Skip to main content

Allergy and Immunology of the Aging Lung

  • Chapter
  • First Online:
Book cover Aging and Lung Disease

Part of the book series: Respiratory Medicine ((RM))

  • 1183 Accesses

Abstract

As one of the largest epithelial surfaces in the human body, the alveolar membrane of the lung is continuously exposed to a large variety of microorganisms as well as several organic and inorganic particles. In this sense, the lung is similar to the skin or the gastrointestinal mucosa, with all three serving a barrier function as the first line of defense for differentiating those agents that are potentially harmful from those that are innocuous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marston BJ, Plouffe JF, File Jr TM, et al. Incidence of community-acquired pneumonia requiring hospitalization. Results of a population-based active surveillance study in Ohio. The community-based pneumonia incidence study group. Arch Intern Med. 1997;157: 1709–18.

    Article  PubMed  CAS  Google Scholar 

  2. Coultas DB, Zumwalt RE, Black WC, et al. The epidemiology of interstitial lung diseases. Am J Respir Crit Care Med. 1994;150:967–72.

    PubMed  CAS  Google Scholar 

  3. Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. Chest. 2009;135:173–80.

    Article  PubMed  Google Scholar 

  4. Hendrick AM, Hendrick DJ. Thoracic tumors in the elderly patient. In: Connolly MJ, editor. Respiratory disease in the elderly patient. London: Chapman and Hall; 1996. p. 141–69.

    Google Scholar 

  5. National Center for Health Statistics. Health, United States, 2006 with chartbook on trends in the health of Americans. http://www.cdc.gov/nchs/hus.htm.

  6. Marder SR, Chenoweth DE, Goldstein IM, et al. Chemotactic responses of human peripheral blood monocytes to the complement-derived peptides C5a and C5a des Arg J Immunol. 1985;134:3325–31.

    PubMed  CAS  Google Scholar 

  7. Goldstein IM, Weissmann G. Generation of C5-derived lysosomal enzyme-releasing activity (C5a) by lysates of leukocyte lysosomes. J Immunol. 1974;113:1583–8.

    PubMed  CAS  Google Scholar 

  8. Sacks T, Moldow CF, Craddock PR, et al. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978;61:1161–7.

    Article  PubMed  CAS  Google Scholar 

  9. Mollnes TE, Brekke OL, Fung M, et al. Essential role of the C5a receptor in E. coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood. 2002;100:1869–77.

    PubMed  CAS  Google Scholar 

  10. Schnare M, Rollinghoff M, Qureshi S. Toll-like receptors: sentinels of host defence against bacterial infection. Int Arch Allergy Immunol. 2006;139(1):75–85.

    Article  PubMed  CAS  Google Scholar 

  11. Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol. 2000;165:5392–6.

    PubMed  CAS  Google Scholar 

  12. Torres D, Barrier M, Bihl F, et al. Toll-like receptor 2 is required for optimal control of Listeria monocytogenes infection. Infect Immun. 2004;72:2131–9.

    Article  PubMed  CAS  Google Scholar 

  13. Drennan M-B, Nicolle D, Quesniaux VJ, et al. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol. 2004;164:49–57.

    Article  PubMed  CAS  Google Scholar 

  14. Vazquez-Torres A, Vallance BA, Bergman MA, et al. Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J Immunol. 2004;172:6202–8.

    PubMed  CAS  Google Scholar 

  15. Lorenz E, Mira JP, Cornish KL, et al. A novel polymorphism in the Toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun. 2000;68:6398–401.

    Article  PubMed  CAS  Google Scholar 

  16. Hawn TR, Verbon A, Lettinga KD, et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ disease. J Exp Med. 2003;198:1563–72.

    Article  PubMed  CAS  Google Scholar 

  17. Ogus A-C, Yoldas B, Ozdemir T, et al. The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J. 2004;23:219–23.

    Article  PubMed  CAS  Google Scholar 

  18. Agnese D-M, Calvano E, Hahm SJ, et al. Human Toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis. 2002;186:1522–5.

    Article  PubMed  CAS  Google Scholar 

  19. Lorenz E, Mira JP, Frees KL, et al. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med. 2002;162:1028–32.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–7.

