Skip to main content

Spinal Cord Injury Pathophysiology and Progenitor Cell Therapy

  • Chapter
  • First Online:
Book cover Progenitor Cell Therapy for Neurological Injury

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 522 Accesses

Abstract

Spinal cord injury (SCI) has devastating consequences, and there is currently no therapeutic intervention designed to repair the injury. Rather, most interventions (including some progenitor cell therapy approaches) are designed to minimize the consequences of the secondary cascade of deleterious pathophysiological events. The biomechanical differences in the pediatric versus adult spine may make the pediatric patient more anatomically amenable to progenitor cell therapies. This chapter describes SCI pathophysiology, injury mechanisms relevant to progenitor cell therapy, and the strategic approaches to the use of progenitor cell therapy for SCI. The preclinical proof-of-concept studies and translation into early clinical trials are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AARF:

Atlanto-axial rotator fixation

AOD:

Atlanto-occipital dislocation

ASIA:

American Spinal Injury Association

BBB:

Blood–brain barrier

BM-MNC:

Bone marrow-derived mononuclear cell

BMP-4:

Bone morphogenic protein-4

CMG:

Cystometrogram

CNS:

Central nervous system

CSPG:

Chondroitin sulfate proteoglycan

EOEMA:

Ethoxy methacrylate

FDA:

US Food and Drug Administration

GCSF:

Granulocyte colony stimulation factor

GDA:

GRP-derived astrocyte

GFAP:

Glial fibrillary acidic protein

GFP:

Green fluorescent protein

GM-CSF:

Granulocyte macrophage colony-stimulating factor

GRP:

Glial restricted precursor cell

HEMA:

Hydroxyethyl methacrylate

HPMA:

S-Hydroxypropyl methacrylamide

hESC-OPC:

Human embryonic stem cell-derived oligodendroglial precursors cell

IV:

Intravenous

LP:

Lumbar puncture

LPS:

Lipopolysaccharide

MAPC:

Map of spinal column

MMP:

Matrix metalloproteinase

MNC:

Mononuclear cell

MPC:

Model spinal cord injury

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stem cell

PSCI:

Pediatric spinal cord injury

SCI:

Spinal cord injury

SCI-IDS:

Spinal cord injury-induced immune depression syndrome

SCIWORA:

Spinal cord injury without radiographic abnormality

SCNPC:

Spinal cord neural progenitor cell

SSEP:

Serial somatosensory evoked potential

TBI:

Traumatic brain injury

References

  • Ajmo CT, Vernon DOL, Collier L, Hall AA, Garbuzova-Davis S, Willing A, Pennypacker KR (2008) The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res 86:2227–2234.

    Article  PubMed  CAS  Google Scholar 

  • Alden TD, Ellenbogen RG (2008) Spinal cord injuries. In: Albright AL, Pollack IF, Adelson PD (ed) Principals and practice of pediatric neurosurgery, 2nd edn. Thieme Medical Publishers, New York.

    Google Scholar 

  • Amariglio N, Hirshberg A, Scheithaure BW, Coyen Y, Loewenthal R, et al. (2009) Donor-derived brain tumor following neuronal stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6:0221–0231.

    Article  CAS  Google Scholar 

  • Anderson MJ, Schutt AH (1980) Spinal injury in children: a review of 156 cases seen from 1950–1978. Mayo Clin Proc 55:499–504.

    PubMed  CAS  Google Scholar 

  • Ankeny DP, Guan Z, Popovich PG (2009) B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. JCI 119:2990–2999.

    Article  PubMed  CAS  Google Scholar 

  • Aufdermaur M (1974) Spinal injuries in juveniles: necroscopy findings in twelve cases. J Bone Joint Surg Br 56:513–519.

    Google Scholar 

  • Baily DK (1952) The normal cervical spine in infants and children. Radiology 59:712–719.

    Google Scholar 

  • Bakshi A, Barshinger A, Swanger S, Madhvani V, et al. (2006) Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion: a novel method for minimally invasive cell transplantation. J Neurotrauma 23:55–65.

