Skip to main content

Monoclonal Antibody Therapy for Cancer

  • Chapter
  • First Online:
Experimental and Applied Immunotherapy
  • 877 Accesses

Abstract

Since the approval of rituximab (Rituxan®) for the treatment of B-cell non-Hodgkin’s lymphoma (B-NHL) in 1997, nine additional monoclonal antibodies (mAbs) have been approved by the FDA for cancer therapy. Currently, more than 1,300 clinical studies registered at ClinicalTrials.gov investigate mAb therapy of cancer, including more than 150 phase III clinical trials. In concert with their clinical acceptance, mAbs in oncology have become commercially attractive. Four out of the ten approved mAbs have reached blockbuster status with annual sales exceeding $1 billion. The top three selling cancer drugs are all mAbs. These numbers indicate the potential of mAbs to play a leading role in cancer therapy for decades to come. Although mAbs provide a proven drug platform beyond the proof-of-concept stage, future success will depend on broadening and potentiating mAb therapy through antigen discovery, antibody engineering, use of mAbs in combination with chemotherapy and radiotherapy, and personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.landesbioscience.com/journals/mabs/about#background. Accessed June 23, 2010.

  2. 2.

    Maggon K (2009) Global monoclonal antibodies market review 2008. http://knol.google.com. Accessed January 9, 2010.

  3. 3.

    Maggon K (2009) Global cancer market review 2008. http://knol.google.com. Accessed January 9, 2010.

References

  1. Blattman JN, Greenberg PD (2004) Cancer immunotherapy: a treatment for the masses. Science 305:200–205

    Article  PubMed  CAS  Google Scholar 

  2. Dimitrov DS, Marks JD (2009) Therapeutic antibodies: current state and future trends – is a paradigm change coming soon? Methods Mol Biol 525:1–27, xiii

    Article  PubMed  CAS  Google Scholar 

  3. Reichert JM (2008) Monoclonal antibodies as innovative therapeutics. Curr Pharm Biotechnol 9:423–430

    Article  PubMed  CAS  Google Scholar 

  4. Baker M (2005) Upping the ante on antibodies. Nat Biotechnol 23:1065–1072

    Article  PubMed  CAS  Google Scholar 

  5. Reichert JM, Valge-Archer VE (2007) Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6:349–356

    Article  PubMed  CAS  Google Scholar 

  6. Reichert JM, Rosensweig CJ, Faden LB et al (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078

    Article  PubMed  CAS  Google Scholar 

  7. Scott CT (2005) The problem with potency. Nat Biotechnol 23:1037–1039

    Article  PubMed  CAS  Google Scholar 

  8. Major EO (2010) Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu Rev Med 61:35–47

    Article  PubMed  CAS  Google Scholar 

  9. Carson KR, Evens AM, Richey EA et al (2009) Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the research on adverse drug events and reports project. Blood 113:4834–4840

    Article  PubMed  CAS  Google Scholar 

  10. Suntharalingam G, Perry MR, Ward S et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355:1018–1028

    Article  PubMed  CAS  Google Scholar 

  11. Waldmann TA (2006) Effective cancer therapy through immunomodulation. Annu Rev Med 57:65–81

    Article  PubMed  CAS  Google Scholar 

  12. Berger R, Rotem-Yehudar R, Slama G et al (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14:3044–3051

    Article  PubMed  CAS  Google Scholar 

  13. Fong L, Small EJ (2008) Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol 26:5275–5283

    Article  PubMed  CAS  Google Scholar 

  14. Hwang WY, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36:3–10

    Article  PubMed  CAS  Google Scholar 

  15. Tabrizi MA, Tseng CM, Roskos LK (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11:81–88

    Article  PubMed  CAS  Google Scholar 

  16. Cheson BD, Leonard JP (2008) Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med 359:613–626

    Article  PubMed  CAS  Google Scholar 

  17. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  PubMed  CAS  Google Scholar 

  18. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  PubMed  CAS  Google Scholar 

  19. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  20. Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140

