Skip to main content

Transition Metals and Other Forms of Oxidative Protein Damage in Renal Disease

  • Chapter
  • First Online:
Studies on Renal Disorders

Abstract

Oxidative and carbonyl stresses are dramatically increased in chronic renal disease, whereby an inverse relationship usually exists between renal clearance and the accumulation of low molecular weight compounds ultimately responsible for the damage to plasma constituents. Damage to proteins results from primary attack to protein residues by reactive oxygen species with or without metal catalyst, or via myeloperoxidase and hypochlorous acid. Secondary, indirect forms of damage result from oxoaldehydes and lipid peroxidation products involved in glycation and glycoxidation reactions with nucleophilic residues. The chemical oxidative pathways responsible for protein damage and its biological and clinical significance are discussed, emphasizing end stage renal disease. Interventions that improve or worsen oxidant stress, such as intravenous iron therapy, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta 2005;1703:93–109.

    CAS  PubMed  Google Scholar 

  2. Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008;44:1973–2001.

    CAS  PubMed  Google Scholar 

  3. Hazen SL, d’Avignon A, Anderson MM, Hsu FF, Heinecke JW. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidize alpha-amino acids to a family of reactive aldehydes. Mechanistic studies identifying labile intermediates along the reaction pathway. J Biol Chem 1998;273:4997–5005.

    CAS  PubMed  Google Scholar 

  4. Winterbourn CC, Kettle AJ. Reactions of superoxide with myeloperoxidase and its products. Jpn J Infect Dis 2004;57:S31–3.

    PubMed  Google Scholar 

  5. Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 1993;62:797–821.

    CAS  PubMed  Google Scholar 

  6. Hawkins CL, Pattison DI, Davies MJ. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 2003;25:259–74.

    CAS  PubMed  Google Scholar 

  7. Akagawa M, Sasaki T, Suyama K. Oxidative deamination of lysine residue in plasma protein of diabetic rats. Novel mechanism via the Maillard reaction. Eur J Biochem 2002;269:5451–8.

    CAS  PubMed  Google Scholar 

  8. Kagan HM, Williams MA, Williamson PR, Anderson JM. Influence of sequence and charge on the specificity of lysyl oxidase toward protein and synthetic peptide substrates. J Biol Chem 1984;259:11203–7.

    CAS  PubMed  Google Scholar 

  9. Requena JR, Chao CC, Levine RL, Stadtman ER. Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci U S A 2001;98:69–74.

    CAS  PubMed  Google Scholar 

  10. Sell DR, Strauch CM, Shen W, Monnier VM. 2-aminoadipic acid is a marker of protein carbonyl oxidation in the aging human skin: effects of diabetes, renal failure and sepsis. Biochem J 2007;404:269–77.

    CAS  PubMed  Google Scholar 

  11. Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 2001;30:463–88.

    CAS  PubMed  Google Scholar 

  12. Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 1995;268:L699–722.

    CAS  PubMed  Google Scholar 

  13. Rabbani N, Thornalley PJ. Assay of 3-nitrotyrosine in tissues and body fluids by liquid chromatography with tandem mass spectrometric detection. Meth Enzymol 2008;440:337–59.

    CAS  PubMed  Google Scholar 

  14. Martinez-Ruiz A, Lamas S. Nitrosylation of thiols in vascular homeostasis and disease. Curr Atheroscler Rep 2005;7:213–8.

    CAS  PubMed  Google Scholar 

  15. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996;49:1304–13.

    CAS  PubMed  Google Scholar 

  16. Fan X, Zhang J, Theves M et al. Mechanism of lysine oxidation in human lens crystallins during aging and in diabetes. J Biol Chem 2009;284:34618–27.

    CAS  PubMed  Google Scholar 

  17. Levine RL, Wehr N, Williams JA, Stadtman ER, Shacter E. Determination of carbonyl groups in oxidized proteins. Methods Mol Biol 2000;99:15–24.

    CAS  PubMed  Google Scholar 

  18. Vanholder R, De Smet R, Glorieux G et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 2003;63:1934–43.

    CAS  PubMed  Google Scholar 

  19. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 1998;32(Suppl 3):S112–9.

    CAS  PubMed  Google Scholar 

  20. Cheung AK, Sarnak MJ, Yan G et al. Atherosclerotic cardiovascular disease risks in chronic hemodialysis patients. Kidney Int 2000;58:353–62.

    CAS  PubMed  Google Scholar 

  21. Stenvinkel P. Malnutrition and chronic inflammation as risk factors for cardiovascular disease in chronic renal failure. Blood Purif 2001;19:143–51.

