Skip to main content

Pharmacology of Opioid Drugs

  • Chapter
  • First Online:

Part of the book series: The Receptors ((REC))

Abstract

Extracts of the opium poppy have been used for the relief of pain since antiquity. The active principle, morphine, continues to this day to be one of the most effective ways of alleviating moderate and severe pain. It is also one of the most addicting drugs known to man. This chapter describes the history of research on opium and the pharmacologic properties of morphine and related drugs. It briefly summarizes critical studies in the development of current knowledge of their antinociceptive actions; their effects on arousal, respiration, locomotor activity, and behavioral reinforcement; endocrine effects; and actions on peripheral tissues including the gastrointestinal tract, the genital tract, and the heart and circulatory system. The last section provides an overview of the absorption, metabolism, and distribution of morphine and other major opiate drugs.

Keywords

* The opinions and assertions contained herein are the private opinions of the author. They are not to be construed as official or reflecting the views of the Uniformed Services University of the Health Sciences, or the U.S. Department of Defense, or the Government of the United States.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Serturner FWA (1805) J Pharmazie 13.234. (cited by Eddy and May [4]).

    Google Scholar 

  2. Gulland JM, Robinson R (1925) Constitution of codeine and thebaine. Mem Proc Manchester Lit Phil Soc 69:79–86

    CAS  Google Scholar 

  3. Gates M, Tschudi G (1956) The synthesis of morphine. J Am Chem Soc 78:1380–1393

    Article  CAS  Google Scholar 

  4. Eddy NB, May EL (1973) The search for a better analgesic. Science 181:407–414

    Article  PubMed  CAS  Google Scholar 

  5. Brownstein MJ (1993) A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci USA 90:5391–5393

    Article  PubMed  CAS  Google Scholar 

  6. Wikler A (1950) Sites and mechanisms of action of morphine and related drugs in the central nervous system. J Pharmacol Exp Ther 100:435–506

    PubMed  CAS  Google Scholar 

  7. Lewis JW, Bentley KW, Cowan A (1971) Narcotic analgesics and antagonists. Ann Rev Pharmacol 11:241–270

    Article  PubMed  CAS  Google Scholar 

  8. Martin WR (1988) The evolution of concepts of opioid receptors. In: Pasternak GW (ed) The opiate receptors. Humana Press, Clifton, pp 3–22

    Chapter  Google Scholar 

  9. Andrews HL, Himmelsbach CK (1944) Relation of the intensity of the morphine abstinence syndrome to dosage. J Pharmacol Exp Ther 81:288–293

    CAS  Google Scholar 

  10. Dole VP, Nyswander ME, Kreek MJ (1966) Narcotic blockade. Arch Int Med 118:304–309

    Article  CAS  Google Scholar 

  11. Beckett AH, Casy AF (1954) Synthetic analgesics: sterochemical considerations. J Pharm Pharmacol 6:986–1001

    Article  PubMed  CAS  Google Scholar 

  12. Portoghese PS (1965) A new concept on the mode of interaction of narcotic analgesics with receptors. J Med Chem 8:609–616

    Article  PubMed  CAS  Google Scholar 

  13. Portoghese PS (1966) Stereochemical factors and receptor interactions associated with narcotic analgesics. J Pharm Sci 55:865–887

    Article  PubMed  CAS  Google Scholar 

  14. Gero A, Capetola RJ (1976) Exploration of drug action on a morphine receptor by methods of enzyme kinetics. J Theor Biol 61:129–142

    Article  PubMed  CAS  Google Scholar 

  15. Goldstein A, Sheehan P (1969) Tolerance to opioid narcotics. I. Tolerance to the “running fit” caused by levorphanol in the mouse. J Pharmacol Exp Ther 169:175–184

    PubMed  CAS  Google Scholar 

  16. Dingledine R, Goldstein A (1973) Lethality of the morphinan isomers levorphanol and dextrorphan. Br J Pharmacol 48:718–720

    Article  PubMed  CAS  Google Scholar 

  17. Unna K (1943) Antagonistic effect of N-allylnormorphine upon morphine. J Pharmacol Exp Ther 79:27–31

    CAS  Google Scholar 

  18. Lasagna L, Beecher HK (1954) Analgesic effectiveness of nalorphine and nalorphine–morphine combinations in man. J Pharmacol Exp Ther 112:356–363

    PubMed  CAS  Google Scholar 

  19. Houde RW, Wallenstein SL (1956) Clinical studies of morphine–nalorphine combinations. Fed Proc 15:440–441

    Google Scholar 

  20. Foldes FF, Lunn JN, Moore J et al (1963) N-allylnoroxy–morphone: a new potent narcotic antagonist. Am J Med Sci 245:23–30

    Article  PubMed  CAS  Google Scholar 

  21. Jasinski DR, Martin WR, Haertzen CA (1967) The human pharmacology and abuse potential of N-allylnoroxymorphone (naloxone). J Pharmacol Exp Ther 157:420–426

    PubMed  CAS  Google Scholar 

  22. Beckett AH, Casy AF, Harper NJ (1956) Analgesics and their antagonists: some steric and chemical considerations. III. The influence of the basic group on the biological response. J Pharm Pharmacol 8:874–883

    Article  PubMed  CAS  Google Scholar 

  23. Trendelenburg P (2006) Physiological and pharmacological investigations of small intestinal peristalsis. Translation of the article “Physiologische und pharmakologische Versuche uber die Dunndarmperistaltik,” Arch Exp Pathol Pharmakol 81:55–129, 1917. Naunyn–Schmiedebergs Arch Pharmacol 373:101–133

    Google Scholar 

  24. Trendelenburg P (1917) Physiologische und Pharmkologische Versuche uber die Dunndarmperistaltik. Naunyn–Schmiedeberg’s Arch Path Pharmak 81:55–128

    Google Scholar 

  25. Schaumann O, Giovannini M, Jochum K (1952) Morphinlike analgesics and intestinal motions. I. Spasmolysis and peristalsis. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 215:460–468

    Article  PubMed  CAS  Google Scholar 

  26. Trendelenburg U (1957) The action of morphine on the superior cervical ganglion and on the nictitating membrane of the cat. Br J Pharmacol Chemother 12:79–85

    Article  PubMed  CAS  Google Scholar 

  27. Kosterlitz HW, Robinson JA (1957) Inhibition of the peristaltic reflex of the isolated guinea–pig ileum. J Physiol 136:249–262

    PubMed  CAS  Google Scholar 

  28. Paton WDM (1957) The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol 12:119–124

    CAS  Google Scholar 

  29. Cox BM, Weinstock M (1966) The effect of analgesic drugs on the release of acetylcholine from electrically stimulated guinea-pig ileum. Br J Pharmacol Chemother 27:81–92

    Article  PubMed  CAS  Google Scholar 

  30. Kosterlitz HW, Watt AJ (1968) Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br J Pharmacol Chemother 33:266–276

    Article  PubMed  CAS  Google Scholar 

  31. Goldstein A, Lowney LI, Pal BK (1971) Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci USA 68:1742–1747

    Article  PubMed  CAS  Google Scholar 

  32. Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    Article  PubMed  CAS  Google Scholar 

  33. Terenius L (1973) Stereospecific uptake of narcotic analgesics by a subcellular fraction of the guinea-pig ileum. Uppsala J Med Sci 78:150–152

    Article  CAS  Google Scholar 

  34. Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol 32:317–320

    Article  CAS  Google Scholar 

  35. Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat-brain homogenate. Proc Natl Acad Sci USA 70:1947–1949

    Article  PubMed  CAS  Google Scholar 

  36. Collier HOJ (1972) Pharmacological mechanisms of drug dependence. Pharmacol Future Man 1:65–76

    Google Scholar 

  37. Snyder SH, Matthysse S (1975) Opiate receptor mechanisms. MIT Press, Cambridge

    Google Scholar 

  38. Terenius L, Wahlstrom A (1975) Search for an endogenous ligand for the opiate receptor. Acta Physiol Scand 94:74–81

    Article  PubMed  CAS  Google Scholar 

  39. Pasternak GW, Wilson HA, Snyder SH (1975) Differential effects of protein-modifying reagants on receptor binding of opiate agonists and antagonists. Mol Pharmacol 11:340–351

    CAS  PubMed  Google Scholar 

  40. Hughes J (1975) Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res 88:295–308

    Article  CAS  PubMed  Google Scholar 

  41. Hughes J, Smith TW, Kosterlitz HW et al (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    Article  PubMed  CAS  Google Scholar 

  42. Cox BM, Opheim KE, Teschemacher H et al (1975) A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties. Life Sci 16:1777–1782

    Article  PubMed  CAS  Google Scholar 

  43. Teschemacher H, Opheim KE, Cox BM et al (1975) A peptide-like substance from pituitary that acts like morphine. I. Isolation. Life Sci 16:1771–1775

    Article  PubMed  CAS  Google Scholar 

  44. Bradbury AF, Smyth DG, Snell CR (1976) Prohormones of beta-melanotropin (beta-melanocyte-stimulating hormone, beta-MSH) and corticotropin (adrenocorticotropic hormone, ACTH): structure and activation. Ciba Found Symp 41:61–75

    PubMed  CAS  Google Scholar 

  45. Cox BM, Gentleman S, Su TP et al (1976) Further characterization of morphine-like peptides (endorphins) from pituitary. Brain Res 115:285–296

    Article  PubMed  CAS  Google Scholar 

  46. Goldstein A, Fischli W, Lowney LI et al (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci USA 78:7219–7223

    Article  PubMed  CAS  Google Scholar 

  47. Nakanishi S, Inoue A, Kita T et al (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-B-lipotropin precursor. Nature 278:423–427

    Article  PubMed  CAS  Google Scholar 

  48. Noda M, Furutani Y, Takahashi H et al (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 295:202–206

    Article  PubMed  CAS  Google Scholar 

  49. Kakidani H, Furutani Y, Takahashi H et al (1982) Cloning and sequence analysis of cDNA for porcine B-neo-endorphin/dynorphin precursor. Nature 298:245–249

    Article  PubMed  CAS  Google Scholar 

  50. Martin WR (1967) Opioid antagonists. Pharmacol Rev 19:463–521

    PubMed  CAS  Google Scholar 

  51. Martin WR, Eades CG, Thompson JA et al (1976) The effects of morphine and nalorphine–like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  52. Lord JAH, Waterfield AA, Hughes J et al (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    Article  PubMed  CAS  Google Scholar 

  53. Chang K-J, Miller RJ, Cuatrecasas P (1978) Interaction of enkephalin with opiate receptors in intact cultured cells. Mol Pharmacol 14:961–970

    PubMed  CAS  Google Scholar 

  54. Chang K-J, Cuatrecasas P (1979) Multiple opiate receptors. J Biol Chem 254:2610–2618

    PubMed  CAS  Google Scholar 

  55. Mollereau C, Parmentier M, Mailleux P et al (1994) ORL-1, a novel member of the opioid family: cloning, functional expression and localization. FEBS Lett 341:33–38

    Article  PubMed  CAS  Google Scholar 

  56. Pan Y-X, Cheng J, Xu J et al (1994) Cloning, expression and classification of a Κ3-related opioid receptor using antisense oligodeoxynucleotides. Reg Peptides 54:217–218

    Article  CAS  Google Scholar 

  57. Pan Y-X, Cheng J, Xu J et al (1995) Cloning and functional characterization through antisense mapping of a Κ3-related opioid receptor. Mol Pharmacol 47:1180–1188

    PubMed  CAS  Google Scholar 

  58. Bunzow JR, Saez C, Mortrud M et al (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a μ, δ, or Κ opioid receptor type. FEBS Lett 347:284–288

    Article  PubMed  CAS  Google Scholar 

  59. Meunier JC, Mollereau C, Toll L et al (1995) Isolation and structure of the endogenous agonist of the opioid receptor like ORL1 receptor. Nature 377:532–535

    Article  PubMed  CAS  Google Scholar 

  60. Reinscheid RK, Nothacker HP, Bourson A et al (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792–794

    Article  PubMed  CAS  Google Scholar 

  61. Mollereau C, Simons MJ, Soularue P et al (1996) Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene. Proc Natl Acad Sci USA 93:8666–8670

    Article  PubMed  CAS  Google Scholar 

  62. Nothacker HP, Reinscheid RK, Mansour A et al (1996) Primary structure and tissue distribution of the orphanin FQ precursor. Proc Natl Acad Sci USA 93:8677–8682

    Article  PubMed  CAS  Google Scholar 

  63. Pert A, Yaksh TL (1974) Sites of morphine induced analgesia in primate brain: relation to pain pathways. Brain Res 80:135–140

    Article  PubMed  CAS  Google Scholar 

  64. Kuhar MJ, Pert CB, Snyder SH (1973) Regional distribution of opiate receptor binding in monkey and human brain. Nature 245:447–450

    Article  PubMed  CAS  Google Scholar 

  65. Pert CB, Kuhar MJ, Snyder SH (1976) Opiate receptor: autoradiographic localization in rat brain. Proc Natl Acad Sci USA 73:3729–3733

    Article  PubMed  CAS  Google Scholar 

  66. Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. II. The brain stem. Brain Res 129:1–12

    Article  PubMed  CAS  Google Scholar 

  67. Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res 134:393–405

    Article  PubMed  CAS  Google Scholar 

  68. Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res 124:53–67

    Article  PubMed  CAS  Google Scholar 

  69. Goodman RR, Snyder SH, Kuhar MJ et al (1980) Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proc Natl Acad Sci USA 77:6239–6243

    Article  PubMed  CAS  Google Scholar 

  70. Foote RW, Maurer R (1982) Autoradiographic localization of opiate Κ-receptors in the guinea-pig brain. Eur J Pharmacol 85:99–103

    Article  PubMed  CAS  Google Scholar 

  71. Goodman RR, Snyder SH (1982) Κ opiate receptors localized by autoradiography to deep layers of cerebral cortex: relation to sedative effects. Proc Natl Acad Sci USA 79:5703–5707

    Article  PubMed  CAS  Google Scholar 

  72. Goodman RR, Pasternak GW (1985) Visualization of mu1 opiate receptors in rat brain using a computerized autoradiographic subtraction technique. Proc Natl Acad Sci USA 82:6667–6671

    Article  PubMed  CAS  Google Scholar 

  73. Arvidsson U, Riedl M, Chakrabarti S et al (1995) The Κ-opioid receptor is primarily postsynaptic: combined immunohistochemical localization of the receptor and endogenous opioids. Proc Natl Acad Sci USA 92:5062–5066

    Article  PubMed  CAS  Google Scholar 

  74. Anton B, Husain M, Kaufman D et al (1994) Localization of µ, d, and Κ opioid receptor mRNAs in human brain. Reg Peptides 54:11–12

    Article  CAS  Google Scholar 

  75. Delfs JM, Yu L, Reisine T et al (1994) The distribution and regulation of mu opioid receptor mRNA in rat basal ganglia. Reg Peptides 54:79–80

    Article  Google Scholar 

  76. Drake CT, Patterson TA, Simmons ML et al (1994) Distribution of Κ opioid receptor-like immunoreactivity in guinea-pig hippocampal formation. Reg Peptides 54:89–90

    Article  CAS  Google Scholar 

  77. Mansour A, Fox CA, Burke S et al (1994) µ, d, and Κ opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350:412–438

    Article  PubMed  CAS  Google Scholar 

  78. Arvidsson U, Riedl M, Chakrabarti S et al (1995) Distribution and targeting of a d-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 15:3328–3341

    PubMed  CAS  Google Scholar 

  79. Bausch SB, Patterson TA, Appleyard SM et al (1995) Immunocytochemical localization of d opioid receptors in mouse brain. J Chem Neuroanat 8:175–189

    Article  PubMed  CAS  Google Scholar 

  80. Elde R, Arvidsson U, Riedl M et al (1995) Distribution of neuropeptide receptors: new views of peptidergic neurotransmission made possible by antibodies to opioid receptors. Ann NY Acad Sci 757:390–404

    Article  PubMed  CAS  Google Scholar 

  81. Mansour A, Fox CA, Burke S et al (1995) Immunohistochemical localization of the cloned d-opioid receptor in the rat CNS. J Chem Neuroanat 8:283–305

    Article  PubMed  CAS  Google Scholar 

  82. Mansour A, Fox CA, Burke S et al (1994) Immunohistochemical localization of the µ opioid receptors. Reg Peptides 54:179–180

    Article  CAS  Google Scholar 

  83. Henriksen G, Willoch F (2008) Imaging of opioid receptors in the central nervous system. Brain 131:1171–1196

    Article  PubMed  Google Scholar 

  84. Frost JJ, Wagner HN Jr, Dannals RF et al (1985) Imaging opiate receptors in the human brain by positron tomography. J Comput Assist Tomogr 9:231–236

    Article  PubMed  CAS  Google Scholar 

  85. Jones AK, Qi LY, Fujirawa T et al (1991) In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci Lett 126:25–28

    Article  PubMed  CAS  Google Scholar 

  86. Jones AK, Cunningham VJ, Ha-Kawa S et al (1994) Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 33:909–916

    Article  PubMed  CAS  Google Scholar 

  87. Armstrong D, Dry RM, Keele CA et al (1953) Observations on chemical excitants of cutaneous pain in man. J Physiol 120:326–351

    PubMed  CAS  Google Scholar 

  88. Lim RK, Guzman F, Rodgers DW et al (1964) Site of action of narcotic and non-narcotic analgesics determined by blocking bradykinin-evoked visceral pain. Arch Int Pharmacodyn Ther 152:25–58

    PubMed  CAS  Google Scholar 

  89. Tsou K, Jang CS (1964) Studies on the sites of analgesic action of morphine intracerebral microinjection. Sci Sin 7:1099–1109

    Google Scholar 

  90. Herz A, Albus K, Metys J et al (1970) On the central sites for the antinociceptive action of morphine and fentanyl. Neuropharmacology 9:539–551

    Article  PubMed  CAS  Google Scholar 

  91. Osborne PB, Vaughan CW, Wilson HI et al (1996) Opioid inhibition of rat periaqueductal grey neurones with identified projections to rostral ventromedial medulla in vitro. J Physiol 490:383–389

    PubMed  CAS  Google Scholar 

  92. Satoh M, Takagi H (1971) Enhancement by morphine of the central descending inhibitory influence on spinal sensory transmission. Eur J Pharmacol 14:60–65

    Article  Google Scholar 

  93. Dey PK, Feldberg W (1976) Analgesia produced by morphine when acting from the liquor space. Br J Pharmacol 58:383–393

    Article  PubMed  CAS  Google Scholar 

  94. Akaike A, Shibata T, Satoh M et al (1978) Analgesia induced by microinjection of morphine into, and electrical stimulation of, the nucleus reticularis paragigantocellularis of rat medulla oblongata. Neuropharmacology 17:775–778

    Article  PubMed  CAS  Google Scholar 

  95. Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245

    Article  PubMed  CAS  Google Scholar 

  96. Pan ZZ, Tershner SA, Fields HL (1997) Cellular mechanism for anti-analgesic action of agonists of the µ-opioid receptor. Nature 389:382–385

    Article  PubMed  CAS  Google Scholar 

  97. Pan ZZ, Hirakawa N, Fields HL (2000) A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron 26:515–522

    Article  PubMed  CAS  Google Scholar 

  98. Yaksh TL, Rudy TA (1977) Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J Pharmacol Exp Ther 202:411–428

    PubMed  CAS  Google Scholar 

  99. Wang JK, Nauss LA, Thomas JE (1979) Pain relief by intrathecally applied morphine in man. Anesthesiology 50:149–151

    Article  PubMed  CAS  Google Scholar 

  100. Yaksh TL, Jessell TM, Gamse R et al (1980) Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature 286:155–157

    Article  PubMed  CAS  Google Scholar 

  101. Aicher SA, Sharma S, Cheng PY et al (2000) Dual ultrastructural localization of m-opiate receptors and substance P in the dorsal horn. Synapse 36:12–20

    Article  PubMed  CAS  Google Scholar 

  102. D’Mello R, Dickenson AH (2008) Spinal cord mechanisms of pain. Br J Anaesth 101:8–16

    Article  PubMed  Google Scholar 

  103. Iadarola MJ, Douglass J, Civelli O et al (1988) Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: evidence using cDNA hybridization. Brain Res 455:205–212

    Article  PubMed  CAS  Google Scholar 

  104. Vanderah TW, Laughlin T, Lashbrook JM et al (1996) Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats: blockade by MK-801 but not naloxone. Pain 68:275–281

    Article  PubMed  CAS  Google Scholar 

  105. Gardell LR, Ibrahim M, Wang R et al (2004) Mouse strains that lack spinal dynorphin upregulation after peripheral nerve injury do not develop neuropathic pain. Neuroscience 123:43–52

    Article  PubMed  CAS  Google Scholar 

  106. Lamotte C, Pert CB, Snyder SH (1976) Opiate receptor binding in primate spinal cord: distribution and changes after dorsal root section. Brain Res 112:407–412

    Article  PubMed  CAS  Google Scholar 

  107. Stein C, Hassan AH, Przewlocki R et al (1990) Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc Natl Acad Sci USA 87:5935–5939

    Article  PubMed  CAS  Google Scholar 

  108. Mousa SA, Straub RH, Schafer M et al (2007) Beta-endorphin, Met-enkephalin and corresponding opioid receptors within synovium of patients with joint trauma, osteoarthritis and rheumatoid arthritis. Ann Rheum Dis 66:871–879

    Article  PubMed  CAS  Google Scholar 

  109. Yeung JC, Rudy TA (1980) Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive action as revealed by concurrent intrathecal and intracerebroventricular injections of morphine. J Pharmacol Exp Ther 215:633–642

    PubMed  CAS  Google Scholar 

  110. Rossi GC, Pasternak GW, Bodnar RJ (1993) Synergistic brainstem interactions for morphine analgesia. Brain Res 624:171–180

    Article  PubMed  CAS  Google Scholar 

  111. Kolesnikov YA, Jain S, Wilson R et al (1996) Peripheral morphine analgesia: synergy with central sites and a target of morphine tolerance. J Pharmacol Exp Ther 279:502–506

    PubMed  CAS  Google Scholar 

  112. Janssen PA (1965) The evolution of the butyrophenones, haloperidol, and trifluperidol, from meperidine-like 4-phenylpiperidines. Int Rev Neurobiol 8:221–263

    Article  PubMed  CAS  Google Scholar 

  113. Monnier M, Sauer R, Hatt AM (1970) The activating effect of histamine on the central nervous system. Int Rev Neurobiol 12:265–305

    Article  PubMed  CAS  Google Scholar 

  114. Aston-Jones G, Chiang C, Alexinsky T (1991) Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog Brain Res 88:501–520

    Article  PubMed  CAS  Google Scholar 

  115. Peyron C, Tighe DK, van den Pol AN et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    PubMed  CAS  Google Scholar 

  116. Aghajanian GK (1982) Central noradrenergic neurons: a locus for the functional interplay between alpha-2 adrenoceptors and opiate receptors. J Clin Psychiatry 43:20–24

    PubMed  CAS  Google Scholar 

  117. North RA, Williams JT (1985) On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol 364:265–280

    PubMed  CAS  Google Scholar 

  118. Aghajanian GK (1978) Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature 276:186–188

    Article  PubMed  CAS  Google Scholar 

  119. Kilduff TS, Peyron C (2000) The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci 23:359–365

    Article  PubMed  CAS  Google Scholar 

  120. Georgescu D, Zachariou V, Barrot M et al (2003) Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci 23:3106–3111

    PubMed  CAS  Google Scholar 

  121. Li Y, van den Pol AN (2008) µ-opioid receptor–mediated depression of the hypothalamic hypocretin/orexin arousal system 1. J Neurosci 28:2814–2819

    Article  PubMed  CAS  Google Scholar 

  122. Huang ZL, Qu WM, Li WD et al (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA 98:9965–9970

    Article  PubMed  CAS  Google Scholar 

  123. Zhou Y, Bendor J, Hofmann L et al (2006) µ-opioid receptor and orexin/hypocretin mRNA levels in the lateral hypothalamus and striatum are enhanced by morphine withdrawal. J Endocrinol 191:137–145

    Article  PubMed  CAS  Google Scholar 

  124. Pattinson KT (2008) Opioids and the control of respiration. Br J Anaesth 100:747–758

    Article  PubMed  CAS  Google Scholar 

  125. Weil JV, McCullough RE, Kline JS et al (1975) Diminished ventilatory response to hypoxia and hypercapnia after morphine in normal man. N Engl J Med 292:1103–1106

    Article  PubMed  CAS  Google Scholar 

  126. Wharton J, Polak JM, Pearse AGE et al (1980) Enkephalin-, VIP- and substance P-like immunoreactivity in the carotid body. Nature 284:269–271

    Article  PubMed  CAS  Google Scholar 

  127. Poole SL, Deuchars J, Lewis DI et al (2007) Subdivision-specific responses of neurons in the nucleus of the tractus solitarius to activation of µ-opioid receptors in the rat. J Neurophysiol 98:3060–3071

    Article  PubMed  CAS  Google Scholar 

  128. Ling GSF, Spiegel K, Nishimura S et al (1983) Dissociation of morphine’s analgesic and respiratory depressant actions. Eur J Pharmacol 86:487–488

    Article  PubMed  CAS  Google Scholar 

  129. Ling GSF, Spiegel K, Lockhart SH et al (1985) Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms. J Pharmacol Exp Ther 232:149–155

    PubMed  CAS  Google Scholar 

  130. Mutolo D, Bongianni F, Cinelli E et al (2008) Modulation of the cough reflex by antitussive agents within the caudal aspect of the nucleus tractus solitarii in the rabbit. Am J Physiol Regul Integr Comp Physiol 295:R243–R251

    Article  PubMed  CAS  Google Scholar 

  131. Editorial (1969) Pharmacology and the punter. Nature 222:111–111

    Google Scholar 

  132. Judson BA, Goldstein A (1978) Genetic control of opiate-induced locomotor activity in mice. J Pharmacol Exp Ther 206:56–60

    PubMed  CAS  Google Scholar 

  133. Michael-Titus A, Dourmap N, Costentin J (1989) µ and delta opioid receptors control differently the horizontal and vertical components of locomotor activity in mice. Neuropeptides 13:235–242

    Article  PubMed  CAS  Google Scholar 

  134. Beleskin DB, Samardzic R, Krstic SK (1982) β-Endorphin-induced psychomotor excitation in the cat. Physiol Behav 28:195–197

    Article  PubMed  CAS  Google Scholar 

  135. Borison HL (1989) Area postrema: chemoreceptor circumventricular organ of the medulla oblongata. Prog Neurobiol 32:351–390

    Article  PubMed  CAS  Google Scholar 

  136. Carpenter DO, Briggs DB, Strominger N (1984) Peptide-induced emesis in dogs. Br Brain Res 11:277–281

    Article  CAS  Google Scholar 

  137. Bhandari P, Bingham S, Andrews PL (1992) The neuropharmacology of loperamide-induced emesis in the ferret: the role of the area postrema, vagus, opiate, and 5-HT3 receptors. Neuropharmacology 31:735–742

    Article  PubMed  CAS  Google Scholar 

  138. Wynn RL, Essien E, Thut PD (1993) The effects of different antiemetic agents on morphine-induced emesis in ferrets. Eur J Pharmacol 241:47–54

    Article  PubMed  CAS  Google Scholar 

  139. Howlett TA, Rees LH (1986) Endogenous opioid peptides and hypothalamo-pituitary function. Annu Rev Physiol 48:527–536

    Article  PubMed  CAS  Google Scholar 

  140. Cicero TJ, Meyer ER, Gabriel SM et al (1980) Morphine exerts testosterone-like effects in the hypothalamus of the castrated male rat. Brain Res 202:151–164

    PubMed  CAS  Google Scholar 

  141. Burks TF, Long JP (1967) Release of intestinal 5-hydroxytryptamine by morphine and related agents. J Pharmacol Exp Ther 156:267–276

    PubMed  CAS  Google Scholar 

  142. Burks TF (1973) Mediation by 5-hydroxytryptamine of morphine stimulant actions in dog intestine. J Pharmacol Exp Ther 185:530–539

    PubMed  CAS  Google Scholar 

  143. Heyman JS, Williams CL, Burks TF et al (1988) Dissociation of opioid antinociception and central gastrointestinal propulsion in the mouse: studies with naloxonazine. J Pharmacol Exp Ther 245:238–243

    PubMed  CAS  Google Scholar 

  144. Paul D, Pasternak GW (1988) Differential blockade by naloxonazine of two d opiate actions: analgesia and inhibition of gastrointestinal transit. Eur J Pharmacol 149:403–404

    Article  PubMed  CAS  Google Scholar 

  145. Dragonetti M, Bianchetti A, Sacilotto R et al (1983) Levallorphan methyl iodide (SR 58002), a potent narcotic antagonist with peripheral selectivity superior to that of other quaternary compounds. Life Sci 33(Suppl 1):477–480

    Article  CAS  PubMed  Google Scholar 

  146. Fukuda H, Suenaga K, Tsuchida D et al (2006) The selective µ-opioid receptor antagonist, alvimopan, improves delayed GI transit of postoperative ileus in rats. Brain Res 1102:63–70

