Skip to main content

The Biology of Adult Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:

Part of the book series: Contemporary Hematology ((CH))

Abstract

The evolution of treatment in pediatric acute lymphoblastic leukemia (ALL) is a well-documented success story. Indeed, treatments have improved to a point that some pediatric ALL protocols strive to reduce therapy for selected subgroups of patients. It is interesting that much of these improvements in outcome came before the proliferation of modern molecular biological techniques that we now rely upon to study the underlying biology of disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Groves, F. D., Linet, M. S., & Devesa, S. S. (1996). Epidemiology of leukemia: Overview and patterns of occurrence. In E. S. Henderson, T. A. Lister, & M. F. Greaves (Eds.), Leukemia (6th ed., pp. 145–159). Philadelphia, PA: W.B. Saunders.

    Google Scholar 

  2. Chessells, J. M., Harrison, G., Richards, S. M., et al. (2001). Down’s syndrome and acute lymphoblastic leukaemia: Clinical features and response to treatment. Archives of Disease in Childhood, 85(4), 321–5.

    Article  PubMed  CAS  Google Scholar 

  3. Fong, C. T., & Brodeur, G. M. (1987). Down’s syndrome and leukemia: Epidemiology, genetics, cytogenetics and mechanisms of leukemogenesis. Cancer Genetics and Cytogenetics, 28(1), 55–76.

    Article  PubMed  CAS  Google Scholar 

  4. Janik-Moszant, A., Bubala, H., Stojewska, M., & Sonta-Jakimczyk, D. (1998). Acute lymphoblastic leukemia in children with Fanconi anemia. Wiadomosci Lekarskie, 51(Suppl 4), 285–288.

    PubMed  Google Scholar 

  5. Mertens, A. C., Wen, W., Davies, S. M., et al. (1998). Congenital abnormalities in children with acute leukemia: A report from the Children’s Cancer Group. Jornal de Pediatria, 133(5), 617–623.

    CAS  Google Scholar 

  6. Robison, L. L., Nesbit, M. E., Jr., Sather, H. N., et al. (1984). Down syndrome and acute leukemia in children: A 10-year retrospective survey from Childrens Cancer Study Group. Jornal de Pediatria, 105(2), 235–242.

    CAS  Google Scholar 

  7. Taub, J. W. (2001). Relationship of chromosome 21 and acute leukemia in children with Down syndrome. Journal of Pediatric Hematology/Oncology, 23(3), 175–178.

    Article  PubMed  CAS  Google Scholar 

  8. German, J. (1997). Bloom’s syndrome. XX. The first 100 cancers. Cancer Genetics and Cytogenetics, 93(1), 100–106.

    Article  PubMed  CAS  Google Scholar 

  9. Brownson, R. C., Novotny, T. E., & Perry, M. C. (1993). Cigarette smoking and adult leukemia A meta-analysis. Archives of Internal Medicine, 153(4), 469–475.

    Article  PubMed  CAS  Google Scholar 

  10. Sandler, D. P. (1995). Recent studies in leukemia epidemiology. Current Opinion in Oncology, 7(1), 12–18.

    PubMed  CAS  Google Scholar 

  11. Lindquist, R., Nilsson, B., Eklund, G., & Gahrton, G. (1991). Acute leukemia in professional drivers exposed to gasoline and diesel. European Journal of Haematology, 47(2), 98–103.

    Article  PubMed  CAS  Google Scholar 

  12. Shore, D. L., Sandler, D. P., Davey, F. R., McIntyre, O. R., & Bloomfield, C. D. (1993). Acute leukemia and residential proximity to potential sources of environmental pollutants. Archives of Environmental Health, 48(6), 414–420.

    PubMed  CAS  Google Scholar 

  13. Rudant, J., Menegaux, F., Leverger, G., et al. (2007). Household exposure to pesticides and risk of childhood hematopoietic malignancies: The ESCALE study (SFCE). Environmental Health Perspectives, 115(12), 1787–1793.

    Article  PubMed  Google Scholar 

  14. Ichimaru, M., Ishimaru, T., & Belsky, J. L. (1978). Incidence of leukemia in atomic bomb survivors belonging to a fixed cohort in Hiroshima and Nagasaki, 1950–71. Radiation dose, years after exposure, age at exposure, and type of leukemia. Journal of Radiation Research, 19(3), 262–282.

    Article  PubMed  CAS  Google Scholar 

  15. Preston, D. L., Kusumi, S., Tomonaga, M., et al. (1994). Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiation Research, 137(2 Suppl), S68–S97.

    Article  PubMed  CAS  Google Scholar 

  16. Howe, G. R. (2007). Leukemia following the Chernobyl accident. Health Physics, 93(5), 512–515.

    Article  PubMed  CAS  Google Scholar 

  17. Hematologique GFdC. (1996). Cytogenetic abnormalities in adult acute lymphoblastic leukemia: Correlations with hematologic findings outcome. A Collaborative Study of the Group Francais de Cytogenetique Hematologique. Blood, 87(8), 3135–3142.

    Google Scholar 

  18. Aspland, S. E., Bendall, H. H., & Murre, C. (2001). The role of E2A-PBX1 in leukemogenesis. Oncogene, 20(40), 5708–5717.

    Article  PubMed  CAS  Google Scholar 

  19. Hiebert, S. W., Sun, W., Davis, J. N., et al. (1996). The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Molecular and Cellular Biology, 16(4), 1349–1355.

    PubMed  CAS  Google Scholar 

  20. Moorman, A. V., Harrison, C. J., Buck, G. A., et al. (2007). Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): Analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood, 109(8), 3189–3197.

    Article  PubMed  CAS  Google Scholar 

  21. Hermans, A., Heisterkamp, N., von Linden, M., et al. (1987). Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell, 51(1), 33–40.

    Article  PubMed  CAS  Google Scholar 

  22. Hooberman, A. L., Carrino, J. J., Leibowitz, D., et al. (1989). Unexpected heterogeneity of BCR-ABL fusion mRNA detected by polymerase chain reaction in Philadelphia chromosome-positive acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 86(11), 4259–4263.

    Article  PubMed  CAS  Google Scholar 

  23. Kurzrock, R., Shtalrid, M., Gutterman, J. U., et al. (1987). Molecular analysis of chromosome 22 breakpoints in adult Philadelphia-positive acute lymphoblastic leukaemia. British Journal Haematology, 67(1), 55–59.

    Article  CAS  Google Scholar 

  24. Rubin, C. M., Carrino, J. J., Dickler, M. N., Leibowitz, D., Smith, S. D., & Westbrook, C. A. (1988). Heterogeneity of genomic fusion of BCR and ABL in Philadelphia chromosome-positive acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 85(8), 2795–2799.

    Article  PubMed  CAS  Google Scholar 

  25. Taagepera, S., McDonald, D., Loeb, J. E., et al. (1998). Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America, 95(13), 7457–7462.

    Article  PubMed  CAS  Google Scholar 

  26. McWhirter, J. R., & Wang, J. Y. (1991). Activation of tyrosinase kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Molecular and Cellular Biology, 11(3), 1553–1565.

    PubMed  CAS  Google Scholar 

  27. McWhirter, J. R., & Wang, J. Y. (1993). An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. The EMBO Journal, 12(4), 1533–1546.

    PubMed  CAS  Google Scholar 

  28. Kharas, M. G., Deane, J. A., Wong, S., et al. (2004). Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood, 103(11), 4268–4275.

    Article  PubMed  CAS  Google Scholar 

  29. Cortez, D., Stoica, G., Pierce, J. H., & Pendergast, A. M. (1996). The BCR-ABL tyrosine kinase inhibits apoptosis by activating a Ras-dependent signaling pathway. Oncogene, 13(12), 2589–2594.

    PubMed  CAS  Google Scholar 

  30. Mandanas, R. A., Leibowitz, D. S., Gharehbaghi, K., et al. (1993). Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells. Blood, 82(6), 1838–1847.

    PubMed  CAS  Google Scholar 

  31. Horita, M., Andreu, E. J., Benito, A., et al. (2000). Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. The Journal of Experimental Medicine, 191(6), 977–984.

    Article  PubMed  CAS  Google Scholar 

  32. Ilaria, R. L., Jr., & Van Etten, R. A. (1996). P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. The Journal of Biological Chemistry, 271(49), 31704–31710.

    Article  PubMed  CAS  Google Scholar 

  33. Hoelbl, A., Kovacic, B., Kerenyi, M. A., et al. (2006). Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood, 107(12), 4898–4906.

    Article  PubMed  CAS  Google Scholar 

  34. Sexl, V., Piekorz, R., Moriggl, R., et al. (2000). Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood, 96(6), 2277–2283.

    PubMed  CAS  Google Scholar 

  35. Cheng, K., Kurzrock, R., Qiu, X., et al. (2002). Reduced focal adhesion kinase and paxillin phosphorylation in BCR-ABL-transfected cells. Cancer, 95(2), 440–450.

    Article  PubMed  CAS  Google Scholar 

  36. Brain, J. M., Goodyer, N., & Laneuville, P. (2003). Measurement of genomic instability in preleukemic P190BCR/ABL transgenic mice using inter-simple sequence repeat polymerase chain reaction. Cancer Research, 63(16), 4895–4898.

    PubMed  CAS  Google Scholar 

  37. Canitrot, Y., Lautier, D., Laurent, G., et al. (1999). Mutator phenotype of BCR–ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase beta. Oncogene, 18(17), 2676–2680.

    Article  PubMed  CAS  Google Scholar 

  38. Deutsch, E., Dugray, A., AbdulKarim, B., et al. (2001). BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood, 97(7), 2084–2090.

    Article  PubMed  CAS  Google Scholar 

  39. Slupianek, A., Schmutte, C., Tombline, G., et al. (2001). BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Molecular Cell, 8(4), 795–806.

    Article  PubMed  CAS  Google Scholar 

  40. Deutsch, E., Jarrousse, S., Buet, D., et al. (2003). Down-regulation of BRCA1 in BCR-ABL-expressing hematopoietic cells. Blood, 101(11), 4583–4588.

    Article  PubMed  CAS  Google Scholar 

  41. Klein, F., Feldhahn, N., Harder, L., et al. (2004). The BCR-ABL1 kinase bypasses selection for the expression of a pre-B cell receptor in pre-B acute lymphoblastic leukemia cells. The Journal of Experimental Medicine, 199(5), 673–685.

    Article  PubMed  CAS  Google Scholar 

  42. Jumaa, H., Bossaller, L., Portugal, K., et al. (2003). Deficiency of the adaptor SLP-65 in pre-B-cell acute lymphoblastic leukaemia. Nature, 423(6938), 452–456.

    Article  PubMed  CAS  Google Scholar 

  43. Klein, F., Feldhahn, N., Herzog, S., et al. (2006). BCR-ABL1 induces aberrant splicing of IKAROS and lineage infidelity in pre-B lymphoblastic leukemia cells. Oncogene, 25(7), 1118–1124.

    Article  PubMed  CAS  Google Scholar 

  44. Feldhahn, N., Rio, P., Soh, B. N., et al. (2005). Deficiency of Bruton’s tyrosine kinase in B cell precursor leukemia cells. Proceedings of the National Academy of Sciences of the United States of America, 102(37), 13266–13271.

    Article  PubMed  CAS  Google Scholar 

  45. Mullighan, C. G., Miller, C. B., Radtke, I., et al. (2008). BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature, 453(7191), 110–114.

    Article  PubMed  CAS  Google Scholar 

  46. Jumaa, H., Mitterer, M., Reth, M., & Nielsen, P. J. (2001). The absence of SLP65 and Btk blocks B cell development at the preB cell receptor-positive stage. European Journal of Immunology, 31(7), 2164–2169.

    Article  PubMed  CAS  Google Scholar 

  47. Heerema, N. A., Harbott, J., Galimberti, S., et al. (2004). Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome. Leukemia, 18(4), 693–702.

    Article  PubMed  CAS  Google Scholar 

  48. Primo, D., Tabernero, M. D., Perez, J. J., et al. (2005). Genetic heterogeneity of BCR/ABL+ adult B-cell precursor acute lymphoblastic leukemia: Impact on the clinical, biological and immunophenotypical disease characteristics. Leukemia, 19(5), 713–720.

    Article  PubMed  CAS  Google Scholar 

  49. Williams, R. T., Roussel, M. F., & Sherr, C. J. (2006). Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6688–6693.

    Article  PubMed  CAS  Google Scholar 

  50. Hu, Y., Liu, Y., Pelletier, S., et al. (2004). Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nature Genetics, 36(5), 453–461.

    Article  PubMed  CAS  Google Scholar 

  51. Hu, Y., Swerdlow, S., Duffy, T. M., Weinmann, R., Lee, F. Y., & Li, S. (2006). Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 16870–16875.

    Article  PubMed  CAS  Google Scholar 

  52. Ptasznik, A., Nakata, Y., Kalota, A., Emerson, S. G., & Gewirtz, A. M. (2004). Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Natural Medicines, 10(11), 1187–1189.

    Article  CAS  Google Scholar 

  53. Li, S., & Li, D. (2007). Stem cell and kinase activity-independent pathway in resistance of leukaemia to BCR-ABL kinase inhibitors. Journal of Cellular and Molecular Medicine, 11(6), 1251–1262.

    Article  PubMed  CAS  Google Scholar 

  54. Li, S., Ilaria, R. L., Jr., Million, R. P., Daley, G. Q., & Van Etten, R. A. (1999). The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. The Journal of Experimental Medicine, 189(9), 1399–1412.

    Article  PubMed  CAS  Google Scholar 

  55. Lugo, T. G., Pendergast, A. M., Muller, A. J., & Witte, O. N. (1990). Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science, 247(4946), 1079–1082.

    Article  PubMed  CAS  Google Scholar 

  56. Voncken, J. W., Morris, C., Pattengale, P., et al. (1992). Clonal development and karyotype evolution during leukemogenesis of BCR/ABL transgenic mice. Blood, 79(4), 1029–1036.

    PubMed  CAS  Google Scholar 

  57. Heisterkamp, N., Jenster, G., ten Hoeve, J., Zovich, D., Pattengale, P. K., & Groffen, J. (1990). Acute leukaemia in bcr/abl transgenic mice. Nature, 344(6263), 251–253.

    Article  PubMed  CAS  Google Scholar 

  58. Voncken, J. W., Kaartinen, V., Pattengale, P. K., Germeraad, W. T., Groffen, J., & Heisterkamp, N. (1995). BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood, 86(12), 4603–4611.

    PubMed  CAS  Google Scholar 

  59. Pear, W. S., Miller, J. P., Xu, L., et al. (1998). Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood, 92(10), 3780–3792.

    PubMed  CAS  Google Scholar 

  60. Castor, A., Nilsson, L., Astrand-Grundstrom, I., et al. (2005). Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Natural Medicines, 11(6), 630–637.

    Article  CAS  Google Scholar 

  61. Gleissner, B., Gokbuget, N., Bartram, C. R., et al. (2002). Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: A prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood, 99(5), 1536–1543.

    Article  PubMed  CAS  Google Scholar 

  62. Secker-Walker, L. M., Craig, J. M., Hawkins, J. M., & Hoffbrand, A. V. (1991). Philadelphia positive acute lymphoblastic leukemia in adults: Age distribution, BCR breakpoint and prognostic significance. Leukemia, 5(3), 196–199.

    PubMed  CAS  Google Scholar 

  63. Radich, J., Gehly, G., Lee, A., et al. (1997). Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood, 89(7), 2602–2609.

