet 9:2895–2908

    Article  PubMed  CAS  Google Scholar 

  168. Ray LA, Hutchison KE (2004) A polymorphism of the µ-opioid receptor gene (OPRM-1) and sensitivity to the effects of alcohol in humans. Alcohol Clin Exp Res 28:1789–1795

    Article  PubMed  CAS  Google Scholar 

  169. Kim SG, Kim CM, Kang DH et al (2004) Association of functional opioid receptor genotypes with alcohol dependence in Koreans. Alcohol Clin Exp Res 28:986–990

    Article  PubMed  CAS  Google Scholar 

  170. Kim SA, Kim JW, Song JY et al (2004) Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), µ-opioid receptor gene (OPRM-1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients. Alcohol 34:115–120

    Article  PubMed  CAS  Google Scholar 

  171. Berrettini WH, Lerman CE (2005) Pharmacotherapy and pharmacogenetics of nicotine dependence. Am J Psychiatry 162:1441–1451

    Article  PubMed  Google Scholar 

  172. Lerman C, Wileyto EP, Patterson F et al (2004) The functional µ opioid receptor (OPRM-1) Asn40Asp variant predicts short-term response to nicotine replacement therapy in a clinical trial. Pharmacogenomics J 4:184–192

    Article  PubMed  CAS  Google Scholar 

  173. Bond C, LaForge KS, Tian M et al (1998) Single-nucleotide polymorphism in the human µ opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 95:9608–9613

    Article  PubMed  CAS  Google Scholar 

  174. Kroslak T, LaForge KS, Gianotti RJ et al (2007) The single nucleotide polymorphism A118G alters functional properties of the human µ opioid receptor. J Neurochem 103:77–87

    PubMed  CAS  Google Scholar 

  175. Zhang Y, Wang D, Johnson AD et al (2005) Allelic expression imbalance of human µ opioid receptor (OPRM-1) caused by variant A118G. J Biol Chem 280:32618–32624

    Article  PubMed  CAS  Google Scholar 

  176. Mague SD, Isiegas C, Huang P et al (2009) Mouse model of OPRM-1 (A118G) polymorphism has sex-specific effects on drug-mediated behavior. Proc Natl Acad Sci USA 106:10847–10852

    Article  PubMed  CAS  Google Scholar 

  177. Wang D, Quillan JM, Winans K et al (2001) Single nucleotide polymorphisms in the human µ opioid receptor gene alter basal G protein coupling and calmodulin binding. J Biol Chem 276:34624–34630

    Article  PubMed  CAS  Google Scholar 

  178. Koch T, Kroslak T, Averbeck M et al (2000) Allelic variation S268P of the human {micro}-opioid receptor affects both desensitization and G protein coupling. Mol Pharmacol 58:328–334

    PubMed  CAS  Google Scholar 

  179. Bayerer B, Stamer U, Hoeft A et al (2007) Genomic variations and transcriptional regulation of the human μ-opioid receptor gene. Eur J Pain 11(4):421–427

    Article  PubMed  CAS  Google Scholar 

  180. Lee PW, Wu S, Lee YM (2004) Differential expression of µ-opioid receptor gene in CXBK and B6 mice by Sp1. Mol Pharmacol 66:1580–1584

    Article  PubMed  CAS  Google Scholar 

  181. Bare LA, Mansson E, Yang D (1994) Expression of two variants of the human μ opioid receptor mRNA in SK-N-SH cells and human brain. FEBS Lett 354:213–216

    Article  PubMed  CAS  Google Scholar 

  182. Zimprich A, Simon T, Hollt V (1995) Cloning and expression of an isoform of the rat μ opioid receptor (rMOR-1-B) which differs in agonist induced desensitization from rMOR1. FEBS Lett 359:142–146

    Article  PubMed  CAS  Google Scholar 

  183. Pan YX, Xu J, Bolan E et al (2005) Identification of four novel exon 5 splice variants of the mouse µ-opioid receptor gene: functional consequences of C-terminal splicing. Mol Pharmacol 68:866–875

    PubMed  CAS  Google Scholar 

  184. Kvam TM, Baar C, Rakvag TT et al (2004) Genetic analysis of the murine µ opioid receptor: increased complexity of OPRM gene splicing. J Mol Med 82:250–255

    Article  PubMed  CAS  Google Scholar 

  185. Du Y-L, Pan Y-X, Pasternak GW, Inturrisi CE (1996) Identification of a novel splice variant of the mouse µ opioid receptor. Soc Neurosci 22:1766