    Article  PubMed  Google Scholar 

  • Brakman R, Penning L (1971) Injuries of the cervical spine. Amsterdam, Excerpta Medica.

    Google Scholar 

  • Busch SA, Horn KP, Silver DJ, Silver J (2009) Overcoming macrophage-mediated axonal dieback following CNS injury. J Neurosci 29:9967–9976.

    Article  PubMed  CAS  Google Scholar 

  • Callera F (2006) Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol 34:30–31.

    Article  Google Scholar 

  • Callera F, de Melo CM (2007) Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD-45+ cells’ migration into the injured site. Stem Cell Dev 16:46–51.

    Article  Google Scholar 

  • Cattell HS, Flitzer DL (1965) Psuedosubluxation and other normal variations in the cervical spine in children: A study of one hundred and sixty children. J Bone Joint Surg Am 47:1295–1309.

    PubMed  CAS  Google Scholar 

  • Charles ED, Fine PR, Stover SL, et al. (1978) The costs of spinal cord injury. Paraplegia 15:302–310.

    Article  PubMed  CAS  Google Scholar 

  • Chen CT, Foo NH, Liu WS, Chen SH (2008) Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms. Pediatr Neonatol 49:77–83.

    Article  PubMed  Google Scholar 

  • Costigan M, Befort K, Karchewski L, Griffin RS, D’Urso D, et al. (2002) Replicate high density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 3:16.

    Article  PubMed  Google Scholar 

  • Costigan M, Moss A, Latremoliere A, Johnston C, Verma-Gandhu M, et al. (2009) T-cell infiltration and signaling in adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J Neurosci 29:14415–14422.

    Article  PubMed  CAS  Google Scholar 

  • Cristante AF, Barros-Filho TEP, Tatsui N, Mendrone A, Caldas JG, et al. (2009) Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 47:727–739.

    Article  Google Scholar 

  • Davies JE, Proschel C, Shang N, Novle M, Mayer-Proschel M, Davies SJA (2008) Transplanted astrocytes derived from BMP- or CNTF treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury. J Biol 7:24.1–24.20.

    Article  Google Scholar 

  • Deda H, Inci MC, Kurekci AE, et al. (2008) Treatment of chronic injured spinal cord patients with autologous bone marrow-derived hematopoetic stem cell transplantation: 1 year follow-up. Cytotherapy 10:565–574.

    Article  PubMed  CAS  Google Scholar 

  • Dekaban GA, Thawer S (2009) Pathogenic antibodies are active participants in spinal cord injury. JCI 119:2881–2884.

    Article  PubMed  CAS  Google Scholar 

  • DeVivo MJ, Kartus PL, Stover SL, Rutt RD, Fine PR (1989) Cause of death for patients with spinal cord injuries. Arch Intern Med 149:1761–1766.

    Article  PubMed  CAS  Google Scholar 

  • Eftekharpour E, Carimi-Abdolrezaee S, Fehlings MG (2008) Current status of experimental cell replacement approaches to spinal cord injury. Neurosurg Focus 24:E19.

    Article  PubMed  Google Scholar 

  • Fehlings MG, Sekhon LHS, Tator C (2001) The role and timing of decompression in acute spinal cord injury: What do we know? What should we do? Spine 26:S101–S110.

    Article  PubMed  CAS  Google Scholar 

  • Fesmire FM, Luten RC (1989) The pediatric cervical spine: developmental anatomy and clinical aspects. J Emerg Med 7:133–142.

    Article  PubMed  CAS  Google Scholar 

  • Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, et al. (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692.

    Article  PubMed  CAS  Google Scholar 

  • Fitch MT, Doller C, Combs CK, et al. (1999) Cellular and molecular mechanisms of Glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19:8182–8198.

    PubMed  CAS  Google Scholar 

  • Frankel HL, Hancock DO, Hyslop G, et al. (1969) The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. Paraplegia 7:179–192.

    Article  PubMed  CAS  Google Scholar 

  • Grill RJ, Tuszynski MH (1999) Axonal responses to CNS injury. In: Tuszynski MH, Kordower J (eds) CNS regeneration. Academic Press, New York.

    Google Scholar 

  • Hadley MD, Zaabramski JM, Browner CM, et al. (1988) Pediatric spinal trauma: a review of 122 cases of spinal cord and vertebral column injuries. J Neurosurg 68:18–24.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton MD, Myles ST (1992a) Pediatric spinal injury: review of 61 deaths. J Neurosurg 77:705–708.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton MG, Myles ST (1992b) Pediatric spinal injury: review of 174 hospital admissions. J Neurosurg 77:700–704.

    Article  PubMed  CAS  Google Scholar 

  • Hill SA, Miller CA, Kosnik EF, Hunt WE (1989) Pediatric neck injuries: a clinical study. J Neurosurg 60:700–706.

    Google Scholar 

  • Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J (2008) Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci 26:9330–9341.

    Article  Google Scholar 

  • Jan FK, Wilson PE (2004) A survey of chronic pain in the pediatric spinal cord injury population. J Spinal Cord Med 27 (Suppl 1):S50–S53.

    PubMed  Google Scholar 

  • Johnson J, Wang MY (2008) Spinal cord injury-induced immunodepression syndrome. Neurosurgery 63:N13.

    Article  Google Scholar 

  • Johnson PJ, Parker SR, Sakiyama-Elbert SE (2010) Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J Biomed Mater Res Part A 92:152–163.

    Article  Google Scholar 

  • Jones LL, Yamaguchi Y, Stallcup WB, et al. (2002) J Neurosci 22:2792–2803.

    PubMed  CAS  Google Scholar 

  • Kalfas I, Wilberger J, Goldberg A, Prostko ER (1988) Magnetic resonance imaging in acute spinal cord trauma. Neurosurgery 23:295–299.

    Article  PubMed  CAS  Google Scholar 

  • Kang KS, Kim KW, Oh YH, et al. (2005) A 37 year old spinal cord injured female patient, transplanted with multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy 7:368–373.

    Article  PubMed  Google Scholar 

  • Kierstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, et al. (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705.

    Article  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, et al. (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity of regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13445.

    Article  PubMed  CAS  Google Scholar 

  • McDonald JW (1999) Repairing the damaged spinal cord. Sci Am 281:65–73.

    Article  Google Scholar 

  • Nemeth K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, et al. (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49.

    Article  PubMed  CAS  Google Scholar 

  • Nishio Y, Koda M, Kamada T, et al. (2006) The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hind limb function in adult rats. J Neurosurg Spine 5:424–433.

    Article  PubMed  Google Scholar 

  • Obermair FJ, Schroter A, Thallmair M (2008) Endogenous neural progenitor cells a therapeutic target after spinal cord injury. Physiology 23:296–304.

    Article  PubMed  Google Scholar 

  • Osenbach RK, Menezes AH (1989) Spinal cord injury without radiographic abnormality in children. Pediatric Neurosci 15:168–175.

    Article  CAS  Google Scholar 

  • Pang D (1996) Spinal cord injury without radiographic abnormality Spinal cord injury without radiographic abnormality (SCIWORA) in children. In: Betz R (ed) The child with a spinal cord injury. American Academy of Orthopaedic Surgeons, Rosemont, IL.

    Google Scholar 

  • Pang D (2001) Pediatric neurosurgery: surgery of the developing nervous system, 4th edn. WB Saunders, Philadelphia.

    Google Scholar 

  • Pang D, Wilberger JE (1980) Traumatic atlantooccipital dislocation with survival: case report and review. Neurosurgery 7:503–508.

    Article  PubMed  CAS  Google Scholar 

  • Popovich PG, Cuan Z, Wei P, et al. (1999) Depletion of hematogenous macrophages promotes partial hind limb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158:351–365.

    Article  PubMed  CAS  Google Scholar 

  • Prass K, Meisel C, Hoflich C, et al. (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulaiton. J Exp Med 198:725–736.

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 17:939–946.

    Article  PubMed  CAS  Google Scholar 

  • Reigger T, Conrad S, Liu K, Schluesener HJ, Adibzahdeh M, Schwab JM (2007) Spinal cord injury-induced immune depression syndrome (SCI-IDS). Eur J Neurosci 25:1743–1747.

    Article  Google Scholar 

  • Reigger T, Conrad S, Schluesener HJ, Kaps HP, Badke A, et al. (2009) Immune depression syndrome following human spinal cord injury (SCI): a pilot study. Neuroscience 158:1194–1199.

    Article  Google Scholar 

  • Ruge JR, Sinson GP, McClone DG, Cerullo LJ (1988) Pediatric spinal injury in the very young. J Neurosurg 68:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Sattler R, Xiong Z, Lu W, et al. (2000) Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J Neurosci 20:22–33.

    PubMed  CAS  Google Scholar 

  • Schultz SS (2005) Adult stem cell application in spinal cord injury. Current Drug Targets 6:63–73.

    Article  PubMed  CAS  Google Scholar 

  • Schwab ME (2002) Repairing the injured spinal cord. Science 295:1029–1031.

    Article  PubMed  CAS  Google Scholar 

  • Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ (2003) A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 103:249–257.

    Article  PubMed  Google Scholar 

  • Sullivan CR, Bruwer AJ, Harris E (1958) Hypermobility of the cervical spine in children: a pitfall in the diagnosis of cervical dislocation. Am J Surg 95:636–640.

    Article  PubMed  CAS  Google Scholar 

  • Sykova E, Jendelova P, Urdizikova L, et al. (2006) Bone marrow stem cells and polymer hydrogels – two strategies for spinal cord injury repair. Cell Mol Neurobiol 26:1113–1129.

    Article  PubMed  CAS  Google Scholar 

  • Todury G (1971) The cervical spine: its development and changes during life. Acta Orthop Belg 25:602–607.

    Google Scholar 

  • Townsend EH Jr., Rowe ML (1952) Mobility of the upper cervical spine in health and disease. Pediatrics 10:567–573.

    PubMed  Google Scholar 

  • Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9:418–428.

    Article  PubMed  CAS  Google Scholar 

  • Urdzikova L, Jendelova P, Glogarova K, et al. (2006) Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotraum 23:1379–1391.

    Article  Google Scholar 

  • Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Sanberg CD, et al. (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199:191–200.

    Article  PubMed  CAS  Google Scholar 

  • Von Torklus D, Gehle W (1972) The upper cervical spine. Grune & Stratton, New York

    Google Scholar 

  • Webb JK, Broughton RBK, McSweeney T, et al. (1976) Hidden flexion injury of the cervical spine. J Bone Joint Surg Br 58:322–327.

    PubMed  CAS  Google Scholar 

  • Wehagen L, Budh CN, Hultling C, Molander C (2004) Neuropathic pain after traumatic spinal cord injury – relations to gender, spinal level, completeness, and age at time of injury. Spinal Cord 42:665–673.

    Article  Google Scholar 

  • Widenfalk J, Lundstromer K, Jubran M, et al. (2001) Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 21:3457–3475.

    PubMed  CAS  Google Scholar 

  • Woiciechowshy C, Asadullah K, Nestler D, et al. (2002) Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat Med 4:808–813.

    Article  Google Scholar 

  • Wu SF, Suzuki Y, Kitada M, Kataoka K, Kitaura K, et al. (2002) New method for transplantation of neurosphere cells into injured spinal cord through cerebrospinal fluid in rat. Neurosci Lett 318:81–84.

    Article  PubMed  CAS  Google Scholar 

  • Young VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511.

    Article  Google Scholar 

  • Yoon SH, Shim YS, Park YH, Chung JK, Ham JH, et al. (2007) Complete spinal cord injury treatment using autologous bone marrow transplantation and bone marrow stimulation with granulocyte macrophage-colony factor: phase I/II clinical trial. Stem Cells 25:2066–2073.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Baumgartner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baumgartner, J.E. (2011). Spinal Cord Injury Pathophysiology and Progenitor Cell Therapy. In: Charles, S. (eds) Progenitor Cell Therapy for Neurological Injury. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-965-9_8

Download citation

Publish with us

Policies and ethics