Skip to main content

Oxidative Stress in Alzheimer’s Disease: A Critical Appraisal of the Causes and the Consequences

  • Chapter
  • First Online:
Studies on Experimental Models

Abstract

Recent advances have shown oxidative damage as one of the hallmark characteristics in neurons in Alzheimer’s Disease (AD). Importantly, such damage is present at the very earliest stages of disease, including mild cognitive impairment, and persists throughout the course of the disease. Therefore, oxidative imbalance is likely important not only as an initiator of disease but may also contribute in propagating the disease process. One aspect of critical importance is developing treatments that target the source rather than the “collateral damage,” but of course this requires knowledge of the source. This review highlights the role of oxidative stress in AD with the aim of critically evaluating the role of oxidative stress as a cause or effect in the development of this disease. In doing so, we consider the sources of reactive oxidative species and their role in AD as well as how oxidative responses intertwine with the pathological hallmarks of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendlin, B.B., et al. (2010) Midlife predictors of Alzheimer’s disease. Maturitas 65(2):131–137

    Article  PubMed  CAS  Google Scholar 

  2. Salminen, A., et al. (2009) ER stress in Alzheimer’s disease: a novel neuronal trigger for inflammation and Alzheimer’s pathology. Journal of Neuroinflammation 6(1): 41

    Article  PubMed  Google Scholar 

  3. Beyer, N., et al. (2009) ZnT3 mRNA levels are reduced in Alzheimer’s disease post-mortem brain. Molecular Neurodegeneration 4(1): 53

    Article  PubMed  Google Scholar 

  4. Zhu, H.L., et al. (2009) Quantitative characterization of heparin binding to Tau protein: Implication for inducer mediated Tau filament formation. Journal of Biological Chemistry 285(6):3592–3599

    Article  PubMed  Google Scholar 

  5. Nicolia, V., et al. (2010) B vitamin deficiency promotes tau phosphorylation through regulation of gsk3β and pp2A. Journal of Alzheimer’s Disease 19(3):895–907

    PubMed  CAS  Google Scholar 

  6. Isobe, C., T. Abe, and Y. Terayama (2009) Increase in the oxidized/total coenzyme Q-10 ratio in the cerebrospinal fluid of Alzheimer’s disease patients. Dement Geriatr Cogn Disord 28(5):449–454

    Article  PubMed  CAS  Google Scholar 

  7. Andersen, J.K. (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10 Suppl: S18–25

    Article  PubMed  Google Scholar 

  8. Sayre, L.M., M.A. Smith, and G. Perry (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8(7): 721–38

    Article  PubMed  CAS  Google Scholar 

  9. Sharma, S., et al. (2009) Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience 161(4):1037–1044

    Article  PubMed  CAS  Google Scholar 

  10. Roberts, G.W., et al. (1991) [beta]A4 amyloid protein deposition in brain after head trauma. The Lancet 338(8780):1422–1423

    Article  CAS  Google Scholar 

  11. Pratico, D., et al. (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21(12): 4183–4187

    PubMed  CAS  Google Scholar 

  12. Nunomura, A., et al. (2010) Intraneuronal amyloid beta accumulation and oxidative damage to nucleic acids in Alzheimer’s Disease. Neurobiol Dis 37(3):731–737

    Article  PubMed  CAS  Google Scholar 

  13. Rottkamp, C.A., et al. (2002) The state versus amyloid-beta: the trial of the most wanted criminal in Alzheimer’s Disease. Peptides 23(7): 1333–1341

    Article  PubMed  CAS  Google Scholar 

  14. Zou, K., et al. (2002) A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci 22(12): 4833–4841

    PubMed  CAS  Google Scholar 

  15. Meloy, S. (2007) Neurally augmented sexual function. Acta Neurochir Suppl 97(1):359-63

    PubMed  CAS  Google Scholar 

  16. Gustaw-Rothenberg, K., et al. (2010) Biomarkers in Alzheimer’s disease: past, present and future. Biomark Med 4(1):15–26

    Article  PubMed  CAS  Google Scholar 

  17. Anouar, E., et al. (2009) Free radical scavenging properties of guaiacol oligomers: a combined experimental and quantum study of the guaiacyl-moiety role. J Phys Chem A 113(50):13881–13891

    Article  PubMed  CAS  Google Scholar 

  18. Kirkitadze, M.D., G. Bitan, and D.B. Teplow (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69(5): p. 567–577

    Article  PubMed  CAS  Google Scholar 

  19. Gotz, J., et al. (2004) Amyloid-induced neurofibrillary tangle formation in Alzheimer’s disease: insight from transgenic mouse and tissue-culture models. Int J Dev Neurosci 22(7):453–465

    Article  PubMed  Google Scholar 

  20. German, D.C. and A.J. Eisch, (2004) Mouse models of Alzheimer’s disease: insight into treatment. Rev Neurosci 15(5):353–369

    Article  PubMed  Google Scholar 

  21. Bentahir, M., et al. (2006) Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 96(3):732–742

    Article  PubMed  CAS  Google Scholar 

  22. Kumar-Singh, S., et al. (2006) Mean age-of-onset of familial Alzheimer’s Disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum Mutat 27(7): 686–695

    Article  PubMed  CAS  Google Scholar 

  23. Shioi, J., et al. (2007) FAD mutants unable to increase neurotoxic Abeta 42 suggest that mutation effects on neurodegeneration may be independent of effects on Abeta. J Neurochem 101(3):674–681

    Article  PubMed  CAS  Google Scholar 

  24. Lee, H.G., et al. (2007) Amyloid-beta in Alzheimer’s Disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther 321(3):823–829

    Article  PubMed  CAS  Google Scholar 

  25. Walsh, D.M. and D.J. Selkoe (2007) A beta oligomers - a decade of discovery. J Neurochem 101(5): p. 1172–1184

    Article  PubMed  CAS  Google Scholar 

  26. Catalano, S.M., et al. (2006) The role of amyloid-beta derived diffusible ligands (ADDLs) in Alzheimer’s disease. Curr Top Med Chem 6(6):597–608

    Article  PubMed  CAS  Google Scholar 

  27. Glabe, C.G. and R. Kayed (2006) Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66(2 Suppl 1):S74–S78

    Article  PubMed  CAS  Google Scholar 

  28. Watson, D. et al. (2005) Physicochemical characteristics of soluble oligomeric Abeta and their pathologic role in Alzheimer’s disease. Neurol Res 27(8):869–881

    Article  PubMed  CAS  Google Scholar 

  29. Selkoe, D.J. (2005) Defining molecular targets to prevent Alzheimer’s Disease. Arch Neurol 62(2):192–195

    Article  PubMed  Google Scholar 

  30. King, M.E. (2005) Can tau filaments be both physiologically beneficial and toxic? Biochim Biophys Acta 1739(2-3):260–267

    PubMed  CAS  Google Scholar 

  31. Hanger, D.P., et al. (1998) New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry. J Neurochem 71(6):2465–2476

    Article  PubMed  CAS  Google Scholar 

  32. Stoothoff, W.H. and Johnson G.V. (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739(2-3):280–297

    PubMed  CAS  Google Scholar 

  33. Iqbal, K., et al. (1994) Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation. FEBS Lett 349(1):104–108

    Article  CAS  Google Scholar 

  34. Iqbal, K., et al. (2005) Tau pathology in Alzheimer’s Disease and other tauopathies. Biochim Biophys Acta 1739(2-3):198–210

    PubMed  CAS  Google Scholar 

  35. Keck, S., et al. (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85(1):115–122

    Article  PubMed  CAS  Google Scholar 

  36. Cras, P., et al. (1995) Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer’s Disease. Acta Neuropathol 89(4):291–295

    Article  PubMed  CAS  Google Scholar 

  37. Smith, M.A. (1998) Alzheimer’s Disease. Int Rev Neurobiol 42:1–54

    Article  PubMed  CAS  Google Scholar 

  38. Castellani, R.J., et al. (2007) Neuropathology and treatment of Alzheimer’s Disease: did we lose the forest for the trees? Expert Rev Neurother 7(5):473–485

    Article  PubMed  CAS  Google Scholar 

  39. Martin, M.A., et al. (2009) Protection of human HepG2 cells against oxidative stress by the flavonoid epicatechin. Phytother Res 24(4):503–509

    Google Scholar 

  40. Esmaeili, M.A. and Sonboli, A. (2009) Antioxidant, free radical scavenging activities of Salvia brachyantha and its protective effect against oxidative cardiac cell injury. Food Chem Toxicol 48(3):846–53

    PubMed  Google Scholar 

  41. Kachadourian, R., et al. (2009) Casiopeina IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology 268(3):176–83

    Article  PubMed  Google Scholar 

  42. Norberg, E., et al. (2009) Oxidative modification sensitizes mitochondrial apoptosis-inducing factor to calpain-mediated processing. Free Radic Biol Med 48(6):791–797

    Article  Google Scholar 

  43. Sesti, F., Liu, S., and Cai, S.Q. (2009) Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration? Trends Cell Biol 20(1):45–51

    Article  PubMed  Google Scholar 

  44. Sayre, L.M., Perry, G. and Smith, M.A. (1999) In situ methods for detection and localization of markers of oxidative stress: application in neurodegenerative disorders. Methods Enzymol 309:133–152

    Article  PubMed  CAS  Google Scholar 

  45. Nunomura, A., et al. (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci, 1999. 19(6):1959–1964

    PubMed  CAS  Google Scholar 

  46. Nunomura, A., et al. (2001) Oxidative damage is the earliest event in Alzheimer’s Disease.J Neuropathol Exp Neurol 60(8):759–767

    PubMed  CAS  Google Scholar 

  47. Gabbita, S.P., Lovell, M.A., and Markesbery, W.R. (1998) Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J Neurochem 71(5): p. 2034–2040

    Article  PubMed  CAS  Google Scholar 

  48. Lovell, M.A., Gabbita, S.P., and Markesbery, W.R. (1999), Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J Neurochem 72(2): 771–776

    Article  PubMed  CAS  Google Scholar 

  49. Smith, M.A., et al. (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17(8):2653–2657

    PubMed  CAS  Google Scholar 

  50. Smith, M.A., et al. (1996) Oxidative damage in Alzheimer’s. Nature 382(6587):120–121

    Article  PubMed  CAS  Google Scholar 

  51. Hensley, K., et al. (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18(20):8126–8132

    PubMed  CAS  Google Scholar 

  52. Montine, K.S., et al. (2004) Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids 128(1-2):117–124

    Article  PubMed  CAS  Google Scholar 

  53. Montine, K.S., et al. (1998) Distribution of reducible 4-hydroxynonenal adduct ­immunoreactivity in Alzheimer’s Disease is associated with APOE genotype. J Neuropathol Exp Neurol 57(5):415–425

    Article  PubMed  CAS  Google Scholar 

  54. Montine, K.S., et al. (1997) Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Am J Pathol 150(2):437–443

    PubMed  CAS  Google Scholar 

  55. Sayre, L.M., et al. (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68(5):2092–2097

    Article  PubMed  CAS  Google Scholar 

  56. Ando, Y., et al. (1998) Histochemical detection of 4-hydroxynonenal protein in Alzheimer amyloid. J Neurol Sci 156(2):172–176

    Article  PubMed  CAS  Google Scholar 

  57. Keller, J.N., et al.., (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64(7):1152–1156

    Article  PubMed  CAS  Google Scholar 

  58. Calingasan, N.Y., Uchida, K., and Gibson, G.E. (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72(2):751–756

    Article  PubMed  CAS  Google Scholar 

  59. Smith, M.A., et al. (1994) Advanced Maillard reaction end products are associated with Alzheimer’s Disease pathology. Proc Natl Acad Sci USA 91(12): p. 5710–5714

    Article  PubMed  CAS  Google Scholar 

  60. Vitek, M.P., et al. (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer’s Disease. Proc Natl Acad Sci USA, 91(11):4766–4770

    Article  PubMed  CAS  Google Scholar 

  61. Yan, S.D., et al. (1994) Glycated tau protein in Alzheimer’s Disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA, 91(16):7787–7791

    Article  PubMed  CAS  Google Scholar 

  62. Ledesma, M.D., et al. (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269(34):21614–21619

    PubMed  CAS  Google Scholar 

  63. Castellani, R.J., et al. (2001) Active glycation in neurofibrillary pathology of Alzheimer’s Disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radic Biol Med 31(2):175–180

    Article  PubMed  CAS  Google Scholar 

  64. Perry, G., et al. (2000) How important is oxidative damage? Lessons from Alzheimer’s disease. Free Radic Biol Med 28(5): 831–834

    Article  PubMed  CAS  Google Scholar 

  65. Ko, L.W., et al. (1999) An immunochemical study on tau glycation in paired helical filaments. Brain Res 830(2): 301–313

    Article  PubMed  CAS  Google Scholar 

  66. Liu, Q., et al. (2005) Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radic Biol Med 38(6):746–754

    Article  PubMed  CAS  Google Scholar 

  67. Sullivan, P.G. and Brown M.R. (2005) Mitochondrial aging and dysfunction in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 29(3):407–410

    Article  PubMed  CAS  Google Scholar 

  68. Castellani, R.J., et al. (2004) Contribution of redox-active iron and copper to oxidative damage in Alzheimer’s Disease. Ageing Res Rev 3(3): 319–326

    Article  PubMed  CAS  Google Scholar 

  69. Smith, M.A., et al. (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 145(1): 42–47

    PubMed  CAS  Google Scholar 

  70. Premkumar, D.R., et al. (1995) Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer’s disease. J Neurochem 65(3):1399–1402

    Article  PubMed  CAS  Google Scholar 

  71. Schipper, H.M., Cisse, S., and Stopa, E.G. (1995) Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann Neurol 37(6):758–768

    Article  PubMed  CAS  Google Scholar 

  72. Bonilla, E., et al. (1999) Mitochondrial involvement in Alzheimer’s disease. Biochim Biophys Acta 1410(2):171–182

    Article  PubMed  CAS  Google Scholar 

  73. Aliev, G., et al. (2002) Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels as a central target for the development of human AD and AD-like pathology in aged transgenic mice. Ann N Y Acad Sci 977:45–64

    Article  PubMed  CAS  Google Scholar 

  74. Pappolla, M.A., et al. (1992) Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer’s disease. Am J Pathol 140(3):621–628

    PubMed  CAS  Google Scholar 

  75. De Leo, M.E., et al. (1998) Oxidative stress and overexpression of manganese superoxide dismutase in patients with Alzheimer’s disease. Neurosci Lett 250(3):173–6

    Article  PubMed  Google Scholar 

  76. Marcus, D.L., et al. (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 150(1):40–44

    Article  PubMed  CAS  Google Scholar 

  77. Perry, G., et al. (2002) Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. Comp Biochem Physiol C Toxicol Pharmacol 133(4):507–513

    Article  PubMed  Google Scholar 

  78. Zhu, X., et al. (2004) Oxidative stress signalling in Alzheimer’s disease. Brain Res ­1000(1-2):32–39

    Article  PubMed  CAS  Google Scholar 

  79. Kurz, A. and Perneczky, R. (2009) Neurobiology of cognitive disorders. Curr Opin Psychiatry 22(6): 546–551

    Article  PubMed  Google Scholar 

  80. Sayre, L.M., et al. (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 74(1):270–279

    Article  PubMed  CAS  Google Scholar 

  81. Nunomura, A., et al. (1999) Neuronal RNA oxidation in Alzheimer’s disease and Down’s syndrome. Ann N Y Acad Sci 893:362–364

    Article  PubMed  CAS  Google Scholar 

  82. Smith, M.A., et al. (2000) Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer’s Disease. Antioxid Redox Signal 2(3):413–420

    Article  PubMed  CAS  Google Scholar 

  83. Lynn, B.C., et al. (2010) Quantitative changes in the mitochondrial proteome from subjects with mild cognitive impairment, early stage, and late stage Alzheimer’s disease. J Alzheimers Dis 19(1):325–339

    PubMed  Google Scholar 

  84. Spindler, M., Beal, M.F., and Henchcliffe, C. (2009) Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat 5:597–610

    PubMed  CAS  Google Scholar 

  85. Sayre, L.M., Perry, G., and Smith, M.A. (1999) Redox metals and neurodegenerative disease. Curr Opin Chem Biol 3(2): 220–225

    Article  PubMed  CAS  Google Scholar 

  86. Smith, M.A., et al. (2010) Increased iron and free radical generation in preclinical Alzheimer’s Disease and mild cognitive impairment. J Alzheimers Dis 19(1):363–372

    PubMed  Google Scholar 

  87. Liu, G., et al. (2009) Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer’s disease. J Nanoneurosci 1(1): 42–55

    Article  PubMed  CAS  Google Scholar 

  88. Moreira, P.I., et al. (2008) Alzheimer’s Disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets 7(1):3–10

    Article  PubMed  CAS  Google Scholar 

  89. Mattson, M.P. (2006) Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8(11-12):1997–2006

    Article  PubMed  CAS  Google Scholar 

  90. Marlatt, M.W., et al. (2005) Therapeutic opportunities in Alzheimer’s Disease: one for all or all for one? Curr Med Chem 12(10): 1137–1147

    Article  PubMed  CAS  Google Scholar 

  91. Veurink, G., et al. (2003) Reduction of inclusion body pathology in ApoE-deficient mice fed a combination of antioxidants. Free Radic Biol Med 34(8):1070–1077

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Casadesus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chang, J. et al. (2011). Oxidative Stress in Alzheimer’s Disease: A Critical Appraisal of the Causes and the Consequences. In: Basu, S., Wiklund, L. (eds) Studies on Experimental Models. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-956-7_9

Download citation

Publish with us

Policies and ethics