    Google Scholar 

  186. Pasternak DA, Pan L, Xu J et al (2004) Identification of three new alternatively spliced variants of the rat µ opioid receptor gene: dissociation of affinity and efficacy. J Neurochem 91:881–890

    Article  PubMed  CAS  Google Scholar 

  187. Pan L, Xu J, Yu R et al (2005) Identification and characterization of six new alternatively spliced variants of the human µ opioid receptor gene, OPRM. Neuroscience 133:209–220

    Article  PubMed  CAS  Google Scholar 

  188. Cadet P, Mantione KJ, Stefano GB (2003) Molecular identification and functional expression of µ 3, a novel alternatively spliced variant of the human µ opiate receptor gene. J Immunol 170:5118–5123

    PubMed  CAS  Google Scholar 

  189. Choi HS, Kim CS, Hwang CK et al (2006) The opioid ligand binding of human µ-opioid receptor is modulated by novel splice variants of the receptor. Biochem Biophys Res Commun 343:1132–1140

    Article  PubMed  CAS  Google Scholar 

  190. Shabalina SA, Zaykin DV, Gris P et al (2009) Expansion of the human {micro}-opioid receptor gene architecture: novel functional variants. Hum Mol Genet 18:1037–1051

    Article  PubMed  CAS  Google Scholar 

  191. Du Y-L, Elliot K, Pan Y-X et al (1997) A splice variant of the µ opioid receptor is present in human SHSY-5Y cells. Soc Neurosci 23:1206

    Google Scholar 

  192. Abbadie C, Pan Y-X, Drake CT et al (2000) Comparative immunohistochemical distributions of carboxy terminus epitopes from the µ opioid receptor splice variants MOR-1D, MOR-1, and MOR-1C in the mouse and rat central nervous systems. Neuroscience 100:141–153

    Article  PubMed  CAS  Google Scholar 

  193. Abbadie C, Pan Y-X, Pasternak GW (2000) Differential distribution in rat brain of µ opioid receptor carboxy terminal splice variants MOR-1C and MOR-1-like immunoreactivity: evidence for region-specific processing. J Comp Neurol 419:244–256

    Article  PubMed  CAS  Google Scholar 

  194. Abbadie C, Pan YX, Pasternak GW (2004) Immunohistochemical study of the expression of exon11-containing mu opioid receptor variants in mouse brain. Neuroscience 127:419–430

    Article  PubMed  CAS  Google Scholar 

  195. Zhang Y, Pan YX, Kolesnikov Y et al (2006) Immunohistochemical labeling of the µ opioid receptor carboxy terminal splice variant mMOR-1B4 in the mouse central nervous system. Brain Res 1099:33–43

    Article  PubMed  CAS  Google Scholar 

  196. Schulz S, Schreff M, Koch T et al (1998) Immunolocalization of two µ-opioid receptor isoforms (MOR-1 and MOR-1B) in the rat central nervous system. Neuroscience 82:613–622

    Article  PubMed  CAS  Google Scholar 

  197. Abbadie C, Pasternak GW, Aicher SA (2001) Presynaptic localization of the carboxy-terminus epitopes of the µ opioid receptor splice variants MOR-1C and MOR-1D in the superficial laminae of the rat spinal cord. Neuroscience 106:833–842

    Article  PubMed  CAS  Google Scholar 

  198. Bolan EA, Pan YX, Pasternak GW (2004) Functional analysis of MOR-1 splice variants of the mouse µ opioid receptor gene OPRM. Synapse 51:11–18

    Article  PubMed  CAS  Google Scholar 

  199. Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430

    Article  PubMed  CAS  Google Scholar 

  200. Koch T, Schulz S, Schroder H et al (1998) Carboxyl-terminal splicing of the rat μ opioid receptor modulates agonist-mediated internalization and receptor resensitization. J Biol Chem 273:13652–13657

    Article  PubMed  CAS  Google Scholar 

  201. Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    Article  PubMed  CAS  Google Scholar 

  202. Von Zastrow M, Svingos A, Haberstock-Debic H et al (2003) Regulated endocytosis of opioid receptors: cellular mechanisms and proposed roles in physiological adaptation to opiate drugs. Curr Opin Neurobiol 13:348–353

    Article  CAS  Google Scholar 

  203. Deng HB, Yu YK, Pak Y et al (2000) Role for the C-terminus in agonist-induced? opioid receptor phosphorylation and desensitization. Biochemistry 39:5492–5499

    Article  PubMed  CAS  Google Scholar 

  204. Wang H, Guang W, Barbier E et al (2007) Mu opioid receptor mutant, T394A, abolishes opioid-mediated adenylyl cyclase superactivation [miscellaneous article]. Neuroreport 18:1969–1973

    Article  PubMed  CAS  Google Scholar 

  205. Koch T, Schulz S, Pfeiffer M et al (2001) C-terminal splice variants of the mouse µ-opioid receptor differ in morphine-induced internalization and receptor resensitization. J Biol Chem 276:31408–31414

    Article  PubMed  CAS  Google Scholar 

  206. Abbadie C, Pasternak GW (2001) Differential in vivo internalization of MOR-1 and MOR-1C by morphine. Neuroreport 12(14):3069–3072

    Article  PubMed  CAS  Google Scholar 

  207. Tanowitz M, von Zastrow M (2003) A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem 278:45978–45986

    Article  PubMed  CAS  Google Scholar 

  208. Tanowitz M, Hislop JN, von Zastrow M (2008) Alternative splicing determines the post-endocytic sorting fate of G protein-coupled receptors. J Biol Chem 283:35614–35621

    Article  PubMed  CAS  Google Scholar 

  209. Pasternak GW, Pan YX (2000) Antisense mapping: assessing functional significance of genes and splice variants. Meth Enzymol 314:51–60

    Article  PubMed  CAS  Google Scholar 

  210. Standifer KM, Chien C-C, Wahlestedt C et al (1994) Selective loss of μ opioid analgesia and binding by antisense oligodeoxynucleotides to a μ opioid receptor. Neuron 12:805–810

    Article  PubMed  CAS  Google Scholar 

  211. Tseng LF, Collins KA (1994) Antisense oligodeoxynucleotide to a δ-opioid receptor given intrathecally blocks i.c.v. administered β-endorphin-induced antinociception in the mouse. Life Sci 55:PL27–PL131

    Article  Google Scholar 

  212. Chien C-C, Brown G, Pan Y-X et al (1994) Blockade of U50, 488H analgesia by antisense oligodeoxynucleotides to a Κ-opioid receptor. Eur J Pharmacol 253:R7–R8

    Article  PubMed  CAS  Google Scholar 

  213. Rossi GC, Pan Y-X, Cheng J et al (1994) Blockade of morphine analgesia by an antisense oligodeoxynucleotide against the µ receptor. Life Sci 54:PL375–PL379

    Article  PubMed  CAS  Google Scholar 

  214. Pan YX, Cheng J, Xu J et al (1995) Cloning and functional characterization through antisense mapping of a Κ 3-related opioid receptor. Mol Pharmacol 47:1180–1188

    PubMed  CAS  Google Scholar 

  215. Rossi GC, Pan YX, Brown GP et al (1995) Antisense mapping the MOR-1 opioid receptor: evidence for alternative splicing and a novel morphine-6-ß-glucuronide receptor. FEBS Lett 369:192–196

    Article  PubMed  CAS  Google Scholar 

  216. Leventhal L, Cole JL, Rossi GC et al (1996) Antisense oligodeoxynucleotides against the MOR-1 clone alter weight and ingestive responses in rats. Brain Res 719:78–84

    Article  PubMed  CAS  Google Scholar 

  217. Matthes HWD, Maldonado R, Simonin F et al (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383:819–823

    Article  PubMed  CAS  Google Scholar 

  218. Schuller AG, King MA, Zhang J et al (1999) Retention of heroin and morphine-6 beta-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nature Neurosci 2:151–156

    Article  PubMed  CAS  Google Scholar 

  219. Sora I, Takahashi N, Funada M et al (1997) Opiate receptor knockout mice define μ receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 94:1544–1549

    Article  PubMed  CAS  Google Scholar 

  220. Loh HH, Liu HC, Cavalli A et al (1998) μ-Opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Brain Res Mol Brain Res 54:321–326

    Article  PubMed  CAS  Google Scholar 

  221. Kitanaka N, Sora I, Kinsey S et al (1998) No heroin or morphine 6-beta-glucuronide analgesia in μ-opioid receptor knockout mice. Eur J Pharmacol 355:R1–R3

    Article  PubMed  CAS  Google Scholar 

  222. Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Xian Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pan, YX., Pasternak, G.W. (2011). Molecular Biology of Mu Opioid Receptors. In: Pasternak, G. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-993-2_6

Download citation

Publish with us

Policies and ethics