    CAS  PubMed  Google Scholar 

  22. Himmelfarb J, Hakim RM. Oxidative stress in uremia. Curr Opin Nephrol Hypertens 2003;12:593–8.

    CAS  PubMed  Google Scholar 

  23. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 2002;62:1524–38.

    CAS  PubMed  Google Scholar 

  24. Roselaar SE, Nahat NB, Winyard PG, Jones P, Cunningham J, Blake DR. Detection of oxidants in uremic plasma by electron spin resonances spectroscopy. Kidney Int 1995;48:199–206.

    CAS  PubMed  Google Scholar 

  25. Himmelfarb J, McMonagle E, McMenamin E. Plasma protein thiol oxidation and carbonyl formation in chronic renal failure. Kidney Int 2000;58:2571–8.

    CAS  PubMed  Google Scholar 

  26. Himmelfarb J, McMenamin ME, Loseto G, Heinecke JW. Myeloperoxidase-catalyzed 3-chlorotyrosine formation in dialysis patients. Free Radic Biol Med 2001;31:1163–9.

    CAS  PubMed  Google Scholar 

  27. Mera K, Anraku M, Kitamura K et al. Oxidation and carboxy methyl lysine-modification of albumin: possible involvement in the progression of oxidative stress in hemodialysis patients. Hypertens Res 2005;28:973–80.

    CAS  PubMed  Google Scholar 

  28. Kalogerakis G, Baker AM, Christov S et al. Oxidative stress and high-density lipoprotein function in Type I diabetes and end-stage renal disease. Clin Sci (Lond) 2005;108:497–506.

    CAS  Google Scholar 

  29. Alhamdani MS, Al-Kassir AH, Jaleel NA, Hmood AM, Ali HM. Elevated levels of alkanals, alkenals and 4-HO-alkenals in plasma of hemodialysis patients. Am J Nephrol 2006;26:299–303.

    CAS  PubMed  Google Scholar 

  30. Soejima A, Matsuzawa N, Miyake N et al. Hypoalbuminemia accelerates erythrocyte membrane lipid peroxidation in chronic hemodialysis patients. Clin Nephrol 1999;51:92–7.

    CAS  PubMed  Google Scholar 

  31. Vlassara H. Serum advanced glycosylation end products: a new class of uremic toxins? Blood Purif 1994;12:54–9.

    CAS  PubMed  Google Scholar 

  32. Schwenger V, Zeier M, Henle T, Ritz E. Advanced glycation endproducts (AGEs) as uremic toxins. Nahrung 2001;45:172–6.

    CAS  PubMed  Google Scholar 

  33. Ponka A, Kuhlback B. Serum ascorbic acid in patients undergoing chronic hemodialysis. Acta Med Scand 1983;213:305–7.

    CAS  PubMed  Google Scholar 

  34. Hultqvist M, Hegbrant J, Nilsson-Thorell C et al. Plasma concentrations of vitamin C, vitamin E and/or malondialdehyde as markers of oxygen free radical production during hemodialysis. Clin Nephrol 1997;47:37–46.

    CAS  PubMed  Google Scholar 

  35. Hirano H, Tone Y, Otani H et al. Levels of serum ascorbate and its metabolites in hemodialysis patients. Nippon Jinzo Gakkai Shi 2004;46:426–33.

    CAS  PubMed  Google Scholar 

  36. Miyata T, Kurokawa K, van Ypersele de Strihou C. Carbonyl stress and long-term uremic complications. Adv Nephrol Necker Hosp 1998;28:311–9.

    CAS  PubMed  Google Scholar 

  37. Weiss MF, Erhard P, Kader-Attia FA et al. Mechanisms for the formation of glycoxidation products in end-stage renal disease. Kidney Int 2000;57:2571–85.

    CAS  PubMed  Google Scholar 

  38. Thornalley PJ. Advanced glycation end products in renal failure. J Ren Nutr 2006;16:178–84.

    PubMed  Google Scholar 

  39. Miyata T, Horie K, Ueda Y et al. Advanced glycation and lipidoxidation of the peritoneal membrane: respective roles of serum and peritoneal fluid reactive carbonyl compounds. Kidney Int 2000;58:425–35.

    CAS  PubMed  Google Scholar 

  40. Maggi E, Bellazzi R, Falaschi F et al. Enhanced LDL oxidation in uremic patients: an additional mechanism for accelerated atherosclerosis? Kidney Int 1994;45:876–83.

    CAS  PubMed  Google Scholar 

  41. Witko-Sarsat V, Friedlander M, Nguyen Khoa T et al. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 1998;161:2524–32.

    CAS  PubMed  Google Scholar 

  42. Monnier VM, Sell DR, Nagaraj RH et al. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes 1992;41(Suppl 2):36–41.

    CAS  PubMed  Google Scholar 

  43. Beisswenger PJ, Healy JC, Shultz EK. Glycosylated serum proteins and glycosylated hemoglobin in the assessment of glycemic control in insulin-dependent and non-insulin-dependent diabetes mellitus. Metabolism 1993;42:989–92.

    CAS  PubMed  Google Scholar 

  44. Makita Z, Yanagisawa K, Kuwajima S et al. Advanced glycation endproducts and diabetic nephropathy. J Diabetes Complicat 1995;9:265–8.

    CAS  PubMed  Google Scholar 

  45. Gugliucci A, Bendayan M. Renal fate of circulating advanced glycated end products (AGE): evidence for reabsorption and catabolism of AGE-peptides by renal proximal tubular cells. Diabetologia 1996;39:149–60.

    CAS  PubMed  Google Scholar 

  46. Londono I, Bendayan M. Glomerular handling of native albumin in the presence of circulating modified albumins by the normal rat kidney. Am J Physiol Renal Physiol 2005;289:F1201–9.

    CAS  PubMed  Google Scholar 

  47. Ozdemir AM, Hopfer U, Rosca MV, Fan XJ, Monnier VM, Weiss MF. Effects of advanced glycation end product modification on proximal tubule epithelial cell processing of albumin. Am J Nephrol 2008;28:14–24.

    CAS  PubMed  Google Scholar 

  48. Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M et al. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic Biol Med 1996;21:845–53.

    CAS  PubMed  Google Scholar 

  49. Oberg BP, McMenamin E, Lucas FL et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 2004;65:1009–16.

    PubMed  Google Scholar 

  50. Himmelfarb J, McMonagle E, Freedman S et al. Oxidative stress is increased in critically ill patients with acute renal failure. J Am Soc Nephrol 2004;15:2449–56.

    CAS  PubMed  Google Scholar 

  51. Saxena AK, Saxena P, Wu X, Obrenovich M, Weiss MF, Monnier VM. Protein aging by carboxymethylation of lysines generates sites for divalent metal and redox active copper binding: relevance to diseases of glycoxidative stress. Biochem Biophys Res Commun 1999;260:332–8.

    CAS  PubMed  Google Scholar 

  52. Schmidt AM, Hofmann M, Taguchi A, Yan SD, Stern DM. RAGE: a multiligand receptor contributing to the cellular response in diabetic vasculopathy and inflammation. Semin Thromb Hemost 2000;26:485–93.

    CAS  PubMed  Google Scholar 

  53. Peppa M, Uribarri J, Cai W, Lu M, Vlassara H. Glycoxidation and inflammation in renal failure patients. Am J Kidney Dis 2004;43:690–5.

    CAS  PubMed  Google Scholar 

  54. Rosen H, Crowley JR, Heinecke JW. Human neutrophils use the myeloperoxidase-hydrogen peroxide-chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis. J Biol Chem 2002;277:30463–8.

    CAS  PubMed  Google Scholar 

  55. Pan HZ, Zhang L, Guo MY et al. The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta Diabetol 2009 [Epub ahead of print].

    Google Scholar 

  56. Morgan PE, Sturgess AD, Hennessy A, Davies MJ. Serum protein oxidation and apolipoprotein CIII levels in people with systemic lupus erythematosus with and without nephritis. Free Radic Res 2007;41:1301–12.

    CAS  PubMed  Google Scholar 

  57. Rysava R, Kalousova M, Zima T, Dostal C, Merta M, Tesar V. Does renal function influence plasma levels of advanced glycation and oxidation protein products in patients with chronic rheumatic diseases complicated by secondary amyloidosis? Kidney Blood Press Res 2007;30:1–7.

    CAS  PubMed  Google Scholar 

  58. Agarwal R. Chronic kidney disease is associated with oxidative stress independent of hypertension. Clin Nephrol 2004;61:377–83.

    CAS  PubMed  Google Scholar 

  59. Sarnak MJ, Coronado BE, Greene T et al. Cardiovascular disease risk factors in chronic renal insufficiency. Clin Nephrol 2002;57:327–35.

    CAS  PubMed  Google Scholar 

  60. Herzog CA, Ma JZ, Collins AJ. Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. N Engl J Med 1998;339:799–805.

    CAS  PubMed  Google Scholar 

  61. Libby P. Vascular biology of atherosclerosis: overview and state of the art. Am J Cardiol 2003;91:3A–6.

    CAS  PubMed  Google Scholar 

  62. Steinberg JJ, Cajigas A, Brownlee M. Enzymatic shot-gun 5′-phosphorylation and 3′-sister phosphate exchange: a two-dimensional thin-layer chromatographic technique to measure DNA deoxynucleotide modification. J Chromatogr 1992;574:41–55.

    CAS  PubMed  Google Scholar 

  63. Kimmel PL, Phillips TM, Simmens SJ et al. Immunologic function and survival in hemodialysis patients. Kidney Int 1998;54:236–44.

    CAS  PubMed  Google Scholar 

  64. Hazen SL, Hsu FF, d’Avignon A, Heinecke JW. Human neutrophils employ myeloperoxidase to convert alpha-amino acids to a battery of reactive aldehydes: a pathway for aldehyde generation at sites of inflammation. Biochemistry 1998;37:6864–73.

    CAS  PubMed  Google Scholar 

  65. deFilippi C, Wasserman S, Rosanio S et al. Cardiac troponin T and C-reactive protein for predicting prognosis, coronary atherosclerosis, and cardiomyopathy in patients undergoing long-term hemodialysis. JAMA 2003;290:353–9.

    CAS  PubMed  Google Scholar 

  66. Sakata N, Imanaga Y, Meng J et al. Increased advanced glycation end products in atherosclerotic lesions of patients with end-stage renal disease. Atherosclerosis 1999;142:67–77.

    CAS  PubMed  Google Scholar 

  67. Weiss MF, Scivittaro V, Anderson JM. Oxidative stress and increased expression of growth factors in lesions of failed hemodialysis access. Am J Kidney Dis 2001;37:970–80.

    CAS  PubMed  Google Scholar 

  68. Yoshida S, Yamada K, Hamaguchi K et al. Immunohistochemical study of human advanced glycation end-products (AGE) and growth factors in cardiac tissues of patients on maintenance dialysis and with kidney transplantation. Clin Nephrol 1998;49:273–80.

    CAS  PubMed  Google Scholar 

  69. Zoccali C, Mallamaci F, Asahia K et al. Pentosidine, carotid atherosclerosis and alterations in left ventricular geometry in hemodialysis patients. J Nephrol 2001;14:293–8.

    CAS  PubMed  Google Scholar 

  70. Lim PS, Wu MY, Chien SW et al. Elevated circulating levels of soluble CD-40 ligand in haemodialysis patients with symptomatic coronary heart disease. Nephrology (Carlton) 2008;13:677–83.

    CAS  Google Scholar 

  71. Dursun B, Dursun E, Suleymanlar G et al. Carotid artery intima-media thickness correlates with oxidative stress in chronic haemodialysis patients with accelerated atherosclerosis. Nephrol Dial Transplant 2008;23:1697–703.

    PubMed  Google Scholar 

  72. Himmelfarb J, McMonagle E. Albumin is the major plasma protein target of oxidant stress in uremia. Kidney Int 2001;60:358–63.

    CAS  PubMed  Google Scholar 

  73. Danielski M, Ikizler TA, McMonagle E et al. Linkage of hypoalbuminemia, inflammation, and oxidative stress in patients receiving maintenance hemodialysis therapy. Am J Kidney Dis 2003;42:286–94.

    CAS  PubMed  Google Scholar 

  74. Sarnatskaya VV, Ivanov AI, Nikolaev VG et al. Structure and binding properties of serum albumin in uremic patients at different periods of hemodialysis. Artif Organs 1998;22:107–15.

    CAS  PubMed  Google Scholar 

  75. Sarnatskaya VV, Lindup WE, Ivanov AI et al. Extraction of uraemic toxins with activated carbon restores the functional properties of albumin. Nephron Physiol 2003;95:10–18.

    Google Scholar 

  76. Oettl K, Stauber RE. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br J Pharmacol 2007;151:580–90.

    CAS  PubMed  Google Scholar 

  77. Phelan PJ, O’Kelly P, Walshe JJ, Conlon PJ. The importance of serum albumin and phosphorous as predictors of mortality in ESRD patients. Ren Fail 2008;30:423–9.

    CAS  PubMed  Google Scholar 

  78. Mayer B, Zitta S, Greilberger J et al. Effect of hemodialysis on the antioxidative properties of serum. Biochim Biophys Acta 2003;1638:267–72.

    CAS  PubMed  Google Scholar 

  79. Lyons TJ. Glycation, carbonyl stress, EAGLEs, and the vascular complications of diabetes. Semin Vasc Med 2002;2:175–89.

    PubMed  Google Scholar 

  80. Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 2000;28:1708–16.

    CAS  PubMed  Google Scholar 

  81. Lindner A, Charra B, Sherrard DJ, Scribner BH. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med 1974;290:697–701.

    CAS  PubMed  Google Scholar 

  82. Vanholder R, Argiles A, Baurmeister U et al. Uremic toxicity: present state of the art. Int J Artif Organs 2001;24:695–725.

    CAS  PubMed  Google Scholar 

  83. Miyata T, Inagi R, Kurokawa K. Diagnosis, pathogenesis, and treatment of dialysis-related amyloidosis. Miner Electrolyte Metab 1999;25:114–7.

    CAS  PubMed  Google Scholar 

  84. Cheung AK, Agodoa LY, Daugirdas JT et al. Effects of hemodialyzer reuse on clearances of urea and beta2-microglobulin. The Hemodialysis (HEMO) Study Group. J Am Soc Nephrol 1999;10:117–27.

    CAS  PubMed  Google Scholar 

  85. Leypoldt JK, Cheung AK, Deeter RB. Single compartment models for evaluating beta 2-microglobulin clearance during hemodialysis. ASAIO J 1997;43:904–9.

    CAS  PubMed  Google Scholar 

  86. Leypoldt JK, Cheung AK, Deeter RB. Effect of hemodialyzer reuse: dissociation between clearances of small and large solutes. Am J Kidney Dis 1998;32:295–301.

    CAS  PubMed  Google Scholar 

  87. Miyata T, Iida Y, Ueda Y et al. Monocyte/macrophage response to beta 2-microglobulin modified with advanced glycation end products. Kidney Int 1996;49:538–50.

    CAS  PubMed  Google Scholar 

  88. Henle T, Deppisch R, Beck W, Hergesell O, Hansch GM, Ritz E. Advanced glycated end-products (AGE) during haemodialysis treatment: discrepant results with different methodologies reflecting the heterogeneity of AGE compounds. Nephrol Dial Transplant 1999;14:1968–75.

    CAS  PubMed  Google Scholar 

  89. Miyata T, Maeda K, Kurokawa K, van Ypersele de Strihou C. Oxidation conspires with glycation to generate noxious advanced glycation end products in renal failure. Nephrol Dial Transplant 1997;12:255–8.

    CAS  PubMed  Google Scholar 

  90. Stein G, Franke S, Mahiout A et al. Influence of dialysis modalities on serum AGE levels in end-stage renal disease patients. Nephrol Dial Transplant 2001;16:999–1008.

    CAS  PubMed  Google Scholar 

  91. Galli F, Benedetti S, Floridi A et al. Glycoxidation and inflammatory markers in patients on treatment with PMMA-based protein-leaking dialyzers. Kidney Int 2005;67:750–9.

    CAS  PubMed  Google Scholar 

  92. Ahmed N, Thornalley PJ. Quantitative screening of protein biomarkers of early glycation, advanced glycation, oxidation and nitrosation in cellular and extracellular proteins by tandem mass spectrometry multiple reaction monitoring. Biochem Soc Trans 2003;31:1417–22.

    CAS  PubMed  Google Scholar 

  93. Valencia JV, Weldon SC, Quinn D et al. Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics. Anal Biochem 2004;324:68–78.

    CAS  PubMed  Google Scholar 

  94. Faist V, Erbersdobler HF. Metabolic transit and in vivo effects of melanoidins and precursor compounds deriving from the Maillard reaction. Ann Nutr Metab 2001;45:1–12.

    CAS  PubMed  Google Scholar 

  95. Uribarri J, Peppa M, Cai W et al. Dietary glycotoxins correlate with circulating advanced glycation end product levels in renal failure patients. Am J Kidney Dis 2003;42:532–8.

    CAS  PubMed  Google Scholar 

  96. Suliman ME, Heimburger O, Barany P et al. Plasma pentosidine is associated with inflammation and malnutrition in end-stage renal disease patients starting on dialysis therapy. J Am Soc Nephrol 2003;14:1614–22.

    CAS  PubMed  Google Scholar 

  97. Schwedler SB, Metzger T, Schinzel R, Wanner C. Advanced glycation end products and mortality in hemodialysis patients. Kidney Int 2002;62:301–10.

    CAS  PubMed  Google Scholar 

  98. Maillard LC. Reaction generale des acides amines sur les sucres: ses consequences biologiques. Presse Med 1912;71:546.

    CAS  Google Scholar 

  99. Koschinsky T, He CJ, Mitsuhashi T et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 1997;94:6474–9.

    CAS  PubMed  Google Scholar 

  100. Miyata T, Fu MX, Kurokawa K, van Ypersele de Strihou C, Thorpe SR, Baynes JW. Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: is there oxidative stress in uremia? Kidney Int 1998;54:1290–5.

    CAS  PubMed  Google Scholar 

  101. Raj DS, Dominic EA, Pai A et al. Skeletal muscle, cytokines, and oxidative stress in end-stage renal disease. Kidney Int 2005;68:2338–44.

    CAS  PubMed  Google Scholar 

  102. Dursun E, Dursun B, Suleymanlar G, Ozben T. Carbonyl stress in chronic renal failure: the effect of haemodialysis. Ann Clin Biochem 2005;42:64–6.

    CAS  PubMed  Google Scholar 

  103. Ward RA, Ouseph R, McLeish KR. Effects of high-flux hemodialysis on oxidant stress. Kidney Int 2003;63:353–9.

    PubMed  Google Scholar 

  104. Tepel M, van der Giet M, Statz M, Jankowski J, Zidek W. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation 2003;107:992–5.

    CAS  PubMed  Google Scholar 

  105. Boaz M, Smetana S, Weinstein T et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 2000;356:1213–8.

    CAS  PubMed  Google Scholar 

  106. [No autors listed]. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 1999;354:447–55.

    Google Scholar 

  107. Lonn E, Bosch J, Yusuf S et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 2005;293:1338–47.

    PubMed  Google Scholar 

  108. Halliwell B. The antioxidant paradox. Lancet 2000;355:1179–80.

    CAS  PubMed  Google Scholar 

  109. Domenici FA, Vannucchi MT, Jordao AA, Jr., Meirelles MS, Vannucchi H. DNA oxidative damage in patients with dialysis treatment. Ren Fail 2005;27:689–94.

    CAS  PubMed  Google Scholar 

  110. Lu L, Erhard P, Salomon RG, Weiss MF. Serum vitamin E and oxidative protein modification in hemodialysis: a randomized clinical trial. Am J Kidney Dis 2007;50:305–13.

    CAS  PubMed  Google Scholar 

  111. Pupim LB, Himmelfarb J, McMonagle E, Shyr Y, Ikizler TA. Influence of initiation of maintenance hemodialysis on biomarkers of inflammation and oxidative stress. Kidney Int 2004;65:2371–9.

    CAS  PubMed  Google Scholar 

  112. Agarwal R. Anti-inflammatory effects of short-term pioglitazone therapy in men with advanced diabetic nephropathy. Am J Physiol Renal Physiol 2006;290:F600–5.

    CAS  PubMed  Google Scholar 

  113. Simmons EM, Langone A, Sezer MT et al. Effect of renal transplantation on biomarkers of inflammation and oxidative stress in end-stage renal disease patients. Transplantation 2005;79:914–9.

    CAS  PubMed  Google Scholar 

  114. Przekwas M, Malgorzewicz S, Zdrojewski Z, Debska-Slizien A, Lysiak-Szydlowska W, Rutkowski B. Influence of predialysis oxidative stress on peroxidation processes after renal transplantation. Transplant Proc 2003;35:2170–3.

    CAS  PubMed  Google Scholar 

  115. Hricik DE, Schulak JA, Sell DR, Fogarty JF, Monnier VM. Effects of kidney or kidney-pancreas transplantation on plasma pentosidine. Kidney Int 1993;43:398–403.

    CAS  PubMed  Google Scholar 

  116. Hricik DE, Wu YC, Schulak A, Friedlander MA. Disparate changes in plasma and tissue pentosidine levels after kidney and kidney-pancreas transplantation. Clin Transplant 1996;10:568–73.

    CAS  PubMed  Google Scholar 

  117. Antolini F, Valente F, Ricciardi D, Baroni M, Fagugli RM. Principal component analysis of some oxidative stress parameters and their relationships in hemodialytic and transplanted patients. Clin Chim Acta 2005;358:87–94.

    CAS  PubMed  Google Scholar 

  118. Antolini F, Valente F, Ricciardi D, Fagugli RM. Normalization of oxidative stress parameters after kidney transplant is secondary to full recovery of renal function. Clin Nephrol 2004;62:131–7.

    CAS  PubMed  Google Scholar 

  119. Descamps-Latscha B, Goldfarb B, Nguyen AT et al. Establishing the relationship between complement activation and stimulation of phagocyte oxidative metabolism in hemodialyzed patients: a randomized prospective study. Nephron 1991;59:279–85.

    CAS  PubMed  Google Scholar 

  120. Himmelfarb J, Ault KA, Holbrook D, Leeber DA, Hakim RM. Intradialytic granulocyte reactive oxygen species production: a prospective, crossover trial. J Am Soc Nephrol 1993;4:178–86.

    CAS  PubMed  Google Scholar 

  121. Capeillere-Blandin C, Gausson V, Descamps-Latscha B, Witko-Sarsat V. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim Biophys Acta 2004;1689:91–102.

    CAS  PubMed  Google Scholar 

  122. Zhang R, Brennan ML, Fu X et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 2001;286:2136–42.

    CAS  PubMed  Google Scholar 

  123. Coskun C, Kural A, Doventas Y et al. Hemodialysis and protein oxidation products. Ann N Y Acad Sci 2007;1100:404–8.

    CAS  PubMed  Google Scholar 

  124. Ward RA. Phagocytic cell function as an index of biocompatibility. Nephrol Dial Transplant 1994;9(Suppl 2):46–56.

    PubMed  Google Scholar 

  125. Himmelfarb J, McMenamin E, McMonagle E. Plasma aminothiol oxidation in chronic hemodialysis patients. Kidney Int 2002;61:705–16.

    CAS  PubMed  Google Scholar 

  126. Akagawa M, Sasaki D, Kurota Y, Suyama K. Formation of alpha-aminoadipic and gamma-glutamic semialdehydes in proteins by the maillard reaction. Ann N Y Acad Sci 2005;1043:129–34.

    CAS  PubMed  Google Scholar 

  127. Qian M, Liu M, Eaton JW. Transition metals bind to glycated proteins forming redox active “glycochelates”: implications for the pathogenesis of certain diabetic complications. Biochem Biophys Res Commun 1998;250:385–9.

    CAS  PubMed  Google Scholar 

  128. Seifert ST, Krause R, Gloe K, Henle T. Metal complexation by the peptide-bound Maillard reaction products N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine. J Agric Food Chem 2004;52:2347–50.

    CAS  PubMed  Google Scholar 

  129. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Meth Enzymol 1990;186:1–85.

    CAS  PubMed  Google Scholar 

  130. Yim MB, Yim HS, Lee C, Kang SO, Chock PB. Protein glycation: creation of catalytic sites for free radical generation. Ann N Y Acad Sci 2001;928:48–53.

    CAS  PubMed  Google Scholar 

  131. Sell DR, Strauch CM, Shen W, Monnier VM. Aging, diabetes, and renal failure catalyze the oxidation of lysyl residues to 2-aminoadipic acid in human skin collagen: evidence for metal-catalyzed oxidation mediated by alpha-dicarbonyls. Ann N Y Acad Sci 2008;1126:205–9.

    CAS  PubMed  Google Scholar 

  132. Zanen AL, Adriaansen HJ, van Bommel EF, Posthuma R, Th de Jong GM. “Oversaturation” of transferrin after intravenous ferric gluconate (Ferrlecit(R)) in haemodialysis patients. Nephrol Dial Transplant 1996;11:820–4.

    CAS  PubMed  Google Scholar 

  133. Esposito BP, Breuer W, Slotki I, Cabantchik ZI. Labile iron in parenteral iron formulations and its potential for generating plasma nontransferrin-bound iron in dialysis patients. Eur J Clin Invest 2002;32(Suppl 1):42–9.

    CAS  PubMed  Google Scholar 

  134. Agarwal R. Transferrin saturation with intravenous irons: an in vitro study. Kidney Int 2004;66:1139–44.

    CAS  PubMed  Google Scholar 

  135. Kooistra MP, Kersting S, Gosriwatana I et al. Nontransferrin-bound iron in the plasma of haemodialysis patients after intravenous iron saccharate infusion. Eur J Clin Invest 2002;32(Suppl 1):36–41.

    CAS  PubMed  Google Scholar 

  136. Rooyakkers TM, Stroes ES, Kooistra MP et al. Ferric saccharate induces oxygen radical stress and endothelial dysfunction in vivo. Eur J Clin Invest 2002;32(Suppl 1):9–16.

    CAS  PubMed  Google Scholar 

  137. Roob JM, Khoschsorur G, Tiran A, Horina JH, Holzer H, Winklhofer-Roob BM. Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. J Am Soc Nephrol 2000;11:539–49.

    CAS  PubMed  Google Scholar 

  138. Michelis R, Gery R, Sela S et al. Carbonyl stress induced by intravenous iron during haemodialysis. Nephrol Dial Transplant 2003;18:924–30.

    CAS  PubMed  Google Scholar 

  139. Mimic-Oka J, Savic-Radojevic A, Pljesa-Ercegovac M et al. Evaluation of oxidative stress after repeated intravenous iron supplementation. Ren Fail 2005;27:345–51.

    CAS  PubMed  Google Scholar 

  140. Anraku M, Kitamura K, Shinohara A et al. Intravenous iron administration induces oxidation of serum albumin in hemodialysis patients. Kidney Int 2004;66:841–8.

    CAS  PubMed  Google Scholar 

  141. Tovbin D, Mazor D, Vorobiov M, Chaimovitz C, Meyerstein N. Induction of protein oxidation by intravenous iron in hemodialysis patients: role of inflammation. Am J Kidney Dis 2002;40:1005–12.

    CAS  PubMed  Google Scholar 

  142. Bishu K, Agarwal R. Acute injury with intravenous iron and concerns regarding long-term safety. Clin J Am Soc Nephrol 2006;1(Suppl 1):S19–23.

    CAS  PubMed  Google Scholar 

  143. Horl WH. Clinical aspects of iron use in the anemia of kidney disease. J Am Soc Nephrol 2007;18:382–93.

    PubMed  Google Scholar 

  144. Kletzmayr J, Horl WH. Iron overload and cardiovascular complications in dialysis patients. Nephrol Dial Transplant 2002;17(Suppl 2):25–9.

    CAS  PubMed  Google Scholar 

  145. Scheiber-Mojdehkar B, Lutzky B, Schaufler R, Sturm B, Goldenberg H. Non-transferrin-bound iron in the serum of hemodialysis patients who receive ferric saccharate: no correlation to peroxide generation. J Am Soc Nephrol 2004;15:1648–55.

    CAS  PubMed  Google Scholar 

  146. Cavdar C, Temiz A, Yenicerioglu Y et al. The effects of intravenous iron treatment on oxidant stress and erythrocyte deformability in hemodialysis patients. Scand J Urol Nephrol 2003;37:77–82.

    CAS  PubMed  Google Scholar 

  147. Driss F, Vrtovsnik F, Katsahian S et al. Effects of intravenous polymaltose iron on oxidant stress and non-transferrin-bound iron in hemodialysis patients. Nephron Clin Pract 2005;99:c63–7.

    CAS  PubMed  Google Scholar 

  148. Sela S, Shurtz-Swirski R, Cohen-Mazor M et al. Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J Am Soc Nephrol 2005;16:2431–8.

    CAS  PubMed  Google Scholar 

  149. Fortuno A, Beloqui O, San Jose G, Moreno MU, Zalba G, Diez J. Increased phagocytic nicotinamide adenine dinucleotide phosphate oxidase-dependent superoxide production in patients with early chronic kidney disease. Kidney Int (Suppl 99) 2005:S71–5.

    Google Scholar 

  150. Kamgar M, Zaldivar F, Vaziri ND, Pahl MV. Antioxidant therapy does not ameliorate oxidative stress and inflammation in patients with end-stage renal disease. J Natl Med Assoc 2009;101:336–44.

    PubMed  Google Scholar 

  151. Himmelfarb J, Phinney S, Ikizler TA, Kane J, McMonagle E, Miller G. Gamma-tocopherol and docosahexaenoic acid decrease inflammation in dialysis patients. J Ren Nutr 2007;17:296–304.

    PubMed  Google Scholar 

  152. Agalou S, Ahmed N, Dawnay A, Thornalley PJ. Removal of advanced glycation end products in clinical renal failure by peritoneal dialysis and haemodialysis. Biochem Soc Trans 2003;31:1394–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NIA (AG18436) to VMM, NIDDK/NIH DK57733 and DK45619 to MAF, from the National Institute of Environmental Health Sciences (MAF) grant ES11461, and from the Leonard B. Rosenberg Renal Research Foundation of the Center for dialysis Care, Cleveland Ohio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent M. Monnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Monnier, V.M., Nemet, I., Sell, D.R., Weiss, M.F. (2011). Transition Metals and Other Forms of Oxidative Protein Damage in Renal Disease. In: Miyata, T., Eckardt, KU., Nangaku, M. (eds) Studies on Renal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60761-857-7_2

Download citation

Publish with us

Policies and ethics