Skip to main content

Fibrosis as a Major Mechanism of Chronic Liver Disease

  • Chapter
  • First Online:

Part of the book series: Clinical Gastroenterology ((CG))

Abstract

Hepatic fibrosis and even cirrhosis have emerged as treatable and reversible consequences of chronic liver disease. With dramatic advances in understanding the cellular and molecular basis of fibrosis, there is increasing enthusiasm for new treatments that attack hepatic fibrosis directly. Basic research has focused on the hepatic stellate cell, which undergoes activation into a proliferative and fibrogenic myofibroblast-like cell during liver injury and is an important source of extracellular matrix in the liver. In addition, other fibrogenic populations, for example, portal fibroblasts, fibrocytes, and possibly bone-marrow-derived cells, as well as cells derived from epithelial–mesenchymal transition may be additional sources of extracellular matrix. Stimuli driving stellate cell activation include hepatocellular necrosis, apoptosis, and soluble growth factors. A cascade of signaling pathways and transcriptional events in stellate cells underlies the fibrogenic response to liver injury, with each step in the cascade representing a potential target for antifibrotic therapy. A key clinical challenge is to establish noninvasive means of assessing fibrosis stage and progression using serum tests, imaging, functional tests, and/or elastography. Given the slow course of disease progression, endpoints of antifibrotic clinical trials need to be established that provide evidence of benefit within a short interval. With continued progress, antifibrotic therapies will soon be a reality in treating chronic fibrosing liver disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. Feb 1 2005;115(2):209–18.

    CAS  Google Scholar 

  2. Urtasun R, Conde de la Rosa L, Nieto N. Oxidative and nitrosative stress and fibrogenic response. Clin Liver Dis. Nov 2008;12(4):769–90, viii.

    Article  CAS  Google Scholar 

  3. Jiang JX, Mikami K, Venugopal S, Li Y, Torok NJ. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways. J Hepatol. Jul 2009;51(1):139–48.

    Article  CAS  Google Scholar 

  4. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest. May 2003;83(5):655–63.

    CAS  Google Scholar 

  5. Cubero FJ, Nieto N. Ethanol and arachidonic acid synergize to activate Kupffer cells and modulate the fibrogenic response via tumor necrosis factor alpha, reduced glutathione, and transforming growth factor beta-dependent mechanisms. Hepatology. Dec 2008;48(6):2027–39.

    Article  CAS  Google Scholar 

  6. Wang J, Leclercq I, Brymora JM, et al. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology Aug 2009;137(2):713–23.

    Google Scholar 

  7. Park O, Jeong WI, Wang L, et al. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology. May 2009;49(5):1683–94.

    Article  CAS  Google Scholar 

  8. Kahraman A, Barreyro FJ, Bronk SF, et al. TRAIL mediates liver injury by the innate immune system in the bile duct-ligated mouse. Hepatology Apr 2008;47(4):1317–30.

    Article  CAS  Google Scholar 

  9. Castellares C, Barreiro P, Martin-Carbonero L, et al. Liver cirrhosis in HIV-infected patients: prevalence, aetiology and clinical outcome. J Viral Hepat Mar 2008;15(3):165–72.

    CAS  Google Scholar 

  10. Balagopal A, Philp FH, Astemborski J, et al. Human immunodeficiency virus-related microbial translocation and progression of hepatitis C. Gastroenterology Jul 2008;135(1):226–33.

    CAS  Google Scholar 

  11. Safadi R, Ohta M, Alvarez CE, et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology Sep 2004;127(3):870–82.

    Article  CAS  Google Scholar 

  12. Allison RD, Katsounas A, Koziol DE, et al. Association of interleukin-15-induced peripheral immune activation with hepatic stellate cell activation in persons coinfected with hepatitis C virus and HIV. J Infect Dis Aug 15 2009;200(4):619–23.

    CAS  Google Scholar 

  13. Kaplan DE, Ikeda F, Li Y, et al. Peripheral virus-specific T-cell interleukin-10 responses develop early in acute hepatitis C infection and become dominant in chronic hepatitis. J Hepatol Jun 2008;48(6):903–13.

    Article  CAS  Google Scholar 

  14. Zeremski M, Petrovic LM, Chiriboga L, et al. Intrahepatic levels of CXCR3-associated chemokines correlate with liver inflammation and fibrosis in chronic hepatitis C. Hepatology Nov 2008;48(5):1440–50.

    Article  CAS  Google Scholar 

  15. Muhanna N, Doron S, Wald O, et al. Activation of hepatic stellate cells after phagocytosis of lymphocytes: a novel pathway of fibrogenesis. Hepatology Sep 2008;48(3):963–77.

    Article  CAS  Google Scholar 

  16. Leask A, Chen S, Pala D, Brigstock DR. Regulation of CCN2 mRNA expression and promoter activity in activated hepatic stellate cells. J Cell Commun Signal Jun 2008;2(1–2):49–56.

    Article  Google Scholar 

  17. de Gouville AC, Huet S. Inhibition of ALK5 as a new approach to treat liver fibrotic diseases. Drug News Perspect Mar 2006;19(2):85–90.

    Article  Google Scholar 

  18. Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells. Adv Drug Deliv Rev Jul 2 2009;61(7–8):497–512.

    Article  CAS  Google Scholar 

  19. Dodig M, Ogunwale B, Dasarathy S, Li M, Wang B, McCullough AJ. Differences in regulation of type I collagen synthesis in primary and passaged hepatic stellate cell cultures: the role of alpha5beta1-integrin. Am J Physiol Gastrointest Liver Physiol Jul 2007;293(1):G154–64.

    Article  CAS  Google Scholar 

  20. Beaussier M, Wendum D, Schiffer E, et al. Prominent contribution of portal mesenchymal cells to liver fibrosis in ischemic and obstructive cholestatic injuries. Lab Invest Mar 2007;87(3):292–303.

    Article  CAS  Google Scholar 

  21. Zeisberg M, Yang C, Martino M, et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem Aug 10 2007;282(32):23337–47.

    CAS  Google Scholar 

  22. Kisseleva T, Uchinami H, Feirt N, et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol Sep 2006;45(3):429–38.

    Article  CAS  Google Scholar 

  23. Clouzeau-Girard H, Guyot C, Combe C, et al. Effects of bile acids on biliary epithelial cell proliferation and portal fibroblast activation using rat liver slices. Lab Invest Mar 2006;86(3):275–85.

    Article  CAS  Google Scholar 

  24. Karlmark KR, Weiskirchen R, Zimmermann HW, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology Jul 2009;50(1):261–74.

    CAS  Google Scholar 

  25. Dooley S, Hamzavi J, Ciuclan L, et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology Aug 2008;135(2):642–59.

    Article  CAS  Google Scholar 

  26. Lahsnig C, Mikula M, Petz M, et al. ILEI requires oncogenic Ras for the epithelial to mesenchymal transition of hepatocytes and liver carcinoma progression. Oncogene Feb 5 2009;28(5):638–50.

    Article  CAS  Google Scholar 

  27. Syn WK, Omenetti A, Abdelmalek M, et al. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in non-alcoholic fatty liver disease. Gastroenterology Oct 2009;137(4):1478–88.e8.

    Google Scholar 

  28. Issa R, Zhou X, Constandinou CM, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology Jun 2004;126(7):1795–808.

    CAS  Google Scholar 

  29. Gieling RG, Wallace K, Han YP. Interleukin-1 participates in the progression from liver injury to fibrosis. Am J Physiol Gastrointest Liver Physiol Jun 2009;296(6):G1324–31.

    Article  CAS  Google Scholar 

  30. Williams KE, Olsen DR. Matrix metalloproteinase-1 cleavage site recognition and binding in full-length human type III collagen. Matrix Biol Jul 2009;28(6):373–9.

    Google Scholar 

  31. Mitchell C, Couton D, Couty JP, et al. Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am J Pathol May 2009;174(5):1766–75.

    Article  CAS  Google Scholar 

  32. Murphy FR, Issa R, Zhou X, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem Mar 29 2002;277(13):11069–76.

    CAS  Google Scholar 

  33. Di Sario A, Bendia E, Macarri G, et al. The anti-fibrotic effect of pirfenidone in rat liver fibrosis is mediated by downregulation of procollagen alpha1(I), TIMP-1 and MMP-2. Dig Liver Dis Nov 2004;36(11):744–51.

    Article  Google Scholar 

  34. Parsons CJ, Bradford BU, Pan CQ, et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology Dec 2004;40(5):1106–115.

    Article  CAS  Google Scholar 

  35. Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell Aug 22 2008;134(4):657–67.

    CAS  Google Scholar 

  36. Green MR. Senescence: not just for tumor suppression. Cell Aug 22 2008;134(4):562–4.

    CAS  Google Scholar 

  37. Kesteloot F, Desmouliere A, Leclercq I, et al. ADAM metallopeptidase with thrombospondin type 1 motif 2 inactivation reduces the extent and stability of carbon tetrachloride-induced hepatic fibrosis in mice. Hepatology Nov 2007;46(5):1620–31.

    Article  CAS  Google Scholar 

  38. Nagula S, Jain D, Groszmann RJ, Garcia-Tsao G. Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J Hepatol Jan 2006;44(1):111–17.

    Article  Google Scholar 

  39. Fallowfield JA, Mizuno M, Kendall TJ, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol Apr 15 2007;178(8):5288–95.

    CAS  Google Scholar 

  40. Carter-Kent C, Yerian LM, Brunt EM, et al. Nonalcoholic steatohepatitis in children: a multicenter clinicopathological study. Hepatology Oct 2009;50(4):1113–20.

    Google Scholar 

  41. Wobser H, Dorn C, Weiss TS, et al. Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res Aug 2009;19(8):996–1005.

    Article  CAS  Google Scholar 

  42. Ikejima K, Okumura K, Kon K, Takei Y, Sato N. Role of adipocytokines in hepatic fibrogenesis. J Gastroenterol Hepatol Jun 2007;22(Suppl 1):S87–92.

    Article  CAS  Google Scholar 

  43. Wedemeyer I, Bechmann LP, Odenthal M, et al. Adiponectin inhibits steatotic CD95/Fas up-regulation by hepatocytes: therapeutic implications for hepatitis C. J Hepatol Jan 2009;50(1):140–9.

    Article  CAS  Google Scholar 

  44. Yamaguchi K, Yang L, McCall S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology Jun 2007;45(6):1366–74.

    CAS  Google Scholar 

  45. Jeong WI, Osei-Hyiaman D, Park O, et al. Paracrine activation of hepatic CB(1) receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab Mar 2008;7(3):227–35.

    Article  CAS  Google Scholar 

  46. Mazzocca A, Sciammetta SC, Carloni V, et al. Binding of hepatitis C virus envelope protein E2 to CD81 up-regulates matrix metalloproteinase-2 in human hepatic stellate cells. J Biol Chem Mar 25 2005;280(12):11329–39.

    CAS  Google Scholar 

  47. Hora C, Negro F, Leandro G, et al. Connective tissue growth factor, steatosis and fibrosis in patients with chronic hepatitis C. Liver Int Mar 2008;28(3):370–6.

    Article  CAS  Google Scholar 

  48. Schulze-Krebs A, Preimel D, Popov Y, et al. Hepatitis C virus-replicating hepatocytes induce fibrogenic activation of hepatic stellate cells. Gastroenterology Jul 2005;129(1):246–58.

    CAS  Google Scholar 

  49. Martin-Vilchez S, Sanz-Cameno P, Rodriguez-Munoz Y, et al. The hepatitis B virus X protein induces paracrine activation of human hepatic stellate cells. Hepatology Jun 2008;47(6):1872–83.

    CAS  Google Scholar 

  50. METAVIR csg. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology 1994;20(1 Pt 1):15–20.

    Google Scholar 

  51. Guha IN. Back to the future with noninvasive biomarkers of liver fibrosis. Hepatology Jan 2009;49(1):9–11.

    Google Scholar 

  52. Shaheen AA, Wan AF, Myers RP. FibroTest and FibroScan for the prediction of hepatitis C-related fibrosis: a systematic review of diagnostic test accuracy. Am J Gastroenterol Nov 2007;102(11):2589–600.

    Article  Google Scholar 

  53. Poynard T, Morra R, Halfon P, et al. Meta-analyses of FibroTest diagnostic value in chronic liver disease. BMC Gastroenterol 2007;7:40.

    Article  PubMed  Google Scholar 

  54. Munteanu M, Ratziu V, Morra R, Messous D, Imbert-Bismut F, Poynard T. Noninvasive biomarkers for the screening of fibrosis, steatosis and steatohepatitis in patients with metabolic risk factors: FibroTest-FibroMax experience. J Gastrointestin Liver Dis Jun 2008;17(2):187–91.

    Google Scholar 

  55. Callewaert N, Van Vlierberghe H, Van Hecke A, Laroy W, Delanghe J, Contreras R. Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics. Nat Med Apr 2004;10(4):429–34.

    Article  CAS  Google Scholar 

  56. Friedrich-Rust M, Muller C, Winckler A, et al. Assessment of liver fibrosis and steatosis in PBC with FibroScan, MRI, MR-spectroscopy, and serum markers. J Clin Gastroenterol Jan 2010;44(1):58–65.

    Google Scholar 

  57. Wagner S, Breyholz HJ, Faust A, et al. Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem 2006;13(23):2819–38.

    Article  CAS  PubMed  Google Scholar 

  58. Castera L. Transient elastography and other noninvasive tests to assess hepatic fibrosis in patients with viral hepatitis. J Viral Hepat May 2009;16(5):300–14.

    Article  Google Scholar 

  59. Everhart JE, Lok AS, Kim HY, et al. Weight-related effects on disease progression in the hepatitis C antiviral long-term treatment against cirrhosis trial. Gastroenterology Aug 2009;137(2):549–57.

    Article  Google Scholar 

  60. Poynard T, McHutchison J, Manns M, et al. Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology May 2002;122(5):1303–13.

    Article  CAS  Google Scholar 

  61. Fontana RJ, Bonkovsky HL, Naishadham D, et al. Serum fibrosis marker levels decrease after successful antiviral treatment in chronic hepatitis C patients with advanced fibrosis. Clin Gastroenterol Hepatol Feb 2009;7(2):219–26.

    Article  CAS  Google Scholar 

  62. Di Bisceglie AM, Shiffman ML, Everson GT, et al. Prolonged therapy of advanced chronic hepatitis C with low-dose peginterferon. N Engl J Med Dec 4 2008;359(23):2429–41.

    Article  Google Scholar 

  63. Raetsch C, Jia JD, Boigk G, et al. Pentoxifylline downregulates profibrogenic cytokines and procollagen I expression in rat secondary biliary fibrosis. Gut Feb 2002;50(2):241–7.

    Article  CAS  Google Scholar 

  64. Oakley F, Teoh V, Ching ASG, et al. Angiotensin II activates I kappaB kinase phosphorylation of RelA at Ser 536 to promote myofibroblast survival and liver fibrosis. Gastroenterology Jun 2009;136(7):2334–44 e2331.

    CAS  Google Scholar 

  65. Colmenero J, Bataller R, Sancho-Bru P, et al. Effects of losartan on hepatic expression of non-phagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am J Physiol Gastrointest Liver Physiol Oct 2009;297(4):G726–34.

    Google Scholar 

  66. Fiorucci S, Antonelli E, Morelli A. Nitric oxide and portal hypertension: a nitric oxide-releasing derivative of ursodeoxycholic actd that selectively releases nitric oxide in the liver. Dig Liver Dis 2003;35(Suppl):61–9.

    Article  Google Scholar 

  67. Beuers U, Kullak-Ublick GA, Pusl T, Rauws ER, Rust C. Medical treatment of primary sclerosing cholangitis: a role for novel bile acids and other (post-)transcriptional modulators? Clin Rev Allergy Immunol Feb 2009;36(1):52–61.

    Article  CAS  Google Scholar 

  68. Zhang S, Wang J, Liu Q, Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol Aug 2009;51(2):380–8.

    Article  CAS  Google Scholar 

  69. Valentino KL, Gutierrez M, Sanchez R, Winship MJ, Shapiro DA. First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther Oct 2003;41(10):441–9.

    CAS  Google Scholar 

  70. Kahraman A, Bronk SF, Cazanave S, et al. Matrix metalloproteinase inhibitor, CTS-1027, attenuates liver injury and fibrosis in the bile duct-ligated mouse. Hepatol Res Aug 2009;39(8):805–13.

    Google Scholar 

  71. Kasdallah-Grissa A, Mornagui B, Aouani E, et al. Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci Feb 20 2007;80(11):1033–9.

    CAS  Google Scholar 

  72. Bechmann LP, Zahn D, Gieseler RK, et al. Resveratrol amplifies profibrogenic effects of free fatty acids on human hepatic stellate cells. Hepatol Res Jun 2009;39(6):601–8.

    Article  CAS  Google Scholar 

  73. Ferenci P, Dragosics B, Dittrich H, et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatology 1989;9:105–10.

    Article  CAS  Google Scholar 

  74. Trappoliere M, Caligiuri A, Schmid M, et al. Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J Hepatol Jun 2009;50(6):1102–11.

    Article  CAS  Google Scholar 

  75. Zhao C, Chen W, Yang L, Chen L, Stimpson SA, Diehl AM. PPARgamma agonists prevent TGFbeta1/Smad3-signaling in human hepatic stellate cells. Biochem Biophys Res Commun Nov 17 2006;350(2):385–91.

    Article  CAS  Google Scholar 

  76. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med Nov 30 2006;355(22):2297–307.

    Article  CAS  Google Scholar 

  77. Saxena NK, Ikeda K, Rockey DC, Friedman SL, Anania FA. Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology 2002;35(4):762–71.

    Article  CAS  PubMed  Google Scholar 

  78. Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J Pathol Jun 2005;166(6):1655–69.

    CAS  Google Scholar 

  79. Gonzalo T, Beljaars L, van de Bovenkamp M, et al. Local inhibition of liver fibrosis by specific delivery of a PDGF kinase inhibitor to hepatic stellate cells. J Pharmacol Exp Ther Jun 2007;321(3):856–65.

    Google Scholar 

  80. Tugues S, Fernandez-Varo G, Munoz-Luque J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology Dec 2007;46(6):1919–26.

    Article  CAS  Google Scholar 

  81. Murata T, Arii S, Mori A, Imamura M. Therapeutic significance of Y-27632, a Rho-kinase inhibitor, on the established liver fibrosis. J Surg Res Sep 2003;114(1):64–71.

    CAS  Google Scholar 

  82. Borkham-Kamphorst E, Stoll D, Gressner AM, Weiskirchen R. Antisense strategy against PDGF B-chain proves effective in preventing experimental liver fibrogenesis. Biochem Biophys Res Commun Aug 20 2004;321(2):413–23.

    Article  CAS  Google Scholar 

  83. Sakaida I, Matsumura Y, Kubota M, Kayano K, Takenaka K, Okita K. The prolyl 4-hydroxylase inhibitor HOE 077 prevents activation of Ito cells, reducing procollagen gene expression in rat liver fibrosis induced by choline-deficient L-amino acid-defined diet. Hepatology 1996;23(4):755–63.

    CAS  PubMed  Google Scholar 

  84. Okuno M, Akita K, Moriwaki H, et al. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-beta. Gastroenterology 2001;120(7):1784–800.

    Article  CAS  PubMed  Google Scholar 

  85. Williams EJ, Benyon RC, Trim N, et al. Relaxin inhibits effective collagen deposition by cultured hepatic stellate cells and decreases rat liver fibrosis in vivo. Gut Oct 2001;49(4):577–83.

    Article  CAS  Google Scholar 

  86. Bennett RG, Heimann DG, Tuma DJ. Relaxin reduces fibrosis in models of progressive and established hepatic fibrosis. Ann N Y Acad Sci Apr 2009;1160:348–9.

    Article  Google Scholar 

  87. Hagens WI, Beljaars L, Mann DA, et al. Cellular targeting of the apoptosis-inducing compound gliotoxin to fibrotic rat livers. J Pharmacol Exp Ther Mar 2008;324(3):902–10.

    Article  CAS  Google Scholar 

  88. Oakley F, Meso M, Iredale JP, et al. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology Jan 2005;128(1):108–20.

    CAS  Google Scholar 

  89. Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis Oct 2005;10(5):927–39.

    Article  CAS  Google Scholar 

  90. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41(6):1313–21.

    Google Scholar 

  91. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology May 2008;134(6):1655–69.

    Article  CAS  Google Scholar 

  92. D’Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol Jan 2006;44(1):217–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Friedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bechmann, L.P., Friedman, S.L. (2011). Fibrosis as a Major Mechanism of Chronic Liver Disease. In: Ginès, P., Kamath, P., Arroyo, V. (eds) Chronic Liver Failure. Clinical Gastroenterology. Humana Press. https://doi.org/10.1007/978-1-60761-866-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-866-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-865-2

  • Online ISBN: 978-1-60761-866-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics