Skip to main content

Bmi1 in Self-Renewal and Homeostasis of Pancreas

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

In mammalian organisms homeostasis is the central mechanism maintaining and preserving organ and tissue integrity. Stem cells are the main players in homeostatic balance: through self-renewal and multilineage differentiation, stem cells provide an endless supply of fresh, new cells throughout the lifetime of an organism. Bmi1 is one of the genes with a role in stem cell self-renewal and homeostasis in several organs and tissues. Its role in pancreas has been recently highlighted by two studies. In exocrine pancreas Bmi1 labels a population of differentiated acinar cells able to self-renew for more than 1 year, while in the endocrine pancreas absence of Bmi1 is associated with impaired beta cell regeneration upon damage. These experiments highlight Bmi1’s central position in maintaining organ homeostasis. The recent discovery that Bmi1 plays a crucial role in mitochondrial function makes it possible to hypothesize that this gene is one of the master regulators of tissue maintenance controlling stem cell self-renewal and mitochondrial metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leblond, C.P. (1964) Classification of cell populations on the basis of their proliferative behavior. Natl. Cancer Inst. Monogr. 14, 119–150.

    PubMed  CAS  Google Scholar 

  2. Park, I.-K., Morrison, S.J., and Clarke, M.F. (2004) Bmi1, stem cells, and senescence regulation. J. Clin. Invest. 113, 175–179.

    PubMed  CAS  Google Scholar 

  3. Morrison, S.J. and Kimble, J. (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068–1074.

    Article  PubMed  CAS  Google Scholar 

  4. Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al. (1988) Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532.

    Article  PubMed  CAS  Google Scholar 

  5. Sangiorgi, E. and Capecchi, M.R. (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920.

    Article  PubMed  CAS  Google Scholar 

  6. Barker, N., Ridgway, R.A., van Es, J.H., et al. (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611.

    Article  PubMed  CAS  Google Scholar 

  7. Zhu, L., Gibson, P., Currle, D.S., et al. (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607.

    Article  PubMed  CAS  Google Scholar 

  8. Visvader, J.E. and Lindeman, G.J. (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. 8, 755–768.

    Article  CAS  Google Scholar 

  9. Teta, M., Rankin, M.M., Long, S.Y., et al. (2007) Growth and regeneration of adult [beta] cells does not involve specialized progenitors. Dev. Cell 12, 817–826.

    Article  PubMed  CAS  Google Scholar 

  10. Dor, Y., Brown, J., Martinez, O.I., et al. (2004) Adult pancreatic [beta]-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46.

    Article  PubMed  CAS  Google Scholar 

  11. Brennand, K., Huangfu, D., and Melton, D. (2007) All beta cells contribute equally to islet growth and maintenance. PLoS Biol. 5, e163.

    Article  PubMed  Google Scholar 

  12. Strobel, O., Yuval, D., Janivette, A., et al. (2007) In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology 133, 1999–2009.

    Article  PubMed  Google Scholar 

  13. Desai, B.M., Oliver-Krasinski, J., De Leon, D.D., Farzad, C., Hong, N., Leach, S.D., and Stoffers, D.A. (2007) Preexisting pancreatic acinar cells contribute to acinar cell, but not islet β cell, regeneration. J. Clin. Invest. 117, 971–977.

    Article  PubMed  CAS  Google Scholar 

  14. Desai, B., Oliver-Krasinski, J., De Leon, D.D., et al. (2007) Preexisting pancreatic acinar cells contribute to acinar cell, but not islet β cell, regeneration. J. Clin. Invest. 117, 971–977.

    Article  PubMed  CAS  Google Scholar 

  15. Xu, X., D’Hoker, J., Stange, G., et al. (2008) [Beta] cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207.

    Article  PubMed  CAS  Google Scholar 

  16. Dor, Y. and Melton, D.A. (2008) Facultative endocrine progenitor cells in the adult pancreas. Cell 132, 183–184.

    Article  PubMed  CAS  Google Scholar 

  17. Akasaka, T., van Lohuizen, M., van der Lugt, N., et al. (2001) Mice doubly deficient for the polycomb group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development 128, 1587–1597.

    PubMed  CAS  Google Scholar 

  18. Cao, R., Tsukada, Y., and Zhang, Y. (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854.

    Article  PubMed  CAS  Google Scholar 

  19. Bracken, A.P., Kleine-Kohlbrecher, D., Dietrich, N., et al. (2007) The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530.

    Article  PubMed  CAS  Google Scholar 

  20. van der Lugt, N.M., Domen, J., Linders, K., et al. (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 8, 757–769.

    Article  PubMed  Google Scholar 

  21. Leung, C., Lingbeek, M., Shakhova, O., et al. (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337–341.

    Article  PubMed  CAS  Google Scholar 

  22. Molofsky, A.V., Pardal, R., Iwashita, T., et al. (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967.

    Article  PubMed  CAS  Google Scholar 

  23. Park, I.-k., Qian, D., Kiel, M., et al. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305.

    Article  PubMed  CAS  Google Scholar 

  24. Bruggeman, S.W., Valk-Lingbeek, M.E., van der Stoop, P.P., et al. (2005) Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev. 19, 1438–1443.

    Article  PubMed  CAS  Google Scholar 

  25. Krishnamurthy, J., Ramsey, M.R., Ligon, K.L., et al. (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457.

    Article  PubMed  CAS  Google Scholar 

  26. Molofsky, A.V., Slutsky, S.G., Joseph, N.M., et al. (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452.

    Article  PubMed  CAS  Google Scholar 

  27. Stanger, B.Z., Stiles, B., Lauwers, G.Y., et al. (2005) Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 8, 185–195.

    Article  PubMed  CAS  Google Scholar 

  28. Sangiorgi, E. and Capecchi, M.R. (2009) Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proc. Natl. Acad. Sci. U.S.A. 106, 7101–7106.

    Article  PubMed  CAS  Google Scholar 

  29. Potten, C.S., Owen, G., and Booth, D. (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381–2388.

    PubMed  CAS  Google Scholar 

  30. Cairns, J. (1975) Mutation selection and the natural history of cancer. Nature 255, 197–200.

    Article  PubMed  CAS  Google Scholar 

  31. Lansdorp, P.M. (2007) Immortal strands? Give me a break. Cell 129, 1244–1247.

    Article  PubMed  CAS  Google Scholar 

  32. Rando, T.A. (2007) The immortal strand hypothesis: segregation and reconstruction. Cell 129, 1239–1243.

    Article  PubMed  CAS  Google Scholar 

  33. Kiel, M.J., He, S., Ashkenazi, R., et al. (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449, 238–242.

    Article  PubMed  CAS  Google Scholar 

  34. Guerra, C., Schuhmacher, A.J., Canamero, M., et al. (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302.

    Article  PubMed  CAS  Google Scholar 

  35. Murtaugh, L.C. and Leach, S.D. (2007) A case of mistaken identity? Nonductal origins of pancreatic “ductal” cancers. Cancer Cell 11, 211–213.

    Article  PubMed  CAS  Google Scholar 

  36. Habbe, N., Shi, G., Meguid, R.A., et al. (2008) Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc. Natl. Acad. Sci. U.S.A. 105, 18913–18918.

    Article  PubMed  CAS  Google Scholar 

  37. De La, O.J., Emerson, L.L., Goodman, J.L., et al. (2008) Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc. Natl. Acad. Sci. U.S.A. 105, 18907–18912.

    Article  Google Scholar 

  38. Dhawan, S., Tschen, S.I., and Bhushan, A. (2009) Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. Genes Dev. 23, 906–911.

    Article  PubMed  CAS  Google Scholar 

  39. Liu, J., Cao, L., Chen, J., et al. (2009) Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459, 387–392.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Sangiorgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sangiorgi, E., Capecchi, M. (2011). Bmi1 in Self-Renewal and Homeostasis of Pancreas. In: Appasani, K., Appasani, R. (eds) Stem Cells & Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-860-7_3

Download citation

Publish with us

Policies and ethics