    PubMed  CAS  Google Scholar 

  64. Cimino, G., Pane, F., Elia, L., et al. (2006). The role of BCR/ABL isoforms in the presentation and outcome of patients with Philadelphia-positive acute lymphoblastic leukemia: A seven-year update of the GIMEMA 0496 trial. Haematologica, 91(3), 377–380.

    PubMed  CAS  Google Scholar 

  65. Stirewalt, D. L., Guthrie, K. A., Beppu, L., et al. (2003). Predictors of relapse and overall survival in Philadelphia chromosome-positive acute lymphoblastic leukemia after transplantation. Biology of Blood and Marrow Transplantation, 9(3), 206–212.

    Article  PubMed  Google Scholar 

  66. Georgopoulos, K., Moore, D. D., & Derfler, B. (1992). Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science, 258(5083), 808–812.

    Article  PubMed  CAS  Google Scholar 

  67. Molnar, A., Wu, P., Largespada, D. A., et al. (1996). The Ikaros gene encodes a family of lymphocyte-restricted zinc finger DNA binding proteins, highly conserved in human and mouse. Journal of Immunology, 156(2), 585–592.

    CAS  Google Scholar 

  68. Iacobucci, I., Lonetti, A., Messa, F., et al. (2008). Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: Implications for a new mechanism of resistance. Blood, 112, 3847–3855.

    Article  PubMed  CAS  Google Scholar 

  69. Rebollo, A., & Schmitt, C. (2003). Ikaros, Aiolos and Helios: Transcription regulators and lymphoid malignancies. Immunology and Cell Biology, 81(3), 171–175.

    Article  PubMed  CAS  Google Scholar 

  70. Mullighan, C. G., Su, X., Zhang, J., et al. (2009). Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. The New England Journal of Medicine, 360(5), 470–480.

    Article  PubMed  CAS  Google Scholar 

  71. Ruiz, A., Jiang, J., Kempski, H., & Brady, H. J. (2004). Overexpression of the Ikaros 6 isoform is restricted to t(4;11) acute lymphoblastic leukaemia in children and infants and has a role in B-cell survival. British Journal Haematology, 125(1), 31–37.

    Article  CAS  Google Scholar 

  72. Kano, G., Morimoto, A., Takanashi, M., et al. (2008). Ikaros dominant negative isoform (Ik6) induces IL-3-independent survival of murine pro-B lymphocytes by activating JAK-STAT and up-regulating Bcl-xl levels. Leukaemia & Lymphoma, 49(5), 965–973.

    Article  CAS  Google Scholar 

  73. Tonnelle, C., Bardin, F., Maroc, C., et al. (2001). Forced expression of the Ikaros 6 isoform in human placental blood CD34(+) cells impairs their ability to differentiate toward the B-lymphoid lineage. Blood, 98(9), 2673–2680.

    Article  PubMed  CAS  Google Scholar 

  74. Pui, C. H., Relling, M. V., & Downing, J. R. (2004). Acute lymphoblastic leukemia. The New England Journal of Medicine, 350(15), 1535–1548.

    Article  PubMed  CAS  Google Scholar 

  75. Pui, C. H., Rubnitz, J. E., Hancock, M. L., et al. (1998). Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemia. Journal of Clinical Oncology, 16(12), 3768–3773.

    PubMed  CAS  Google Scholar 

  76. Chen, C. S., Sorensen, P. H., Domer, P. H., et al. (1993). Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood, 81(9), 2386–2393.

    PubMed  CAS  Google Scholar 

  77. Armstrong, S. A., Staunton, J. E., Silverman, L. B., et al. (2002). MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics, 30(1), 41–47.

    Article  PubMed  CAS  Google Scholar 

  78. Ferrando, A. A., Armstrong, S. A., Neuberg, D. S., et al. (2003). Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: Dominance of HOX dysregulation. Blood, 102(1), 262–268.

    Article  PubMed  CAS  Google Scholar 

  79. Tsai, T., Davalath, S., Rankin, C., et al. (1996). Tumor suppressor gene alteration in adult acute lymphoblastic leukemia (ALL). Analysis of retinoblastoma (Rb) and p53 gene expression in lymphoblasts of patients with de novo, relapsed, or refractory ALL treated in Southwest Oncology Group studies. Leukemia, 10(12), 1901–1910.

    PubMed  CAS  Google Scholar 

  80. Stock, W., Tsai, T., Golden, C., et al. (2000). Cell cycle regulatory gene abnormalities are important determinants of leukemogenesis and disease biology in adult acute lymphoblastic leukemia. Blood, 95(7), 2364–2371.

    PubMed  CAS  Google Scholar 

  81. Omura-Minamisawa, M., Diccianni, M. B., Batova, A., et al. (2000). Universal inactivation of both p16 and p15 but not downstream components is an essential event in the pathogenesis of T-cell acute lymphoblastic leukemia. Clinical Cancer Research, 6(4), 1219–1228.

    PubMed  CAS  Google Scholar 

  82. Golub, T. R., Slonim, D. K., Tamayo, P., et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439), 531–537.

    Article  PubMed  CAS  Google Scholar 

  83. Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al. (2002). Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 1(2), 133–143.

    Article  PubMed  CAS  Google Scholar 

  84. Ross, M. E., Zhou, X., Song, G., et al. (2003). Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood, 102(8), 2951–2959.

    Article  PubMed  CAS  Google Scholar 

  85. den Boer, M. L., van Slegtenhorst, M., De Menezes, R. X., et al. (2009). A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: A genome-wide classification study. The Lancet Oncology, 10(2), 125–134.

    Article  CAS  Google Scholar 

  86. Cheok, M. H., Yang, W., Pui, C. H., et al. (2003). Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nature Genetics, 34(1), 85–90.

    Article  PubMed  CAS  Google Scholar 

  87. Lugthart, S., Cheok, M. H., den Boer, M. L., et al. (2005). Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell, 7(4), 375–386.

    Article  PubMed  CAS  Google Scholar 

  88. Holleman, A., Cheok, M. H., den Boer, M. L., et al. (2004). Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. The New England Journal of Medicine, 351(6), 533–542.

    Article  PubMed  CAS  Google Scholar 

  89. Flotho, C. (2006). Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: Prognostic significance of CASP8AP2. Blood, 108(3), 1050–1057.

    Article  PubMed  CAS  Google Scholar 

  90. Bhojwani, D., Kang, H., Moskowitz, N. P., et al. (2006). Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: A Children’s Oncology Group study. Blood, 108(2), 711–717.

    Article  PubMed  CAS  Google Scholar 

  91. Chiaretti, S. (2005). Gene expression profiles of B-lineage adult acute lymphocytic leukemia reveal genetic patterns that identify lineage derivation and distinct mechanisms of transformation. Clinical Cancer Research, 11(20), 7209–7219.

    Article  PubMed  CAS  Google Scholar 

  92. Fine, B. M., Stanulla, M., Schrappe, M., et al. (2004). Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood, 103(3), 1043–1049.

    Article  PubMed  CAS  Google Scholar 

  93. Rozovskaia, T., Ravid-Amir, O., Tillib, S., et al. (2003). Expression profiles of acute lymphoblastic and myeloblastic leukemias with ALL-1 rearrangements. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7853–7858.

    Article  PubMed  CAS  Google Scholar 

  94. Bhojwani, D., Kang, H., Menezes, R. X., et al. (2008). Gene expression signatures predictive of early response and outcome in high-risk childhood acute lymphoblastic leukemia: A Children’s Oncology Group Study [corrected]. Journal of Clinical Oncology, 26(27), 4376–4384.

    Article  PubMed  CAS  Google Scholar 

  95. Catchpoole, D., Guo, D., Jiang, H., & Biesheuvel, C. (2008). Predicting outcome in childhood acute lymphoblastic leukemia using gene expression profiling: Prognostication or protocol selection? Blood, 111(4)), 2486–2487. author reply 7-8.

    Article  PubMed  CAS  Google Scholar 

  96. Holleman, A. (2006). Expression of the outcome predictor in acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients treated according to COALL or St Jude protocols. Blood, 108(6), 1984–1990.

    Article  PubMed  CAS  Google Scholar 

  97. Flotho, C., Coustan-Smith, E., Pei, D., et al. (2007). A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood, 110(4), 1271–1277.

    Article  PubMed  CAS  Google Scholar 

  98. Cario, G., Stanulla, M., Fine, B. M., et al. (2005). Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood, 105(2), 821–826.

    Article  PubMed  CAS  Google Scholar 

  99. Juric, D., Lacayo, N., Ramsey, M., et al. (2007). Differential gene expression patterns and interaction networks in BCR-ABL-positive and -negative adult acute lymphoblastic leukemias. Journal of Clinical Oncology, 25(11), 1341–1349.

    Article  PubMed  CAS  Google Scholar 

  100. Kohlmann, A., Schoch, C., Schnittger, S., et al. (2004). Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients. Leukemia, 18(1), 63–71.

    Article  PubMed  CAS  Google Scholar 

  101. Sala-Torra, O., Gundacker, H. M., Stirewalt, D. L., et al. (2007). Connective tissue growth factor (CTGF) expression and outcome in adult patients with acute lymphoblastic leukemia. Blood, 109(7), 3080–3083.

    PubMed  CAS  Google Scholar 

  102. Graux, C., Cools, J., Michaux, L., Vandenberghe, P., & Hagemeijer, A. (2006). Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: From thymocyte to lymphoblast. Leukemia, 20(9), 1496–1510.

    Article  PubMed  CAS  Google Scholar 

  103. Bain, G., Engel, I., Robanus Maandag, E. C., et al. (1997). E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Molecular and Cellular Biology, 17(8), 4782–4791.

    PubMed  CAS  Google Scholar 

  104. Yan, W., Young, A. Z., Soares, V. C., Kelley, R., Benezra, R., & Zhuang, Y. (1997). High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Molecular and Cellular Biology, 17(12), 7317–7327.

    PubMed  CAS  Google Scholar 

  105. O’Neil, J., Billa, M., Oikemus, S., & Kelliher, M. (2001). The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice. Oncogene, 20(29), 3897–3905.

    Article  PubMed  Google Scholar 

  106. O’Neil, J., Shank, J., Cusson, N., Murre, C., & Kelliher, M. (2004). TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell, 5(6), 587–596.

    Article  PubMed  Google Scholar 

  107. Aplan, P. D., Jones, C. A., Chervinsky, D. S., et al. (1997). An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. The EMBO Journal, 16(9), 2408–2419.

    Article  PubMed  CAS  Google Scholar 

  108. Elwood, N. J., & Begley, C. G. (1995). Reconstitution of mice with bone marrow cells expressing the SCL gene is insufficient to cause leukemia. Cell Growth & Differentiation, 6(1), 19–25.

    CAS  Google Scholar 

  109. Curtis, D. J., Robb, L., Strasser, A., & Begley, C. G. (1997). The CD2-scl transgene alters the phenotype and frequency of T-lymphomas in N-ras transgenic or p53 deficient mice. Oncogene, 15(24), 2975–2983.

    Article  PubMed  CAS  Google Scholar 

  110. Condorelli, G. L., Facchiano, F., Valtieri, M., et al. (1996). T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Research, 56(22), 5113–5119.

    PubMed  CAS  Google Scholar 

  111. Van Vlierberghe, P., van Grotel, M., Beverloo, H. B., et al. (2006). The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood, 108(10), 3520–3529.

    Article  PubMed  CAS  Google Scholar 

  112. Hacein-Bey-Abina, S., Garrigue, A., Wang, G. P., et al. (2008). Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. The Journal of Clinical Investigation, 118(9), 3132–3142.

    Article  PubMed  CAS  Google Scholar 

  113. Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., et al. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science, 302(5644), 415–419.

    Article  PubMed  CAS  Google Scholar 

  114. Howe, S. J., Mansour, M. R., Schwarzwaelder, K., et al. (2008). Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. The Journal of Clinical Investigation, 118(9), 3143–3150.

    Article  PubMed  CAS  Google Scholar 

  115. Larson, R. C., Osada, H., Larson, T. A., Lavenir, I., & Rabbitts, T. H. (1995). The oncogenic LIM protein Rbtn2 causes thymic developmental aberrations that precede malignancy in transgenic mice. Oncogene, 11(5), 853–862.

    PubMed  CAS  Google Scholar 

  116. Larson, R. C., Lavenir, I., Larson, T. A., et al. (1996). Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. The EMBO Journal, 15(5), 1021–1027.

    PubMed  CAS  Google Scholar 

  117. Speleman, F., Cauwelier, B., Dastugue, N., et al. (2005). A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia, 19(3), 358–366.

    Article  PubMed  CAS  Google Scholar 

  118. Soulier, J., Clappier, E., Cayuela, J. M., et al. (2005). HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood, 106(1), 274–286.

    Article  PubMed  CAS  Google Scholar 

  119. Dik, W. A., Brahim, W., Braun, C., et al. (2005). CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia, 19(11), 1948–1957.

    Article  PubMed  CAS  Google Scholar 

  120. Hawley, R. G., Fong, A. Z., Reis, M. D., Zhang, N., Lu, M., & Hawley, T. S. (1997). Transforming function of the HOX11/TCL3 homeobox gene. Cancer Research, 57(2), 337–345.

    PubMed  CAS  Google Scholar 

  121. Graux, C., Cools, J., Melotte, C., et al. (2004). Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nature Genetics, 36(10), 1084–1089.

    Article  PubMed  CAS  Google Scholar 

  122. Graux, C., Stevens-Kroef, M., Lafage, M., et al. (2009). Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia, 23(1), 125–133.

    Article  PubMed  CAS  Google Scholar 

  123. Quintas-Cardama, A., Tong, W., Manshouri, T., et al. (2008). Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia, 22(6), 1117–1124.

    Article  PubMed  CAS  Google Scholar 

  124. Kamada, N., Sakurai, M., Miyamoto, K., et al. (1992). Chromosome abnormalities in adult T-cell leukemia/lymphoma: A karyotype review committee report. Cancer Research, 52(6), 1481–1493.

    PubMed  CAS  Google Scholar 

  125. Hayashi, Y., Raimondi, S. C., Look, A. T., et al. (1990). Abnormalities of the long arm of chromosome 6 in childhood acute lymphoblastic leukemia. Blood, 76(8), 1626–1630.

    PubMed  CAS  Google Scholar 

  126. Raimondi, S. C. (1993). Current status of cytogenetic research in childhood acute lymphoblastic leukemia. Blood, 81(9), 2237–2251.

    PubMed  CAS  Google Scholar 

  127. Lahortiga, I., De Keersmaecker, K., Van Vlierberghe, P., et al. (2007). Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nature Genetics, 39(5), 593–595.

    Article  PubMed  CAS  Google Scholar 

  128. Clappier, E., Cuccuini, W., Kalota, A., et al. (2007). The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood, 110(4), 1251–1261.

    Article  PubMed  CAS  Google Scholar 

  129. Pear, W. S., Aster, J. C., Scott, M. L., et al. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. The Journal of Experimental Medicine, 183(5), 2283–2291.

    Article  PubMed  CAS  Google Scholar 

  130. Weng, A. P., Ferrando, A. A., Lee, W., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306(5694), 269–271.

    Article  PubMed  CAS  Google Scholar 

  131. Mansour, M. R., Linch, D. C., Foroni, L., Goldstone, A. H., & Gale, R. E. (2006). High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia, 20(3), 537–539.

    Article  PubMed  CAS  Google Scholar 

  132. Lee, S. Y., Kumano, K., Masuda, S., et al. (2005). Mutations of the Notch1 gene in T-cell acute lymphoblastic leukemia: Analysis in adults and children. Leukemia, 19(10), 1841–1843.

    Article  PubMed  CAS  Google Scholar 

  133. Asnafi, V., Buzyn, A., Le Noir, S., et al. (2008). NOTCH1/FBXW7 mutation identifies a large subgroup with favourable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): A GRAALL study. Blood, 113, 3918–3924.

    Article  PubMed  CAS  Google Scholar 

  134. Flex, E., Petrangeli, V., Stella, L., et al. (2008). Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. The Journal of Experimental Medicine, 205(4), 751–758.

    Article  PubMed  CAS  Google Scholar 

  135. Ferrando, A. A., Neuberg, D. S., Staunton, J., et al. (2002). Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell, 1(1), 75–87.

    Article  PubMed  CAS  Google Scholar 

  136. Kees, U. R., Heerema, N. A., Kumar, R., et al. (2003). Expression of HOX11 in childhood T-lineage acute lymphoblastic leukaemia can occur in the absence of cytogenetic aberration at 10q24: A study from the Children’s Cancer Group (CCG). Leukemia, 17(5), 887–893.

    Article  PubMed  CAS  Google Scholar 

  137. Ferrando, A. A., Herblot, S., Palomero, T., et al. (2004). Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood, 103(5), 1909–1911.

    Article  PubMed  CAS  Google Scholar 

  138. Watt, P. M., Kumar, R., & Kees, U. R. (2000). Promoter demethylation accompanies reactivation of the HOX11 proto-oncogene in leukemia. Genes, Chromosomes & Cancer, 29(4), 371–377.

    Article  CAS  Google Scholar 

  139. Bash, R. O., Hall, S., Timmons, C. F., et al. (1995). Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric oncology group study. Blood, 86(2), 666–676.

    PubMed  CAS  Google Scholar 

  140. Baldus, C., Martus, P., Burmeister, T., et al. (2007). Low ERG and BAALC expression identifies a new subgroup of sdult acute T-lymphoblastic leukemia with a highly favorable outcome. Journal of Clinical Oncology, 25(24), 3739–3745.

    Article  PubMed  CAS  Google Scholar 

  141. Rooney, S., Chaudhuri, J., & Alt, F. W. (2004). The role of the non-homologous end-joining pathway in lymphocyte development. Immunological Reviews, 200, 115–131.

    Article  PubMed  CAS  Google Scholar 

  142. Raghavan, S. C., Kirsch, I. R., & Lieber, M. R. (2001). Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. The Journal of Biological Chemistry, 276(31), 29126–29133.

    Article  PubMed  CAS  Google Scholar 

  143. Marculescu, R., Le, T., Simon, P., Jaeger, U., & Nadel, B. (2002). V(D)J-mediated translocations in lymphoid neoplasms: A functional assessment of genomic instability by cryptic sites. The Journal of Experimental Medicine, 195(1), 85–98.

    Article  PubMed  CAS  Google Scholar 

  144. Marculescu, R., Vanura, K., Montpellier, B., et al. (2006). Recombinase, chromosomal translocations and lymphoid neoplasia: Targeting mistakes and repair failures. DNA Repair (Amst), 5(9–10), 1246–1258.

    Article  CAS  Google Scholar 

  145. Hochtl, J., & Zachau, H. G. (1983). A novel type of aberrant recombination in immunoglobulin genes and its implications for V-J joining mechanism. Nature, 302(5905), 260–263.

    Article  PubMed  CAS  Google Scholar 

  146. Cheng, J. T., Yang, C. Y., Hernandez, J., Embrey, J., & Baer, R. (1990). The chromosome translocation (11;14)(p13;q11) associated with T cell acute leukemia asymmetric diversification of the translocational junctions. The Journal of Experimental Medicine, 171(2), 489–501.

    Article  PubMed  CAS  Google Scholar 

  147. Yoffe, G., Schneider, N., Van Dyk, L., et al. (1989). The chromosome translocation (11;14)(p13;q11) associated with T-cell acute lymphocytic leukemia: An 11p13 breakpoint cluster region. Blood, 74(1), 374–379.

    PubMed  CAS  Google Scholar 

  148. Marculescu, R., Vanura, K., Le, T., Simon, P., Jager, U., & Nadel, B. (2003). Distinct t(7;9)(q34;q32) breakpoints in healthy individuals and individuals with T-ALL. Nature Genetics, 33(3), 342–344.

    Article  PubMed  CAS  Google Scholar 

  149. Aplan, P. D., Lombardi, D. P., Ginsberg, A. M., Cossman, J., Bertness, V. L., & Kirsch, I. R. (1990). Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science, 250(4986), 1426–1429.

    Article  PubMed  CAS  Google Scholar 

  150. Lewis, S. M. (1994). The mechanism of V(D)J joining: Lessons from molecular, immunological, and comparative analyses. Advances in Immunology, 56, 27–150.

    Article  PubMed  CAS  Google Scholar 

  151. Boehm, T., Baer, R., Lavenir, I., et al. (1988). The mechanism of chromosomal translocation t(11;14) involving the T-cell receptor C delta locus on human chromosome 14q11 and a transcribed region of chromosome 11p15. The EMBO Journal, 7(2), 385–394.

    PubMed  CAS  Google Scholar 

  152. Garcia, I. S., Kaneko, Y., Gonzalez-Sarmiento, R., et al. (1991). A study of chromosome 11p13 translocations involving TCR beta and TCR delta in human T cell leukaemia. Oncogene, 6(4), 577–582.

    PubMed  CAS  Google Scholar 

  153. Kagan, J., Finger, L. R., Letofsky, J., Finan, J., Nowell, P. C., & Croce, C. M. (1989). Clustering of breakpoints on chromosome 10 in acute T-cell leukemias with the t(10;14) chromosome translocation. Proceedings of the National Academy of Sciences of the United States of America, 86(11), 4161–4165.

    Article  PubMed  CAS  Google Scholar 

  154. Lu, M., Dube, I., Raimondi, S., et al. (1990). Molecular characterization of the t(10;14) translocation breakpoints in T-cell acute lymphoblastic leukemia: Further evidence for illegitimate physiological recombination. Genes, Chromosomes & Cancer, 2(3), 217–222.

    Article  CAS  Google Scholar 

  155. Lu, M., Zhang, N., Raimondi, S., & Ho, A. D. (1992). S1 nuclease hypersensitive sites in an oligopurine/oligopyrimidine DNA from the t(10;14) breakpoint cluster region. Nucleic Acids Research, 20(2), 263–266.

    Article  PubMed  CAS  Google Scholar 

  156. Shima-Rich, E. A., Harden, A. M., McKeithan, T. W., Rowley, J. D., & Diaz, M. O. (1997). Molecular analysis of the t(8;14)(q24;q11) chromosomal breakpoint junctions in the T-cell leukemia line MOLT-16. Genes, Chromosomes & Cancer, 20(4), 363–371.

    Article  CAS  Google Scholar 

  157. Mullighan, C. G., Goorha, S., Radtke, I., et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 446(7137), 758–764.

    Article  PubMed  CAS  Google Scholar 

  158. Szczepański, T., Beishuizen, A., Pongers-Willemse, M. J., et al. (1999). Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: Alternative PCR targets for detection of minimal residual disease. Leukemia, 13(2), 196–205.

    Article  PubMed  Google Scholar 

  159. Pongers-Willemse, M. J., Seriu, T., Stolz, F., et al. (1999). Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: Report of the BIOMED-1 CONCERTED ACTION: Investigation of minimal residual disease in acute leukemia. Leukemia, 13(1), 110–118.

    Article  PubMed  CAS  Google Scholar 

  160. Langerak, A. W., Szczepanski, T., van der Burg, M., Wolvers-Tettero, I. L., & van Dongen, J. J. (1997). Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell prolife­rations. Leukemia, 11(12), 2192–2199.

    Article  PubMed  CAS  Google Scholar 

  161. de Haas, V., Verhagen, O. J., von dem Borne, A. E., Kroes, W., van den Berg, H., & van der Schoot, C. E. (2001). Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse already have the slowest rate of reduction during induction therapy. Leukemia, 15(1), 134–140.

    Article  PubMed  Google Scholar 

  162. Moreira, I., Papaioannou, M., Mortuza, F. Y., et al. (2001). Heterogeneity of VH-JH gene rearrangement patterns: An insight into the biology of B cell precursor ALL. Leukemia, 15(10), 1527–1536.

    Article  PubMed  CAS  Google Scholar 

  163. Szczepański, T., Willemse, M. J., Brinkhof, B., van Wering, E. R., van der Burg, M., & van Dongen, J. J. (2002). Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood, 99(7), 2315–2323.

    Article  PubMed  Google Scholar 

  164. van Dongen, J. J., Seriu, T., Panzer-Grumayer, E. R., et al. (1998). Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet, 352(9142), 1731–1738.

    Article  PubMed  Google Scholar 

  165. Cave, H., Bosch, J., Suciu, S., et al. (1998). Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. The New England Journal of Medicine, 339(9), 591–598.

    Article  PubMed  CAS  Google Scholar 

  166. Rosenquist, R., Thunberg, U., Li, A. H., et al. (1999). Clonal evolution as judged by immunoglobulin heavy chain gene rearrangements in relapsing precursor-B acute lymphoblastic leukemia. European Journal of Haematology, 63(3), 171–179.

    Article  PubMed  CAS  Google Scholar 

  167. Steward, C. G., Goulden, N. J., Katz, F., et al. (1994). A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood, 83(5), 1355–1362.

    PubMed  CAS  Google Scholar 

  168. Germano, G., del Giudice, L., Palatron, S., et al. (2003). Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses Consequences on minimal residual disease monitoring. Leukemia, 17(8), 1573–1582.

    Article  PubMed  CAS  Google Scholar 

  169. Mullighan, C., Phillips, L., Su, X., et al. (2008). Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science, 322(5906), 1377–1380.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerald P. Radich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Radich, J.P., Sala, O. (2011). The Biology of Adult Acute Lymphoblastic Leukemia. In: Advani, A., Lazarus, H. (eds) Adult Acute Lymphocytic Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-60761-707-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-707-5_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-706-8

  • Online ISBN: 978-1-60761-707-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics