Skip to main content

Adult Neural Progenitor Cells and Cell Replacement Therapy for Huntington Disease

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Huntington disease (HD) is an autosomal dominant genetic neurodegenerative disorder caused by an expansion mutation of a naturally ­occurring trinucleotide (CAG) repeat in exon 1 of the IT15 gene, which encodes a 350-kDa protein termed Huntingtin. This results in the progressive degeneration of (γ-aminobutyric acid) GABAergic medium spiny projection neurons in the basal ganglia. With no efficient treatment available in the clinic to alleviate or compensate for the progressive neuronal cell loss in HD, novel treatment strategies such as endogenous cell replacement therapy need to be investigated. This chapter provides an overview of what is known about the response of endogenous adult neural progenitor cells to neurodegeneration in the HD brain, the mechanisms by which this response may occur, and how this knowledge may be translated into effective therapeutic strategies.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Altman, J. and Das, G.D. (1965) Autoradiographic and histological evidence of postnatal neurogenesis in rats. J. Comp. Neurology. 124, 319–335.

    Article  CAS  Google Scholar 

  2. Altman, J. (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurology. 137, 433–457.

    Article  CAS  Google Scholar 

  3. Kaplan, M.S. and Hinds, J.W. (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science. 197, 1092–1094.

    Article  PubMed  CAS  Google Scholar 

  4. Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., et al. (1998) Neurogenesis in the adult human hippocampus. Nature Med. 4, 1313–1317.

    Article  PubMed  CAS  Google Scholar 

  5. Gould, E., Reeves, A.J., Graziano, M.S.A. and Gross, C.G. (1999) Neurogenesis in the ­neocortex of adult primates. Science. 286, 548–552.

    Article  PubMed  CAS  Google Scholar 

  6. Kornack, D.R. and Rakic, P. (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl. Acad. Sci. USA. 96, 5768–5773.

    Article  CAS  Google Scholar 

  7. Doetsch, F. and Alvarez-Buylla, A. (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl. Acad. Sci. USA. 93, 14895–14900.

    Article  CAS  Google Scholar 

  8. Doetsch, F., Garcia-Verdugo, J.M. and Alvarez-Buylla, A. (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061.

    CAS  Google Scholar 

  9. Luskin, M.B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 11, 173–189.

    Article  PubMed  CAS  Google Scholar 

  10. Lois, C. and Alvarez-Buylla, A. (1994) Long-distance neuronal migration in the adult ­mammalian brain. Science. 264, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  11. Lois, C., Garcia-Verdugo, J.-M. and Alvarez-Buylla, A. (1996) Chain migration of neuronal precursors. Science. 271, 978–981.

    Article  PubMed  CAS  Google Scholar 

  12. Thomas, L.B., Gates, M.A. and Steindler, D.A. (1996) Young neurons from the adult ­subependymal zone proliferate and migrate along an astrocyte, extracellular martix-rich pathway. Glia. 17, 1–14.

    Article  PubMed  CAS  Google Scholar 

  13. Curtis, M.A., Kam, M., Nannmark, U., et al. (2007) Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension. Science. 315, 1243–1249.

    Article  PubMed  CAS  Google Scholar 

  14. Gould, E., Vail, N., Wagers, M. et al. (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transcient existence. Proc. Natl. Acad. Sci. USA. 98, 10910–10917.

    Article  CAS  Google Scholar 

  15. Palmer, T.D., Willhoite, A.R. and Gage, F. (2000) Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurology. 425, 479–494.

    Article  CAS  Google Scholar 

  16. Seri, B., Garcia-Verdugo, J.M., McEwen, B.S. et al. (2001) Astrocytes give rise to new ­neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160.

    CAS  Google Scholar 

  17. Parent, J.M. (2003) Injury-induced neurogenesis in the adult mammalian brain. The Neuroscientist. 9, 261–272.

    Article  PubMed  Google Scholar 

  18. Lie, D.C., Song, H., Colamarino, S.A., et al. (2004) Neurogenesis in the adult brain: New Strategies for Central Nervous System Diseases. Ann. Rev. of Pharmacol. Toxicol. 44, 399–421.

    Article  CAS  Google Scholar 

  19. Peterson, D.A. (2002) Stem Cells in Brain Plasticity and Repair. Curr. Op. Pharmacol. 2, 34–42.

    Article  CAS  Google Scholar 

  20. Goldman, S. (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotech. 23, 862–871.

    Article  CAS  Google Scholar 

  21. Gould, E. and Tanapat, P. (1997) Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neurosci. 80, 427–436.

    Article  PubMed  CAS  Google Scholar 

  22. Parent, J.M., Yu, T.W., Leibowitz, R.T., et al. (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat ­hippocampus. J. Neurosci. 17, 3727–3738.

    CAS  Google Scholar 

  23. Liu, J., Solway, K., Messing, R.O. et al. (1998) Increased neurogenesis in the dentate gyrus after transcient global ischemia in gerbils. J. Neurosci. 18, 7768–7778.

    CAS  Google Scholar 

  24. Jin, K., Minami, M., Lan, J.Q., et al. (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal ischemia in the rat. Proc. Natl. Acad. Sci. USA. 98, 4710–4715.

    Article  CAS  Google Scholar 

  25. Willis, P., Berry, M. and Riches, A.C. (1976) Effects of trauma on cell proliferation in the subependymal layer of the rat neocortex. Neuropathol. Appl. Neurobiol. 2, 377–388.

    Article  Google Scholar 

  26. Szele, F.G. and Chesselet, M.-F. (1996) Cortical lesions induce an increase in cell number and PSA-NCAM expression in the subventricular zone of adult rats. J. Comp. Neurol. 368, 439–454.

    Article  CAS  Google Scholar 

  27. Weinstein, D.E., Burrola, P. and Kilpatrick, T.J. (1996) Increased proliferation of precursor cells in the adult rat brain after targeted lesioning. Brain Res. 743, 11–16.

    Article  PubMed  CAS  Google Scholar 

  28. Holmin, S., Almqvist, P., Lendahl, U. et al. (1997) Adult nestin-expressing subependymal cells differentiate to astrocytes in response to brain injury. Eur. J. Neurosci. 9, 65–75.

    Article  CAS  Google Scholar 

  29. Calza, L., Giardino, L., Pozza, M., et al. (1998) Proliferation and phenotype regulation in the subventricular zone during experimental allergic encephalomyelitis: in vitro evidence of a role for nerve growth factor. Proc. Natl. Acad. Sci. USA. 95, 3209–3214.

    Article  CAS  Google Scholar 

  30. Nait-Oumesmar, B., Decker, L., Lachapelle, F., et al. (1999) Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366.

    Article  CAS  Google Scholar 

  31. Arvidsson, A., Collin, T., Kirik, D., et al.. (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970.

    Article  PubMed  CAS  Google Scholar 

  32. Parent, J.M., Valentin, V.V. and Lowenstein, D.H. (2002a) Prolonged Seizures Increase Proliferating Neuroblasts in the Adult Rat Subventricular Zone-Olfactory Bulb Pathway. J. Neurosci. 22, 3174–3188.

    PubMed  CAS  Google Scholar 

  33. Parent, J.M., Vexler, Z.S., Gong, C., et al. (2002b) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813.

    Article  PubMed  Google Scholar 

  34. Huntington’s Disease Collaborative Research Group. (1993) A novel gene containing a ­trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 72, 971–978.

    Article  Google Scholar 

  35. Vonsattel, J.P., Myers, R.H., Stevens, T.J., et al. (1985) Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44, 559–577.

    Article  CAS  Google Scholar 

  36. Curtis, M.A., Penney, E.B., Pearson, A.G., et al. (2003b) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Procd. Natl. Acad. Sci. USA. 100, 9023–9027.

    Article  CAS  Google Scholar 

  37. Curtis, M.A., Penney, E.B., Pearson, J., et al. (2005a) The distribution of progenitor cells in the subependymal layer of the lateral ventricle in the normal and Huntington’s disease human brain. Neurosci. 132, 777–788.

    Article  PubMed  CAS  Google Scholar 

  38. Curtis, M.A., Waldvogel, H.J., Synek, B. et al. (2005b) A histochemical and immunohistochemical analysis of the subependymal layer in the normal and Huntington’s disease brain. J. Chem. Neuroanat, 30, 55–66.

    Article  CAS  Google Scholar 

  39. Tattersfield, A.S., Croon, R.J., Liu, Y.W., et al. (2004) Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington’s disease. Neurosci. 127, 319–332.

    Article  PubMed  CAS  Google Scholar 

  40. Collin, T., Arvidsson, A., Kokaia, Z. et al. (2005) Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Exp. Neurol. 195, 71–80.

    Article  Google Scholar 

  41. Beal, F.M. (1992) Does impairment of energy metabolism result in excitotoxic neuronal cell death in neurodegenerative illness? Annu. Neurol. 31, 119–130.

    Article  CAS  Google Scholar 

  42. Beal, F.M., Kowall, N.W., Ellison, D.W., et al. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature. 321, 168–171.

    Article  PubMed  CAS  Google Scholar 

  43. Beal, F.M., Ferrante, R.J., Swartz, K.J. et al.. (1991a) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J. Neurosci. 11, 1649–1659.

    CAS  Google Scholar 

  44. Gordon, R.J., Tattersfield, A.S., Vazey, E.M., et al. (2007) Temporal profile of subventricular zone progenitor cell migration following quinolinic acid-induced striatal cell loss. Neurosci. 146, 1704–1718.

    Article  PubMed  CAS  Google Scholar 

  45. Beal, F.M., Schwartz, K.J., Finn, S.F., et al.. (1991b) Neurochemical characterisation of excitotoxin lesions in the cerebral cortex. J. Neurosci. 11, 147–158.

    CAS  Google Scholar 

  46. Dusart, I., Marty, S. and Peschanski, M. (1991) Glial changes following an excitotoxic lesion in the CNS - II. Astrocytes. Neurosci. 45, 541–549.

    Article  PubMed  CAS  Google Scholar 

  47. Marty, S., Dusart, I. and Peschanski, M. (1991) Glial changes following an excitotoxic lesion in the CNS - I. Microglia/macrophages. Neurosci. 45, 529–539.

    Article  PubMed  CAS  Google Scholar 

  48. Topper, R., Gehrmann, J., Schwarz, M., et al. (1993) Remote microglial activation in the quinolinic acid model of Huntington’s disease. Exp. Neurol. 123, 271–283.

    Article  CAS  Google Scholar 

  49. Schiefer, J., Topper, R., Schmidt, W., et al. (1998) Expression of interleukin 6 in the rat striatum following stereotaxic injection of quinolinic acid. J. Neuroimmunol. 89, 168–176.

    Article  CAS  Google Scholar 

  50. Dihne, M., Block, F., Korr, H. et al. (2001) Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury. Brain Res. 902, 178–189.

    Article  PubMed  CAS  Google Scholar 

  51. Aarum, J., Sandberg, K., Haeberlein, S.L.B. et al. (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc. Natl. Acad. Sci. USA. 100, 15983–15988.

    Article  CAS  Google Scholar 

  52. Gordon, R.J., McGregor, A.L. and Connor, B. (2009) Chemokines direct neural progenitor cell migration following striatal cell loss. Mol. Cell. Neurosci. 41, 219–232.

    Article  PubMed  CAS  Google Scholar 

  53. Gil, J.M.A.C., Mohapel, P., Araujo, I.M., et al. (2005) Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol. Dis. 20, 744–751.

    Article  PubMed  CAS  Google Scholar 

  54. Lazic, S.E., Grote, H.E., Blakemore, C., et al. (2006) Neurogenesis in the R6/1 transgenic mouse model of Huntington’s disease: effects of environmental enrichment. Eur. J. Neurosci. 23, 1829–1838.

    Article  Google Scholar 

  55. Moraes, L., Eugenio, L., de Moraes, A., et al. (2009) Lack of association between PSA-NCAM expression and migration in the rostral migratory stream of a Huntington’s disease transgenic mouse model. Neuropathol. 29, 140–147.

    Article  PubMed  Google Scholar 

  56. Phillips, W., Morton, A.J. and Barker, R.A. (2005) Abnormalities of Neurogenesis in the R6/2 Mouse Model of Huntington’s Disease Are Attributable to the In Vivo Microenvironment. J. Neurosci. 25, 11564–11576.

    Article  PubMed  CAS  Google Scholar 

  57. Lazic, S.E., Grote, H.E., Armstrong, R.J., et al. (2004) Decreased hippocampal cell proliferation in R6/1 Huntington’s mice. NeuroReport 15, 811–813.

    Article  PubMed  Google Scholar 

  58. Kohl, Z., Kandasamy, M., Winner, B., et al (2007) Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington’s disease. Brain Res. 1155, 24–33.

    Article  PubMed  CAS  Google Scholar 

  59. Curtis, M.A., Connor, B. and Faull, R.L.M. (2003a) Neurogenesis in the diseased adult human brain. Cell Cycle. 2, 428–430.

    Article  PubMed  CAS  Google Scholar 

  60. Batista, C.M.C., Kippin, T.E., Willaime-Morawek, S., et al. (2006) A Progressive and Cell Non-Autonomous Increase in Striatal Neural Stem Cells in the Huntington’s Disease R6/2 Mouse. J. Neurosci. 26, 10452–10460.

    Article  PubMed  CAS  Google Scholar 

  61. Butterworth, N.J., Williams, L., Bullock, J.Y., et al.. (1998) Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in the Huntington’s disease striatum. Neurosci. 87, 49–53.

    Article  PubMed  CAS  Google Scholar 

  62. Lim, D.A. and Alvarez-Buylla, A. (1999) Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc. Natl. Acad. Sci. USA. 6, 7526–7531.

    Article  Google Scholar 

  63. Alonso, G. (2001) Proliferation of progenitor cells in the adult rat brain correlates with the presence of vimentin-expressing astrocytes. Glia. 34, 253–266.

    Article  PubMed  CAS  Google Scholar 

  64. Mason, H.A., Ito, S. and Corfas, G. (2001) Extracellular signals that regulate the tangential migration of olfactory bulb neuronal precursors: Inducers, inhibitors and repellants. J. Neurosci. 21, 7654–7663.

    CAS  Google Scholar 

  65. Ekdahl, C.T., Claasen, J.-H., Bonde, S., et al. (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA. 100, 13632–13637.

    Article  CAS  Google Scholar 

  66. Monje, M.L., Toda, H. and Palmer, T.D. (2003) Inflammatory blockade restores adult ­hippocampal neurogenesis. Science. 302, 1760–1765.

    Article  PubMed  CAS  Google Scholar 

  67. Ge, S., Pradhan, D.A., Ming, G.-l. et al. (2007) GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci. 30, 1–8.

    Article  CAS  Google Scholar 

  68. LoTurco, J.J., Owens, D.F., Heath, M.J.S., et al. (1993) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron. 15, 1287–1298.

    Article  Google Scholar 

  69. Liu, X., Wang, Q., Haydar, T.F. et al. (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci. 8, 1179–1187.

    Article  PubMed  CAS  Google Scholar 

  70. Tozuka, Y., Fukuda, S., Namba, T., et al. (2005) GABAergic Excitation Promotes Neuronal Differentiation in Adult Hippocampal Progenitor Cells. Neuron. 47, 803–815.

    Article  PubMed  CAS  Google Scholar 

  71. Hansel, D.E., Eipper, B.A. and Ronnett, G.V. (2001) Neuropeptide Y functions as a neuroproliferative factor. Nature. 410, 940–944.

    Article  PubMed  CAS  Google Scholar 

  72. Decressac, M., Prestoz, L., Veran, J., et al Neuropeptide Y stimulates proliferation, migration and differentiation of neural precursors from the subventricular zone in adult mice. Neurobiol. Dis. 35, 477–488.

    Google Scholar 

  73. Reif, A., Schmitt, A., Fritzen, S., et al. (2004) Differential effect of endothelial nitric oxide synthase (NOS-III) on the regulation of adult neurogenesis and behaviour. Eur. J. Neurosci. 20, 885–895.

    Article  PubMed  Google Scholar 

  74. Chen, J., Zacharek, A., Zhang, C., et al.. (2005) Endothelial Nitric Oxide Synthase Regulates Brain-Derived Neurotrophic Factor Expression and Neurogenesis after Stroke in Mice. J. Neurosci. 25, 2366–2375.

    Article  PubMed  CAS  Google Scholar 

  75. Abdipranoto, A., Wu, S., Stayte, S. et al.. (2008) The Role of Neurogenesis in Neurodegenerative Diseases and its Implications for Therapeutic Development. CNS Neurol. Disord. Drug Targets. 7, 187–210.

    Article  PubMed  CAS  Google Scholar 

  76. Taupin, P. (2008) Adult neurogenesis pharmacology in neurological diseases and disorders. Exp. Rev. Neurother. 8, 311–320.

    Article  PubMed  CAS  Google Scholar 

  77. Ferrer, I., Goutan, E., Marin, C., et al. (2000) Brain-derived neurotrophic factor in Huntington’s disease. Brain Res. 866, 257–261.

    Article  PubMed  CAS  Google Scholar 

  78. Gauthier, L.R., Charrin, B.C., Borrell-Pages, M., et al. (2004) Huntingtin Controls Neurotrophic Support and Survival of Neurons by Enhancing BDNF Vesicular Transport along Microtubules. Cell. 118, 127–138.

    Article  PubMed  CAS  Google Scholar 

  79. Zuccato, C., Liber, D., Ramos, C., et al (2005) Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol. Res. 52, 133–139.

    Article  CAS  Google Scholar 

  80. Ahmed, S., Reynolds, B.A. and Weiss, S. (1995) BDNF enhances the differentiation but not the survival of CNS stem cell- derived neuronal precursors. J. Neurosci. 15, 5765–5778.

    PubMed  CAS  Google Scholar 

  81. Kirschenbaum, B. and Goldman, S.A. (1995) Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl. Acad. Sci. USA. 92, 210–214.

    Article  CAS  Google Scholar 

  82. Zigova, T., Pencea, V., Wiegand, S.J. et al. (1998) Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell. Neurosci. 11, 234–245.

    Article  PubMed  CAS  Google Scholar 

  83. Benraiss, A., Chmielnicki, E., Lerner, K., et al.. (2001) Adenoviral brain-derived ­neurotrophic factor induces both neostriatal and olfactory recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci. 21, 6718–6731.

    PubMed  CAS  Google Scholar 

  84. Pencea, V., Bingaman, K.D., Wiegand, S.J. et al. (2001) Infusion of Brain-Derived Neurotrophic Factor into the Lateral Ventricle of the Adult Rat Leads to New Neurons in the Parenchyma of the Striatum, Septum, Thalamus, and Hypothalamus. J. Neurosci. 21, 6706–6717.

    PubMed  CAS  Google Scholar 

  85. Henry, R.A., Hughes, S.M. and Connor, B. (2007) AAV-Mediated Delivery of BDNF Augments Neurogenesis in the Normal and Quinolinic Acid Lesioned Adult Rat Brain. Eur. J. Neurosci. 25, 3512–3525.

    Article  Google Scholar 

  86. Cho, S.-R., Benraiss, A., Chmielnicki, E., et al. (2007) Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J. Clin. Invest. 117, 2889–2902.

    Article  PubMed  CAS  Google Scholar 

  87. Richards, L.J., Kilpatrick, T.J. and Bartlett, P.F. (1992) De novo generation of neuronal cells from the adult mouse brain. Proc. Natl. Acad. Sci. USA. 89, 8591–8595.

    Article  CAS  Google Scholar 

  88. Kilpatrick, T.J. and Bartlett, P.F. (1993) Cloning and growth of multipotential neuronal ­precursors: requirements for proliferation and differentiation. Neuron. 10, 255–265.

    Article  PubMed  CAS  Google Scholar 

  89. Vescovi, A.L., Reynolds, B.A., Fraser, D.D. et al. (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron. 11, 951–966.

    Article  PubMed  CAS  Google Scholar 

  90. Gritti, A., Parati, E., Cova, L., et al. (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100.

    PubMed  CAS  Google Scholar 

  91. Mudò, G., Bonomo, A., Di Liberto, V., et al. The FGF-2/FGFRs neurotrophic system ­promotes neurogenesis in the adult brain. J. Neural Transm. 116, 995–1005.

    Google Scholar 

  92. Kuhn, H.G., Winkler, J., Kempermann, G., et al. (1997) Epidermal growth factor and ­fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829.

    PubMed  CAS  Google Scholar 

  93. Wagner, J.P., Black, I.B. and DiCicco-Bloom, E. (1999) Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J. Neurosci. 19, 6006–6016.

    PubMed  CAS  Google Scholar 

  94. Jin, K., Sun, Y., Xie, L., et al. (2003) Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell. 2, 175–183.

    Article  PubMed  CAS  Google Scholar 

  95. Chen, K., Henry, R.A., Hughes, S.M. et al.. (2007) Creating a neurogenic environment: The role of BDNF and FGF2. Mol. Cell. Neurosci. 36, 108–120.

    Article  PubMed  CAS  Google Scholar 

  96. Jin, K., LaFevre-Bernt, M., Sun, Y., et al. (2005) FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA. 102, 18189–18194.

    Google Scholar 

  97. Kempermann, G. and Kronenberg, G. (2003) Depressed new Neurons?-Adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol. Psychiatry. 54, 499–503.

    Article  PubMed  Google Scholar 

  98. Sahay, A. and Hen, R. (2007) Adult hippocampal neurogenesis in depression. Nat. Neurosci. 10, 1110–1115.

    Article  PubMed  CAS  Google Scholar 

  99. Thomas, R.M. and Peterson, D.A. (2008) Even Neural Stem Cells Get the Blues: Evidence of a Molecular Link Between Modulation of Adult Neurogenesis and Depression. Gene Expr. 14, 1–100.

    Google Scholar 

  100. Malberg, J.E. and Blendy, J.A. (2005) Antidepressant action: to the nucleus and beyond. Trends Pharmacol. Sci. 26, 631–638.

    Article  CAS  Google Scholar 

  101. Perera, T.D., Park, S. and Nemirovskaya, Y. (2008) Cognitive Role of Neurogenesis in Depression and Antidepressant Treatment. Neuroscientist. 14, 326–338.

    Google Scholar 

  102. Grote, H.E., Bull, N.D., Howard, M.L., et al. (2005) Cognitive disorders and neurogenesis deficits in Huntington’s disease mice are rescued by fluoxetine. Eur. J. Neurosci. 22, 2081–2088.

    Article  Google Scholar 

  103. Peng, Q., Masuda, N., Jiang, M., et al. (2008) The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp. Neurol. 210, 154–163.

    Article  CAS  Google Scholar 

  104. Schwaninger, M., Schofl, C., Blume, R., et al. (1995) Inhibition by antidepressant drugs of cyclic AMP response element- binding protein/cyclic AMP response element-directed gene transcription. Mol. Pharmacol. 47, 1112–1118.

    PubMed  CAS  Google Scholar 

  105. Nakagawa, S., Malberg, J.E., Kim, J.E., et al. (2000) CREB plays a critical role in the survival of newborn cells in the adult hippocampus. Soci. Neurosci. Abstr. 26, 12954.

    Google Scholar 

  106. Thome, J., Sakai, N., Shin, K.H., et al. (2000) cAMP Response Element-Mediated Gene Transcription Is Upregulated by Chronic Antidepressant Treatment. J. Neurosci. 20, 4030–4036.

    PubMed  CAS  Google Scholar 

  107. Nibuya, M., Nestler, E.J. and Duman, R.S. (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat ­hippocampus. J. Neurosci. 16, 2365–2372.

    PubMed  CAS  Google Scholar 

  108. Dias, B.G., Banerjee, S.B., Duman, R.S. et al (2003) Differential regulation of Brain Derived Neurotrophic Factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology. 45, 553–563.

    Article  PubMed  CAS  Google Scholar 

  109. de Foubert, G., Carney, S.L., Robinson, C.S., et al. (2004) Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of ­treatment. Neurosci. 128, 597–604.

    Article  PubMed  CAS  Google Scholar 

  110. Vinet, J., Carra, S., Blom, J.M.C., et al. (2004) Chronic treatment with desipramine and fluoxetine modulate BDNF, CaMKK[alpha] and CaMKK[beta] mRNA levels in the ­hippocampus of transgenic mice expressing antisense RNA against the glucocorticoid ­receptor. Neuropharmacology. 47, 1062–1069.

    Article  PubMed  CAS  Google Scholar 

  111. Gass, P. and Riva, M.A. (2007) CREB, neurogenesis and depression. BioEssays. 29, 957–961.

    Article  PubMed  CAS  Google Scholar 

  112. Sairanen, M., O’Leary, O.F., Knuuttila, J.E. et al. (2007) Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neurosci. 144, 368–374.

    Article  PubMed  CAS  Google Scholar 

  113. Qi, X., Lin, W., Li, J., et al. (2008) Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress. Neurobiol. Dis. 31, 278–285.

    Article  PubMed  CAS  Google Scholar 

  114. Nakagawa, S., Kim, J.-E., Lee, R., et al. (2002) Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J. Neurosci. 22, 3673–3682.

    CAS  Google Scholar 

  115. Giachino, C., De Marchis, S., Giampietro, C., et al. (2005) cAMP Response Element-Binding Protein Regulates Differentiation and Survival of Newborn Neurons in the Olfactory Bulb. J. Neurosci. 25, 10105–10118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bronwen Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Connor, B. (2011). Adult Neural Progenitor Cells and Cell Replacement Therapy for Huntington Disease. In: Appasani, K., Appasani, R. (eds) Stem Cells & Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-860-7_18

Download citation

Publish with us

Policies and ethics