    Article  PubMed  CAS  Google Scholar 

  21. Kronenberg M, Rudensky A. Regulation of immunity by self-reactive T cells. Nature. 2005; 435:598–604.

    Article  PubMed  CAS  Google Scholar 

  22. Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Immunol. 2002;2:389–400.

    CAS  Google Scholar 

  23. Barthlott T, Kassiotis G, Stockinger B. T cell regulation as a side effect of homeostasis and competition. J Exp Med. 2003;197:451–60.

    Article  PubMed  CAS  Google Scholar 

  24. Barthlott T et al. CD25+CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. Int Immunol. 2005;17:279–88.

    Article  PubMed  CAS  Google Scholar 

  25. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.

    Article  PubMed  CAS  Google Scholar 

  26. Asseman C, Mauze S, Leach MW, et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999;190:995–1004.

    Article  PubMed  CAS  Google Scholar 

  27. Powrie F, Carlino J, Leach MW, et al. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med. 1996;183:2669–74.

    Article  PubMed  CAS  Google Scholar 

  28. Diamond G, Legarda D, Ryan LK. The innate immune response of the respiratory epithelium. Immunol Rev. 2000;173:27–38.

    Article  PubMed  CAS  Google Scholar 

  29. Martin TR, Frevert CW. Innate immunity in the lungs. Proc Am Thorac Soc. 2005;2:403–11.

    Article  PubMed  CAS  Google Scholar 

  30. Beutler B. Innate immunity: an overview. Mol Immunol. 2004;40(12):845–59.

    Article  PubMed  CAS  Google Scholar 

  31. Platz J, Beisswenger C, Dalpke A, et al. Microbial DNA induces a host defense reaction of human respiratory epithelial cells. J Immunol. 2004;173:1219–23.

    PubMed  CAS  Google Scholar 

  32. Skerrett SJ, Liggitt HD, Hajjar AM, et al. Respiratory epithelial cells regulate lung inflammation in response to inhaled endotoxin. Am J Physiol Lung Cell Mol Physiol. 2004;287: L143–52.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang P, Summer WR, Bagby GJ, et al. Innate immunity and pulmonary host defense. Immunol Rev. 2000;173:39–51.

    Article  PubMed  CAS  Google Scholar 

  34. Curtis JL, Kaltreider HB. Characterization of bronchoalveolar lymphocytes during a specific antibody-forming cell response in the lungs of mice. Am Rev Respir Dis. 1989;139:393–400.

    Article  PubMed  CAS  Google Scholar 

  35. Kaltreider HB, Caldwell JL, Byrd PK. The capacity of normal murine alveolar macrophages to function as antigen-presenting cells for the initiation of primary antibody-forming cell responses to sheep erythrocytes in vitro. Am Rev Respir Dis. 1986;133:1097–104.

    PubMed  CAS  Google Scholar 

  36. Kaltreider HB, Curtis JL, Arraj SM. The mechanism of appearance of specific antibody-forming cells in lungs of inbred mice after immunization with sheep erythrocytes intratracheally. II. Dose-dependence and kinetics of appearance of antibody-forming cells in hilar lymph nodes and lungs of unprimed and primed mice. Am Rev Respir Dis. 1987;135:87–92.

    PubMed  CAS  Google Scholar 

  37. Katial RK, Brandt BL, Moran EE, et al. Immunogenicity and safety testing of a group B meningococcal native outer membrane vesicle vaccine. Infect Immun. 2002;70:702–7.

    Article  PubMed  CAS  Google Scholar 

  38. Twigg HL. Humoral immune defense (antibodies): recent advances. Proc Am Thorac Soc. 2005;2:417–21.

    Article  PubMed  CAS  Google Scholar 

  39. Group TBC. Proteins in bronchoalveolar lavage fluid. Am Rev Respir Dis. 1990;141: S183–8.

    Google Scholar 

  40. Merrill WW, Naegel GP, Olchowski JJ, et al. Immunoglobulin G subclass proteins in serum and lavage fluid of normal subjects: quantitation and comparison with immunoglobulins A and E. Am Rev Respir Dis. 1985;131:584–7.