    PubMed  CAS  Google Scholar 

  21. Weiner LM (2007) Building better magic bullets – improving unconjugated monoclonal antibody therapy for cancer. Nat Rev Cancer 7:701–706

    Article  PubMed  CAS  Google Scholar 

  22. Attia P, Phan GQ, Maker AV et al (2005) Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 23:6043–6053

    Article  PubMed  CAS  Google Scholar 

  23. Hodi FS, Butler M, Oble DA et al (2008) Immunologic and clinical effects of antibody blockade of cytotoxic T-lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A 105:3005–3010

    Article  PubMed  CAS  Google Scholar 

  24. Lipton A, Steger GG, Figueroa J et al (2007) Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol 25:4431–4437

    Article  PubMed  CAS  Google Scholar 

  25. Milenic DE, Brady ED, Brechbiel MW (2004) Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov 3:488–499

    Article  PubMed  CAS  Google Scholar 

  26. Weiner GJ (2007) Monoclonal antibody mechanisms of action in cancer. Immunol Res 39:271–278

    Article  PubMed  CAS  Google Scholar 

  27. Gerber HP, Ferrara N (2005) Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 65:671–680

    PubMed  CAS  Google Scholar 

  28. Grunwald V, Hidalgo M (2003) Developing inhibitors of the epidermal growth factor receptor for cancer treatment. J Natl Cancer Inst 95:851–867

    Article  PubMed  Google Scholar 

  29. Stel AJ, Ten Cate B, Jacobs S et al (2007) Fas receptor clustering and involvement of the death receptor pathway in rituximab-mediated apoptosis with concomitant sensitization of lymphoma B cells to Fas-induced apoptosis. J Immunol 178:2287–2295

    PubMed  CAS  Google Scholar 

  30. Pedersen IM, Buhl AM, Klausen P et al (2002) The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood 99:1314–1319

    Article  PubMed  CAS  Google Scholar 

  31. Wilson TR, Johnston PG, Longley DB (2009) Anti-apoptotic mechanisms of drug resistance in cancer. Curr Cancer Drug Targets 9:307–319

    Article  PubMed  CAS  Google Scholar 

  32. Rubinfeld B, Upadhyay A, Clark SL et al (2006) Identification and immunotherapeutic targeting of antigens induced by chemotherapy. Nat Biotechnol 24:205–209

    Article  PubMed  CAS  Google Scholar 

  33. Lane D (2006) Designer combination therapy for cancer. Nat Biotechnol 24:163–164

    Article  PubMed  CAS  Google Scholar 

  34. Salfeld JG (2007) Isotype selection in antibody engineering. Nat Biotechnol 25:1369–1372

    Article  PubMed  CAS  Google Scholar 

  35. Cragg MS, Glennie MJ (2004) Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103:2738–2743

    Article  PubMed  CAS  Google Scholar 

  36. Racila E, Link BK, Weng WK et al (2008) A polymorphism in the complement component C1qa correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin Cancer Res 14:6697–6703

    Article  PubMed  CAS  Google Scholar 

  37. Clynes RA, Towers TL, Presta LG et al (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446

    Article  PubMed  CAS  Google Scholar 

  38. Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947

    Article  PubMed  CAS  Google Scholar 

  39. Musolino A, Naldi N, Bortesi B et al (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26:1789–1796

    Article  PubMed  CAS  Google Scholar 

  40. Satoh M, Iida S, Shitara K (2006) Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Expert Opin Biol Ther 6:1161–1173

    Article  PubMed  CAS  Google Scholar 

  41. Desjarlais JR, Lazar GA, Zhukovsky EA et al (2007) Optimizing engagement of the immune system by anti-tumor antibodies: an engineer’s perspective. Drug Discov Today 12:898–910

    Article  PubMed  CAS  Google Scholar 

  42. Hilchey SP, Hyrien O, Mosmann TR et al (2009) Rituximab immunotherapy results in the induction of a lymphoma idiotype-specific T-cell response in patients with follicular lymphoma: support for a “vaccinal effect” of rituximab. Blood 113:3809–3812

    Article  PubMed  CAS  Google Scholar 

  43. Weiner LM, Dhodapkar MV, Ferrone S (2009) Monoclonal antibodies for cancer immunotherapy. Lancet 373:1033–1040

    Article  PubMed  CAS  Google Scholar 

  44. Pastan I, Hassan R, Fitzgerald DJ et al (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6:559–565

    Article  PubMed  CAS  Google Scholar 

  45. Kreitman RJ, Squires DR, Stetler-Stevenson M et al (2005) Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol 23:6719–6729

    Article  PubMed  CAS  Google Scholar 

  46. Kreitman RJ, Stetler-Stevenson M, Margulies I et al (2009) Phase II trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with hairy cell leukemia. J Clin Oncol 27:2983–2990

    Article  PubMed  CAS  Google Scholar 

  47. Scott AM, Welt S (1997) Antibody-based immunological therapies. Curr Opin Immunol 9:717–722

    Article  PubMed  CAS  Google Scholar 

  48. Kaspar M, Zardi L, Neri D (2006) Fibronectin as target for tumor therapy. Int J Cancer 118:1331–1339

    Article  PubMed  CAS  Google Scholar 

  49. Davis TA, Maloney DG, Czerwinski DK et al (1998) Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin’s lymphoma without eradicating the malignant clone. Blood 92:1184–1190

    PubMed  CAS  Google Scholar 

  50. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357

    Article  PubMed  CAS  Google Scholar 

  51. Demarest SJ, Glaser SM (2008) Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Devel 11:675–687

    PubMed  CAS  Google Scholar 

  52. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  CAS  Google Scholar 

  53. Morrison SL, Johnson MJ, Herzenberg LA et al (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81:6851–6855

    Article  PubMed  CAS  Google Scholar 

  54. Riechmann L, Clark M, Waldmann H et al (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    Article  PubMed  CAS  Google Scholar 

  55. Ritter G, Cohen LS, Williams C, Jr. et al (2001) Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res 61:6851–6859

    PubMed  CAS  Google Scholar 

  56. Aarden L, Ruuls SR, Wolbink G (2008) Immunogenicity of anti-tumor necrosis factor antibodies-toward improved methods of anti-antibody measurement. Curr Opin Immunol 20:431–435

    Article  PubMed  CAS  Google Scholar 

  57. DeNardo GL, Bradt BM, Mirick GR et al (2003) Human antiglobulin response to foreign antibodies: therapeutic benefit? Cancer Immunol Immunother 52:309–316

    PubMed  CAS  Google Scholar 

  58. Chung CH, Mirakhur B, Chan E et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358:1109–1117

    Article  PubMed  CAS  Google Scholar 

  59. Clark M (2000) Antibody humanization: a case of the ‘emperor’s new clothes’? Immunol Today 21:397–402

    Article  PubMed  CAS  Google Scholar 

  60. Jakobovits A, Amado RG, Yang X et al (2007) From xenomouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol 25:1134–1143

    Article  PubMed  CAS  Google Scholar 

  61. Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23:1117–1125

    Article  PubMed  CAS  Google Scholar 

  62. Bain B, Brazil M (2003) Adalimumab. Nat Rev Drug Discov 2:693-694

    Article  PubMed  CAS  Google Scholar 

  63. Rader C (2001) Antibody libraries in drug and target discovery. Drug Discov Today 6:36–43

    Article  PubMed  CAS  Google Scholar 

  64. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116

    Article  PubMed  CAS  Google Scholar 

  65. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725

    Article  PubMed  CAS  Google Scholar 

  66. Rader C, Sinha SC, Popkov M et al (2003) Chemically programmed monoclonal antibodies for cancer therapy: adaptor immunotherapy based on a covalent antibody catalyst. Proc Natl Acad Sci U S A 100:5396–5400

    Article  PubMed  CAS  Google Scholar 

  67. Hofer T, Thomas JD, Burke TR Jr. et al (2008) An engineered selenocysteine defines a unique class of antibody derivatives. Proc Natl Acad Sci U S A 105:12451–12456

    Article  PubMed  CAS  Google Scholar 

  68. Woodnutt G, Violand B, North M (2008) Advances in protein therapeutics. Curr Opin Drug Discov Dev 11:754–761

    CAS  Google Scholar 

  69. Hudson PJ, Souriau C (2003) Engineered antibodies. Nat Med 9:129–134

    Article  PubMed  CAS  Google Scholar 

  70. Nelson AL, Reichert JM (2009) Development trends for therapeutic antibody fragments. Nat Biotechnol 27:331–337

    Article  PubMed  CAS  Google Scholar 

  71. Holt LJ, Herring C, Jespers LS et al (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21:484–490

    Article  PubMed  CAS  Google Scholar 

  72. Vincke C, Loris R, Saerens D et al (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284:3273–3284

    Article  PubMed  CAS  Google Scholar 

  73. Chames P, Baty D (2009) Bispecific antibodies for cancer therapy. Curr Opin Drug Discov Dev 12:276–283

    CAS  Google Scholar 

  74. Baeuerle PA, Kufer P, Bargou R (2009) BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 11:22–30

    PubMed  CAS  Google Scholar 

  75. Bargou R, Leo E, Zugmaier G et al (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321:974–977

    Article  PubMed  CAS  Google Scholar 

  76. Wu C, Ying H, Grinnell C et al (2007) Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25:1290–1297

    Article  PubMed  CAS  Google Scholar 

  77. Bostrom J, Yu SF, Kan D et al (2009) Variants of the antibody Herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323:1610–1614

    Article  PubMed  CAS  Google Scholar 

  78. Shen J, Zhu Z (2008) Catumaxomab, a rat/murine hybrid trifunctional bispecific monoclonal antibody for the treatment of cancer. Curr Opin Mol Ther 10:273–284

    PubMed  CAS  Google Scholar 

  79. Niculescu-Duvaz I (2004) Technology evaluation: EMD-273063, EMD lexigen. Curr Opin Mol Ther 6:559–566

    PubMed  CAS  Google Scholar 

  80. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  PubMed  CAS  Google Scholar 

  81. O’Mahony D, Bishop MR (2006) Monoclonal antibody therapy. Front Biosci 11:1620–1635

    Article  PubMed  Google Scholar 

  82. Rader C, Bishop MR (2007) Monoclonal antibodies in cancer therapy. In: Kaufman HL, Wolchok JD (eds) General principles of tumor immunotherapy: basic and clinical applications of tumor immunology. Springer, Dordrecht

    Google Scholar 

  83. Grillo-Lopez AJ (2003) Rituximab (rituxan/MabThera): the first decade (1993–2003). Expert Rev Anticancer Ther 3:767–779

    Article  PubMed  CAS  Google Scholar 

  84. Cvetkovic RS, Perry CM (2006) Rituximab: a review of its use in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs 66:791–820

    Article  PubMed  CAS  Google Scholar 

  85. Coiffier B, Lepage E, Briere J et al (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346:235–242

    Article  PubMed  CAS  Google Scholar 

  86. Feugier P, Van Hoof A, Sebban C et al (2005) Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 23:4117–4126

    Article  PubMed  CAS  Google Scholar 

  87. Habermann TM, Weller EA, Morrison VA et al (2006) Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 24:3121–3127

    Article  PubMed  CAS  Google Scholar 

  88. Hiddemann W, Kneba M, Dreyling M et al (2005) Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with chop alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 106:3725–3732

    Article  PubMed  CAS  Google Scholar 

  89. Teeling JL, Mackus WJ, Wiegman LJ et al (2006) The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 177:362–371

    PubMed  CAS  Google Scholar 

  90. Castillo J, Milani C, Mendez-Allwood D (2009) Ofatumumab, a second-generation anti-CD20 monoclonal antibody, for the treatment of lymphoproliferative and autoimmune disorders. Expert Opin Investig Drugs 18:491–500

    Article  PubMed  CAS  Google Scholar 

  91. Witzig TE, Gordon LI, Cabanillas F et al (2002) Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 20:2453–2463

    Article  PubMed  CAS  Google Scholar 

  92. Witzig TE, Molina A, Gordon LI et al (2007) Long-term responses in patients with recurring or refractory B-cell non-Hodgkin lymphoma treated with yttrium 90 ibritumomab tiuxetan. Cancer 109:1804–1810

    Article  PubMed  CAS  Google Scholar 

  93. Czuczman MS, Emmanouilides C, Darif M et al (2007) Treatment-related myelodysplastic syndrome and acute myelogenous leukemia in patients treated with ibritumomab tiuxetan radioimmunotherapy. J Clin Oncol 25:4285–4292

    Article  PubMed  CAS  Google Scholar 

  94. Morschhauser F, Radford J, Van Hoof A et al (2008) Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol 26:5156–5164

    Article  PubMed  CAS  Google Scholar 

  95. Peipp M, Dechant M, Valerius T (2008) Effector mechanisms of therapeutic antibodies against ERBB receptors. Curr Opin Immunol 20:436–443

    Article  PubMed  CAS  Google Scholar 

  96. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  PubMed  CAS  Google Scholar 

  97. Crone SA, Zhao YY, Fan L et al (2002) Erbb2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465

    Article  PubMed  CAS  Google Scholar 

  98. Chien KR (2006) Herceptin and the hear – a molecular modifier of cardiac failure. N Engl J Med 354:789–790

    Article  PubMed  CAS  Google Scholar 

  99. Joensuu H, Kellokumpu-Lehtinen PL, Bono P et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354:809–820

    Article  PubMed  CAS  Google Scholar 

  100. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  PubMed  CAS  Google Scholar 

  101. Jonker DJ, O’Callaghan CJ, Karapetis CS et al (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357:2040–2048

    Article  PubMed  CAS  Google Scholar 

  102. Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765

    Article  PubMed  CAS  Google Scholar 

  103. Amado RG, Wolf M, Peeters M et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    Article  PubMed  CAS  Google Scholar 

  104. Allegra CJ, Jessup JM, Somerfield MR et al (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27:2091–2096

    Article  PubMed  Google Scholar 

  105. Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712

    Article  PubMed  CAS  Google Scholar 

  106. Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578

    Article  PubMed  CAS  Google Scholar 

  107. Hopper-Borge EA, Nasto RE, Ratushny V et al (2009) Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin Ther Targets 13:339–362

    Article  PubMed  CAS  Google Scholar 

  108. Bedard PL, de Azambuja E, Cardoso F (2009) Beyond trastuzumab: overcoming resistance to targeted HER-2 therapy in breast cancer. Curr Cancer Drug Targets 9:148–162

    Article  PubMed  CAS  Google Scholar 

  109. Dancey JE, Chen HX (2006) Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Discov 5:649–659

    Article  PubMed  CAS  Google Scholar 

  110. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39

    Article  PubMed  CAS  Google Scholar 

  111. Lu D, Zhang H, Koo H et al (2005) A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 280:19665–19672

    Article  PubMed  CAS  Google Scholar 

  112. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  113. Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  114. Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360:563–572

    Article  PubMed  CAS  Google Scholar 

  115. Hecht JR, Mitchell E, Chidiac T et al (2009) A randomized phase IIIb trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 27:672–680

    Article  PubMed  CAS  Google Scholar 

  116. Mayer RJ (2009) Targeted therapy for advanced colorectal cancer – more is not always better. N Engl J Med 360:623–625

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank members of my laboratory for comments on the manuscript, in particular Lauren R. Skeffington and Drs. Sivasubramanian Baskar, Thomas Hofer, Brian C. Shaffer, and Jiahui Yang. This work was supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Rader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rader, C. (2011). Monoclonal Antibody Therapy for Cancer. In: Medin, J., Fowler, D. (eds) Experimental and Applied Immunotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-980-2_3

Download citation

Publish with us

Policies and ethics