    Article  PubMed  CAS  Google Scholar 

  147. Thomas J, Karver S, Cooney GA et al (2008) Methylnaltrexone for opioid–induced constipation in advanced illness. N Engl J Med 358:2332–2343

    Article  PubMed  CAS  Google Scholar 

  148. Cox BM, Rosenberger JG, Douglass J (1987) Chromatographic characterization of dynorphin and [Leu5]enkephalin immunoreactivity in guinea pig and rat testis. Reg Peptides 19:1–12

    Article  CAS  Google Scholar 

  149. Sheehan MJ, Hayes AG, Tyers MB (1988) Lack of evidence for ε-opioid receptors in the rat vas deferens. Eur J Pharmacol 154:237–245

    Article  PubMed  CAS  Google Scholar 

  150. Weihe E, McKnight AT, Corbett AD et al (1985) Proenkephalin- and prodynorphin- derived opioid peptides in guinea-pig heart. Neuropeptides 5:453–456

    Article  PubMed  CAS  Google Scholar 

  151. Gross GJ (2003) Role of opioids in acute and delayed preconditioning 294. J Mol Cell Cardiol 35:709–718

    Article  PubMed  CAS  Google Scholar 

  152. Zatta AJ, Kin H, Yoshishige D et al (2008) Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. Am J Physiol Heart Circ Physiol 294:H1444–H1451

    Article  PubMed  CAS  Google Scholar 

  153. Varvel JR, Shafer SL, Hwang SS et al (1989) Absorption characteristics of transdermally administered fentanyl. Anesthesiology 70:928–934

    Article  PubMed  CAS  Google Scholar 

  154. Miller JW, Anderson HH (1954) The effect of N-demethylation on certain pharmacologic actions of morphine, codeine, and meperidine in the mouse. J Pharmacol Exp Ther 112:191–196

    PubMed  CAS  Google Scholar 

  155. Christrup LL (1997) Morphine metabolites. Acta Anaesthesiol Scand 41:116–122

    Article  PubMed  CAS  Google Scholar 

  156. Ramirez J, Innocenti F, Schuetz EG et al (2004) CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes. Drug Metab Dispos 32:930–936

    PubMed  CAS  Google Scholar 

  157. Ferrari A, Coccia CP, Bertolini A et al (2004) Methadone – metabolism, pharmacokinetics and interactions. Pharmacol Res 50:551–559

    Article  PubMed  CAS  Google Scholar 

  158. Sindrup SH, Brosen K (1995) The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics 5:335–346

    Article  PubMed  CAS  Google Scholar 

  159. Paul D, Standifer KM, Inturrisi CE et al (1989) Pharmacological characterization of morphine-6B-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 251:477–483

    PubMed  CAS  Google Scholar 

  160. Thompson SJ, Koszdin K, Bernards CM (2000) Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 92:1392–1399

    Article  PubMed  CAS  Google Scholar 

  161. Hamabe W, Maeda T, Kiguchi N et al (2007) Negative relationship between morphine analgesia and P-glycoprotein expression levels in the brain. J Pharmacol Sci 105:353–360

    Article  PubMed  CAS  Google Scholar 

  162. Kalvass JC, Olson ER, Cassidy MP et al (2007) Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein–competent mice: assessment of unbound brain EC50, u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther 323:346–355

    Article  PubMed  CAS  Google Scholar 

  163. Aquilante CL, Letrent SP, Pollack GM et al (1999) Increased brain P-glycoprotein in morphine tolerant rats. Life Sci 66:L47–L51

    Article  Google Scholar 

  164. King M, Su W, Chang A et al (2001) Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci 4:268–274

    Article  PubMed  CAS  Google Scholar 

  165. Schinkel AH, Wagenaar E, Mol CAAM et al (1996) P-glycoprotein in the blood–barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524

    Article  PubMed  CAS  Google Scholar 

  166. Ross JR, Riley J, Taegetmeyer AB et al (2008) Genetic variation and response to morphine in cancer patients: catechol-O-methyltransferase and multidrug resistance-1 gene polymorphisms are associated with central side effects. Cancer 112:1390–1403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Cox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cox, B.M. (2011). Pharmacology of Opioid Drugs. In: Pasternak, G. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-993-2_3

Download citation

Publish with us

Policies and ethics