    PubMed  CAS  Google Scholar 

  41. Siber GR, Schur PH, Aisenberg AC, et al. Correlation between serum IgG-2 concentrations and the antibody response to bacterial polysaccharide antigens. N Engl J Med. 1980;303:178–82.

    Article  PubMed  CAS  Google Scholar 

  42. Stevens R, Dichek D, Keld B, et al. IgG1 is the predominant subclass of in vivo- and in vitro-produced anti-tetanus toxoid antibodies and also serves as the membrane IgG molecule for delivering inhibitory signals to anti-tetanus toxoid antibody-producing B cells. J Clin Immunol. 1983;3:65–9.

    Article  PubMed  CAS  Google Scholar 

  43. Curtis JL. Cell-mediated adaptive immune defense of the lungs. Proc Am Thorac Soc. 2005;2:412–6.

    Article  PubMed  CAS  Google Scholar 

  44. Saltini C, Kirby M, Trapnell BC, et al. Biased accumulation of T lymphocytes with “memory”-type CD45 leukocyte common antigen gene expression on the epithelial surface of the human lung. J Exp Med. 1990;171:1123–40.

    Article  PubMed  CAS  Google Scholar 

  45. Punturieri A, Alviani RS, Polak T, et al. Specific engagement of TLR4 or TLR3 does not lead to IFN-β-mediated innate signal amplification and STAT1 phosphorylation in resident murine alveolar macrophages. J Immunol. 2004;173:1033–42.

    PubMed  CAS  Google Scholar 

  46. Jakubzick C, Kunkel SL, Puri RK, et al. Therapeutic targeting of IL-4- and IL-13-responsive cells in pulmonary fibrosis. Immunol Res. 2004;30(3):339–49.

    Article  PubMed  CAS  Google Scholar 

  47. Renshaw M, Rockwell J, Engleman C, et al. Cutting edge: impaired toll-like receptor expression and function in aging. J Immunol. 2002;169:4697–701.

    PubMed  CAS  Google Scholar 

  48. Swift ME, Burns AL, Gray KL, et al. Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol. 2001;117:1027–35.

    Article  PubMed  CAS  Google Scholar 

  49. Hodes RJ, Fauci AS, editors. Report of task force on immunology and aging. Washington, DC: National Institutes of Aging and Allergy and Infectious Disease, US Department of Health and Human Services; 1996.

    Google Scholar 

  50. McLachlan J. Antitumor properties of aged human monocytes. J Immunol. 1995;154: 832–43.

    PubMed  CAS  Google Scholar 

  51. Ashcroft GS, Horan MA, Ferguson MW. Aging alters the inflammatory and endothelial cell adhesion molecule profiles during human cutaneous wound healing. Lab Invest. 1998;78:47–58.

    PubMed  CAS  Google Scholar 

  52. Flurkey K, Stadecker M, Miller RA. Memory T lymphocyte hyporesponsiveness to non-cognate stimuli: a key factor in age-related immunodeficiency. Eur J Immunol. 1992;22: 931–5.

    Article  PubMed  CAS  Google Scholar 

  53. Nicoletti C, Borghesi-Nicoletti C, Yang X, et al. Repertoire diversity of antibody response to bacterial antigens in aged mice. II. Phosphorylcholine-antibody in young and aged mice differ in both VH/VL gene repertoire and in specificity. J Immunol. 1991;147:2750–5.

    PubMed  CAS  Google Scholar 

  54. Linton PJ, Haynes L, Tsui L, et al. From naive to effector: alterations with aging. Immunol Rev. 1997;160:9–18.

    Article  PubMed  CAS  Google Scholar 

  55. Miller RA, Garcia G, Kirk CJ, et al. Early activation defects in T lymphocytes from aged mice. Immunol Rev. 1997;160:79–90.

    Article  PubMed  CAS  Google Scholar 

  56. Zhou T, Edwards CK, Mountz JK. Prevention of age-related T cell apoptosis defect in CD2-fas transgenic mice. J Exp Med. 1995;182:129–37.

    Article  PubMed  CAS  Google Scholar 

  57. Jackola DR, Ruger JK, Miller RA. Age-associated changes in human T cell phenotype and function. Aging Clin Exp Res. 1994;6:25–34.

    CAS  Google Scholar 

  58. Cakman I, Rohr J, Schutz RM, et al. Dysregulation between TH1 and TH2 T cell subpopulations in the elderly. Mech Ageing Dev. 1996;87:197–209.

    Article  PubMed  CAS  Google Scholar 

  59. Liu J, Wang S, Liu H, et al. The monitoring biomarker for immune function of lymphocytes in the elderly. Mech Ageing Dev. 1997;94:177–82.

    Article  PubMed  CAS  Google Scholar 

  60. Song H, Price PW, Cerny J. Age-related changes in antibody repertoire: contribution from T-cells. Immunol Rev. 1997;160:55–62.

    Article  PubMed  CAS  Google Scholar 

  61. Masanori U, Hirokawa K, Kurashima C, et al. Differential age-change in the numbers of CD4+CD45RA+and CD4+CD29+ T cell subsets in human peripheral blood. Mech Ageing Dev. 1992;63:57–68.

    Article  Google Scholar 

  62. Amadori A, Zamarchi R, de Silvestro G, et al. Genetic control of the CD4/CD8 T-cell ratio in humans. Nat Med. 1995;1:1279–83.

    Article  PubMed  CAS  Google Scholar 

  63. Meyer KC, Ershler W, Rosenthal N, et al. Immune dysregulation in the aging human lung. Am J Respir Crit Care Med. 1996;153:1072–9.

    PubMed  CAS  Google Scholar 

  64. Zeleznik J. Normative aging of the respiratory system. Clin Geriatr Med. 2003;19:1–18.

    Article  PubMed  Google Scholar 

  65. Thompson AB, Scholer SG, Daughton DM, et al. Altered epithelial lining fluid parameters in old normal individuals. J Gerontol. 1992;47:M171–6.

    Article  PubMed  CAS  Google Scholar 

  66. Meyer KC, Rosenthal NS, Soergel P, et al. Neutrophils and low-grade inflammation in the seemingly normal lung. Mech Ageing Dev. 1998;104:169–81.

    Article  PubMed  CAS  Google Scholar 

  67. Meyer KC, Soergel P. Bronchoalveolar lymphocyte phenotypes change in the normal aging human lung. Thorax. 1999;54:697–700.

    Article  PubMed  CAS  Google Scholar 

  68. Polingnano A. Age-associated changes of neutrophil responsiveness in a human healthy elderly population. Cytobios. 1994;80:145–53.

    Google Scholar 

  69. Franceschi C, Bonafe M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 2000;18:1717–20.

    Article  PubMed  CAS  Google Scholar 

  70. Franceschi C, Bonafe M. Centenarians as a model for healthy aging. Biochem Soc Trans. 2003;31:457–61.

    Article  PubMed  CAS  Google Scholar 

  71. Francheschi C, Monti D, Samsoni P, et al. The immunology of exceptional individuals: the lesson of centenarians. Immunol Today. 1995;16:12–6.

    Article  Google Scholar 

  72. Ferguson FG, Wikby A, Maxon P, et al. Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol. 1995;50:B378–82.

    CAS  Google Scholar 

  73. Smaldone GC. Deposition and clearance: unique problems in the proximal airways and oral cavity in the young and elderly. Respir Physiol. 2001;128:33–8.

    Article  PubMed  CAS  Google Scholar 

  74. Ho JC, Chan KN, Hu WH, et al. The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am J Respir Crit Care Med. 2001;163: 983–8.

    PubMed  CAS  Google Scholar 

  75. Kikuchi R, Watabe N, Konno T, et al. High incidence of silent aspiration in elderly patients with community-acquired pneumonia. Am J Respir Crit Care Med. 1994;150:251–3.

    PubMed  CAS  Google Scholar 

  76. Riquelme R, Torres A, El-Ebiary M, et al. Community-acquired pneumonia in the elderly: a multivariate analysis of risk and prognostic factors. Am J Respir Crit Care Med. 1996;154: 1450–5.

    PubMed  CAS  Google Scholar 

  77. Strausbaugh LJ, Sukumar SR, Joseph CL. Infectious disease outbreaks in nursing homes: an unappreciated hazard for frail elderly persons. Clin Infect Dis. 2003;36:870–6.

    Article  PubMed  Google Scholar 

  78. Buist AS, McBurnie MA, Vollmer WM, et al., BOLD Collaborative Research Group. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet. 2007;370:741–50.

    Google Scholar 

  79. Fukuchi Y. The aging lung and chronic obstructive pulmonary disease: similarity and difference. Proc Am Thorac Soc. 2009;6:570–2.

    Article  PubMed  CAS  Google Scholar 

  80. Gould NS, Min E, Gauthier S, et al. Aging adversely affects the cigarette smoke-induced glutathione adaptive response in the lung. Am J Respir Crit Care Med. 2010;182:1114–22.

    Article  PubMed  CAS  Google Scholar 

  81. Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function associated with ageing. Eur Respir J. 1999;13:197–205.

    Article  PubMed  CAS  Google Scholar 

  82. Verbeken EK, Cauberghs M, Mertens I, et al. The senile lung: comparison with normal and emphysematous lungs: 1. structural aspects. Chest. 1992;101:793–9.

    Article  PubMed  CAS  Google Scholar 

  83. Turner JM, Mead J, Wohl ME. Elasticity of human lungs in relation to age. J Appl Physiol. 1968;25:664–71.

    PubMed  CAS  Google Scholar 

  84. Knudson RJ, Clark DF, Kennedy TC, et al. Effect of aging alone on mechanical properties of the normal adult human lung. J Appl Physiol. 1977;43:1054–62.

    PubMed  CAS  Google Scholar 

  85. Swanney MP, Ruppel G, Enright PL. Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassification of airway obstruction. Thorax. 2008;63:1046–51.

    Article  PubMed  CAS  Google Scholar 

  86. Karrasch S, Holz O, Jorres RA, et al. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir Med. 2008;102(9):1215–30.

    Article  PubMed  Google Scholar 

  87. Johnson TE. Recent results: biomarkers of aging. Exp Gerontol. 2006;41:1243–6.

    Article  PubMed  CAS  Google Scholar 

  88. Sharma G, Hanania NA, Shim YM. The aging immune system and its relationship to the development of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6:573–80.

    Article  PubMed  CAS  Google Scholar 

  89. Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci. 2006;1067:10–21.

    Article  PubMed  CAS  Google Scholar 

  90. Effros RB, Dagarag M, Spaulding C, et al. The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev. 2005;205:147–57.

    Article  PubMed  CAS  Google Scholar 

  91. Wright JL, Churg A. Current concepts in mechanisms of emphysema. Toxicol Pathol. 2007;35:111–5.

    Article  PubMed  CAS  Google Scholar 

  92. Repine JE, Bast A, Lankhorst I. Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group. Am J Respir Crit Care Med. 1997;156:341–57.

    PubMed  CAS  Google Scholar 

  93. Cantin AM, Fells GA, Hubbard RC, et al. Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract. J Clin Invest. 1990;86:962–71.

    Article  PubMed  CAS  Google Scholar 

  94. Drost EM, Skwarski KM, Sauleda J, Soler N, Roca J, Agusti A, et al. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax. 2005;60:293–300.

    Article  PubMed  CAS  Google Scholar 

  95. Chotirmall SH, Watts M, Branagan PJ, et al. Diagnosis and management of asthma in older adults. J Am Geriatr Soc. 2009;57(5):901–9.

    Article  PubMed  Google Scholar 

  96. Dow L, Coggon D, Campbell MJ, et al. The interaction between immunoglobulin E and smoking in airflow obstruction in the elderly. Am Rev Respir Dis. 1992;146:402–7.

    PubMed  CAS  Google Scholar 

  97. Burrows B, Halonen M, Barbee RA, et al. The relationship of serum immunoglobulin E to cigarette smoking. Am Rev Respir Dis. 1981;124:523–5.

    PubMed  CAS  Google Scholar 

  98. Parameswaran K, Hildreth AJ, Taylor IK, et al. Predictors of asthma severity in the elderly: results of a community survey in northeast England. J Asthma. 1999;36:613–8.

    Article  PubMed  CAS  Google Scholar 

  99. Bauer BA, Reed CE, Yunginger JW. Incidence and outcomes of asthma in the elderly. A population-based study in Rochester, Minnesota. Chest. 1997;111:303–10.

    Article  PubMed  CAS  Google Scholar 

  100. Yunginger JW, Reed CE, O’Connell EJ, et al. A community-based study of the epidemiology of asthma. Incidence rates, 1964. Am Rev Respir Dis. 1992;146:888–94.

    PubMed  CAS  Google Scholar 

  101. Burrows B, Barbee RA, Cline MG, et al. Characteristics of asthma among elderly adults in a sample of the general population. Chest. 1991;100:935–42.

    Article  PubMed  CAS  Google Scholar 

  102. Eschenbacher WL, Holian A, Campion RJ. Air toxics and asthma: impacts and end points. Environ Health. 1995;103 Suppl 6:209–11.

    Google Scholar 

  103. Castellsague J, Sunyer J, Saez M, et al. Short-term association between air pollution and emergency room visits for asthma in Barcelona. Thorax. 1995;50:1051–6.

    Article  PubMed  CAS  Google Scholar 

  104. Dodge RR, Burrows B. The prevalence and incidence of asthma and asthma-like symptoms in a general population sample. Am Rev Respir Dis. 1980;122:567–75.

    PubMed  CAS  Google Scholar 

  105. Burrows B, Lebowitz MD, Barbee RA, et al. Findings before diagnoses of asthma among the elderly in a longitudinal study of a general population sample. J Allergy Clin Immunol. 1991;88:870–7.

    Article  PubMed  CAS  Google Scholar 

  106. Sunyer J, Anto JM, Castellsagué J, et al. Total serum IgE is associated with asthma independently of specific IgE levels. The Spanish Group of the European Study of Asthma. Eur Respir J. 1996;9:1880–4.

    Article  PubMed  CAS  Google Scholar 

  107. Tollerud DJ, O’Connor GT, Sparrow D, et al. Asthma, hay fever, and phlegm production associated with distinct patterns of allergy skin test reactivity, eosinophilia, and serum IgE levels. The Normative Aging Study. Am Rev Respir Dis. 1991;144:776–81.

    Article  PubMed  CAS  Google Scholar 

  108. Almind M, Viskum K, Evald T, et al. A seven-year follow-up study of 343 adults with bronchial asthma. Dan Med Bull. 1992;39:561–5.

    PubMed  CAS  Google Scholar 

  109. Sunyer J, Anto JM, Sabria J, et al. Relationship between serum IgE and airway responsiveness in adults with asthma. J Allergy Clin Immunol. 1995;95:699–706.

    Article  PubMed  CAS  Google Scholar 

  110. Kay AB. Pathology of mild, severe and fatal asthma. Am J Respir Crit Care Med. 1996;154: S66–9.

    PubMed  CAS  Google Scholar 

  111. Gottlieb DJ, Sparrow D, O’Connor GT, et al. Skin test reactivity to common aeroallergens and decline of lung function. The Normative Aging Study. Am J Respir Crit Care Med. 1996;153(2):561–6.

    PubMed  CAS  Google Scholar 

  112. O’Connor GT, Sparrow D, Weiss ST. A prospective longitudinal study of methacholine airway responsiveness as a predictor of pulmonary-function decline: the Normative Aging Study. Am J Respir Crit Care Med. 1995;152(1):87–92.

    PubMed  Google Scholar 

  113. Litonjua AA, Sparrow D, Weiss ST, et al. Sensitization to cat allergen is associated with asthma in older men and predicts new-onset airway hyperresponsiveness. The Normative Aging Study. Am J Respir Crit Care Med. 1997;156:23–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia C. L. Hoyte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hoyte, F.C.L., Katial, R.K. (2012). Allergy and Immunology of the Aging Lung. In: Pisani, M. (eds) Aging and Lung Disease. Respiratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-727-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-727-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-726-6

  • Online ISBN: 978-1-60761-727-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics