Skip to main content

Molecular Therapies

  • Chapter
  • First Online:
Book cover Adult Acute Lymphocytic Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 1339 Accesses

Abstract

Unfortunately the advances made in the management of pediatric acute lymphoblastic leukemia (ALL) have not been matched in adult ALL. Only 30–40% of adult patients with ALL will achieve long-term disease-free survival with current agents and regimens, despite very high (∼90%) initial complete response (CR) rates [1, 2]. Most patients will relapse within 12–24 months of their initial CR; many relapse while they are still receiving maintenance therapy [1, 3, 4]. Salvage regimens offer CR rates of ∼30% or higher, but disease-free intervals are brief [5]. Five year overall survival following relapse is a dismal ∼7% with currently available strategies [6]. Though allogeneic stem cell transplantation improves long term survival, graft-versus-leukemia effects are relatively modest [1–3]. This is illustrated by two lines of evidence: (1) a report from the International Bone Marrow Transplant Registry, which found similar relapse rates in matched sibling and syngeneic transplants and (2) reports detailing the lack of efficacy of donor lymphocyte infusions for relapsed ALL after allogeneic transplantation [2, 4]. There is clearly a need for novel agents and combinations of agents in the management of adult ALL across all phases of disease.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-60761-707-5_24

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamanna, N., von Hassel, M., Weiss, M., et al. (2008). Relapsed acute lymphoblastic leukemia. In E. H. Estey, S. H. Faderl, & H. M. Kantarjian (Eds.), Acute leukemia (pp. 275–279). New York: Springer.

    Chapter  Google Scholar 

  2. Kolb, H. J., Schattenberg, A., Goldman, J. M., et al. (1995). Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood, 86, 2041–2050.

    PubMed  CAS  Google Scholar 

  3. Passweg, J. R., Tiberghien, P., Cahn, J. Y., et al. (1998). Graft-versus-leukemia effects in T lineage and B lineage acute lymphoblastic leukemia. Bone Marrow Transplantation, 21, 153–158.

    Article  PubMed  CAS  Google Scholar 

  4. Gale, R. P., Horowitz, M. M., Ash, R. C., et al. (1994). Identical-twin bone marrow transplants for leukemia. Annals of Internal Medicine, 120, 646–652.

    PubMed  CAS  Google Scholar 

  5. Larson, R. A., Yu, D., Sanford, B. L., et al. (2008). Recent clinical trials in acute lymphoblastic leukemia by the Cancer and Leukemia group B. In S. Faderl, H. M. Kantarjian, & E. H. Estey (Eds.), Acute leukemias (pp. 137–144). New York: Springer.

    Chapter  Google Scholar 

  6. Fielding, A. K., Richards, S. M., Chopra, R., et al. (2007). Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood, 109, 944–950.

    Article  PubMed  CAS  Google Scholar 

  7. Thomas, D. A., Faderl, S., Cortes, J., et al. (2004). Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood, 103, 4396–4407.

    Article  PubMed  CAS  Google Scholar 

  8. Towatari, M., Yanada, M., Usui, N., et al. (2004). Combination of intensive chemotherapy and imatinib can rapidly induce high-quality complete remission for a majority of patients with newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia. Blood, 104, 3507–3512.

    Article  PubMed  CAS  Google Scholar 

  9. Sala-Torra, O., & Radich, J. P. (2008). Philadelphia chromosome-positive acute lymphoblastic leukemia. In S. Faderl, H. M. Kantarjian, & E. H. Estey (Eds.), Acute leukemias (pp. 177–189). New York: Springer.

    Chapter  Google Scholar 

  10. Wetlzer, M., & Kryzstof, M. (2008). Molecular biology and genetics. In S. Faderl, H. M. Kantarjian, & E. H. Estey (Eds.), Acute leukemias (pp. 95–108). New York: Springer.

    Google Scholar 

  11. Bloomfield, C. D., Secker-Walker, L. M., Goldman, A. I., et al. (1989). Six-year follow-up of the clinical significance of karyotype in acute lymphoblastic leukemia. Cancer Genetics and Cytogenetics, 40, 171–185.

    Article  PubMed  CAS  Google Scholar 

  12. Fenaux, P., Lai, J. L., Morel, P., et al. (1989). Cytogenetics and their prognostic value in childhood and adult acute lymphoblastic leukemia (ALL) excluding L3. Hematological Oncology, 7, 307–317.

    Article  PubMed  CAS  Google Scholar 

  13. A Collaborative Study of the Group Francais de Cytogenetique Hematologique. (1996). Cytogenetic abnormalities in adult acute lymphoblastic leukemia: Correlations with hematologic findings outcome. Blood, 87, 3135–3142.

    Google Scholar 

  14. Secker-Walker, L. M., Prentice, H. G., Durrant, J., et al. (1997). Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. MRC Adult Leukaemia Working Party. British Journal Haematology, 96, 601–610.

    Article  CAS  Google Scholar 

  15. Garipidou, V., Yamada, T., Prentice, H. G., et al. (1990). Trisomy 8 in acute lymphoblastic leukemia (ALL): A case report and update of the literature. Leukemia, 4, 717–719.

    PubMed  CAS  Google Scholar 

  16. Wetzler, M., Dodge, R. K., Mrozek, K., et al. (1999). Prospective karyotype analysis in adult acute lymphoblastic leukemia: The cancer and leukemia Group B experience. Blood, 93, 3983–3993.

    PubMed  CAS  Google Scholar 

  17. Vranova, V., Mentzlova, D., Oltova, A., et al. (2008). Efficacy of high-resolution comparative genomic hybridization (HR-CGH) in detection of chromosomal abnormalities in children with acute leukaemia. Neoplasma, 55, 23–30.

    PubMed  CAS  Google Scholar 

  18. Pui, C. H., & Evans, W. E. (1998). Acute lymphoblastic leukemia. The New England Journal of Medicine, 339, 605–615.

    Article  PubMed  CAS  Google Scholar 

  19. Faderl, S., Kantarjian, H. M., Talpaz, M., et al. (1998). Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood, 91, 3995–4019.

    PubMed  CAS  Google Scholar 

  20. Chiaretti, S., Li, X., Gentleman, R., et al. (2004). Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood, 103, 2771–2778.

    Article  PubMed  CAS  Google Scholar 

  21. Holleman, A., Cheok, M. H., den Boer, M. L., et al. (2004). Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. The New England Journal of Medicine, 351, 533–542.

    Article  PubMed  CAS  Google Scholar 

  22. Mi, S., Lu, J., Sun, M., et al. (2007). MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 104, 19971–19976.

    Article  PubMed  CAS  Google Scholar 

  23. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16, 6–21.

    Article  CAS  Google Scholar 

  24. Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews. Genetics, 3, 415–428.

    Article  PubMed  CAS  Google Scholar 

  25. Herman, J. G., & Baylin, S. B. (2003). Gene silencing in cancer in association with promoter hypermethylation. The New England Journal of Medicine, 349, 2042–2054.

    Article  PubMed  CAS  Google Scholar 

  26. Roman-Gomez, J., Jimenez-Velasco, A., Barrios, M., et al. (2007). Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leukaemia & Lymphoma, 48, 1269–1282.

    Article  CAS  Google Scholar 

  27. Laird, P. W. (2003). The power and the promise of DNA methylation markers. Nature Reviews. Cancer, 3, 253–266.

    Article  PubMed  CAS  Google Scholar 

  28. Silverman, L. R., & Mufti, G. J. (2005). Methylation inhibitor therapy in the treatment of myelodysplastic syndrome. Nature Clinical Practice. Oncology, 2(Suppl 1), S12–S23.

    Article  PubMed  CAS  Google Scholar 

  29. Cashen, A., Schiller, G. J., Larsen, J. S., et al. (2006). Phase II study of low-dose decitabine for the front-line treatment of older patients with acute myeloid leukemia (AML). Blood (ASH Annual Meeting Abstracts), 108, 1984.

    Google Scholar 

  30. Cashen, A. F., Schiller, G. J., O’Donnell, M. R., et al. (2008). Preliminary results of a multicenter phase II trial of 5-day decitabine as front-line therapy for elderly patients with acute myeloid leukemia (AML). Blood (ASH Annual Meeting Abstracts), 112, 560.

    Google Scholar 

  31. Blum, W. G., Klisovic, R., Liu, S., et al. (2009) Efficacy of a novel schedule of decitabine in previously untreated AML, age 60 or older. ASCO annual meeting 2009, Orlando, p. 7010.

    Google Scholar 

  32. Silverman, L. R., Demakos, E. P., Peterson, B. L., et al. (2002). Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: A study of the cancer and leukemia group B. Journal of Clinical Oncology, 20, 2429–2440.

    Article  PubMed  CAS  Google Scholar 

  33. Fenaux, P., Mufti, G. J., Hellstrom-Lindberg, E., et al. (2009). Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: A randomized, open-label, phase III study. The Lancet Oncology, 10, 223–232.

    Article  PubMed  CAS  Google Scholar 

  34. Roman-Gomez, J., Jimenez-Velasco, A., Castillejo, J. A., et al. (2004). Promoter hypermethylation of cancer-related genes: A strong independent prognostic factor in acute lymphoblastic leukemia. Blood, 104, 2492–2498.

    Article  PubMed  CAS  Google Scholar 

  35. Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X., et al. (2005). Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. Journal of Clinical Oncology, 23, 7043–7049.

    Article  PubMed  CAS  Google Scholar 

  36. Kawano, S., Miller, C. W., Gombart, A. F., et al. (1999). Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood, 94, 1113–1120.

    PubMed  CAS  Google Scholar 

  37. Melki, J. R., Vincent, P. C., Brown, R. D., et al. (2000). Hypermethylation of E-cadherin in leukemia. Blood, 95, 3208–3213.

    PubMed  CAS  Google Scholar 

  38. Wong, I. H., Ng, M. H., Huang, D. P., et al. (2000). Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: Potential prognostic implications. Blood, 95, 1942–1949.

    PubMed  CAS  Google Scholar 

  39. Roman, J., Castillejo, J. A., Jimenez, A., et al. (2001). Hypermethylation of the calcitonin gene in acute lymphoblastic leukaemia is associated with unfavourable clinical outcome. British Journal of Haematology, 113, 329–338.

    Article  PubMed  CAS  Google Scholar 

  40. Garcia-Manero, G., Daniel, J., Smith, T. L., et al. (2002). DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clinical Cancer Research, 8, 2217–2224.

    PubMed  CAS  Google Scholar 

  41. Roman-Gomez, J., Castillejo, J. A., Jimenez, A., et al. (2002). 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood, 99, 2291–2296.

    Article  PubMed  CAS  Google Scholar 

  42. Shen, L., Toyota, M., Kondo, Y., et al. (2003). Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. Blood, 101, 4131–4136.

    Article  PubMed  CAS  Google Scholar 

  43. Agirre, X., Vizmanos, J. L., Calasanz, M. J., et al. (2003). Methylation of CpG dinucleotides and/or CCWGG motifs at the promoter of TP53 correlates with decreased gene expression in a subset of acute lymphoblastic leukemia patients. Oncogene, 22, 1070–1072.

    Article  PubMed  CAS  Google Scholar 

  44. Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X., et al. (2004). The normal epithelial cell-specific 1 (NES1) gene, a candidate tumor suppressor gene on chromosome 19q13.3-4, is downregulated by hypermethylation in acute lymphoblastic leukemia. Leukemia, 18, 362–365.

    Article  PubMed  CAS  Google Scholar 

  45. Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X., et al. (2004). Transcriptional silencing of the Dickkopfs-3 (Dkk-3) gene by CpG hypermethylation in acute lymphoblastic leukaemia. British Journal of Cancer, 91, 707–713.

    PubMed  CAS  Google Scholar 

  46. Jimenez-Velasco, A., Roman-Gomez, J., Agirre, X., et al. (2005). Downregulation of the large tumor suppressor 2 (LATS2/KPM) gene is associated with poor prognosis in acute lymphoblastic leukemia. Leukemia, 19, 2347–2350.

    Article  PubMed  CAS  Google Scholar 

  47. Agirre, X., Roman-Gomez, J., Vazquez, I., et al. (2006). Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia. International Journal of Cancer, 118, 1945–1953.

    Article  CAS  Google Scholar 

  48. Agirre, X., Roman-Gomez, J., Jimenez-Velasco, A., et al. (2006). ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene, 25, 1862–1870.

    Article  PubMed  CAS  Google Scholar 

  49. San Jose-Eneriz, E., Agirre, X., Roman-Gomez, J., et al. (2006). Downregulation of DBC1 expression in acute lymphoblastic leukaemia is mediated by aberrant methylation of its promoter. British Journal Haematology, 134, 137–144.

    Article  CAS  Google Scholar 

  50. Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X., et al. (2006). CpG island methylator phenotype redefines the prognostic effect of t(12;21) in childhood acute lymphoblastic leukemia. Clinical Cancer Research, 12, 4845–4850.

    Article  PubMed  CAS  Google Scholar 

  51. Gutierrez, M. I., Siraj, A. K., Bhargava, M., et al. (2003). Concurrent methylation of multiple genes in childhood ALL: Correlation with phenotype and molecular subgroup. Leukemia, 17, 1845–1850.

    Article  PubMed  CAS  Google Scholar 

  52. Takahashi, T., Shivapurkar, N., Reddy, J., et al. (2004). DNA methylation profiles of lymphoid and hematopoietic malignancies. Clinical Cancer Research, 10, 2928–2935.

    Article  PubMed  CAS  Google Scholar 

  53. Ponder, B. A. (2001). Cancer genetics. Nature, 411, 336–341.

    Article  PubMed  CAS  Google Scholar 

  54. Kuang, S. Q., Tong, W. G., Yang, H., et al. (2008). Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia, 22, 1529–1538.

    Article  PubMed  CAS  Google Scholar 

  55. Ruter, B., Wijermans, P. W., & Lubbert, M. (2004). DNA methylation as a therapeutic target in hematologic disorders: Recent results in older patients with myelodysplasia and acute myeloid leukemia. International Journal of Hematology, 80, 128–135.

    Article  PubMed  CAS  Google Scholar 

  56. Avramis, V. I., Mecum, R. A., Nyce, J., et al. (1989). Pharmacodynamic and DNA methylation studies of high-dose 1-beta-D-arabinofuranosyl cytosine before and after in vivo 5-azacytidine treatment in pediatric patients with refractory acute lymphocytic leukemia. Cancer Chemotherapy and Pharmacology, 24, 203–210.

    PubMed  CAS  Google Scholar 

  57. Youssef, E. M., Chen, X. Q., Higuchi, E., et al. (2004). Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Research, 64, 2411–2417.

    Article  PubMed  CAS  Google Scholar 

  58. CALGB-8461 and CALGB-20602. (2008). Accessed on September 5, 2008, www.clinicaltrials.gov

  59. Cheung, P., Allis, C. D., & Sassone-Corsi, P. (2000). Signaling to chromatin through histone modifications. Cell, 103, 263–271.

    Article  PubMed  CAS  Google Scholar 

  60. Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  61. Wolffe, A. P., & Pruss, D. (1996). Deviant nucleosomes: The functional specialization of chromatin. Trends in Genetics, 12, 58–62.

    Article  PubMed  CAS  Google Scholar 

  62. Turner, B. M. (2000). Histone acetylation and an epigenetic code. Bioessays, 22, 836–845.

    Article  PubMed  CAS  Google Scholar 

  63. Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.

    Article  PubMed  CAS  Google Scholar 

  64. Mahlknecht, U., & Hoelzer, D. (2000). Histone acetylation modifiers in the pathogenesis of malignant disease. Molecular Medicine, 6, 623–644.

    PubMed  CAS  Google Scholar 

  65. Cress, W. D., & Seto, E. (2000). Histone deacetylases, transcriptional control, and cancer. Journal of Cellular Physiology, 184, 1–16.

    Article  PubMed  CAS  Google Scholar 

  66. Marks, P., Rifkind, R. A., Richon, V. M., et al. (2001). Histone deacetylases and cancer: Causes and therapies. Nature Reviews. Cancer, 1, 194–202.

    Article  PubMed  CAS  Google Scholar 

  67. Murata, T., Kurokawa, R., Krones, A., et al. (2001). Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein-Taybi syndrome. Human Molecular Genetics, 10, 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  68. Lin, R. J., Nagy, L., Inoue, S., et al. (1998). Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature, 391, 811–814.

    Article  PubMed  CAS  Google Scholar 

  69. Urnov, F. D., & Wolffe, A. P. (2000). Chromatin organisation and human disease. Emerging Therapeutic Targets, 4, 665–685.

    Article  CAS  Google Scholar 

  70. www.zolinza.com, Accessed September 5, 2008.

  71. Gold Standard, Clinical pharmacology (Internet database). Gold Standard, Tampa.

    Google Scholar 

  72. Romanski, A., Bacic, B., Bug, G., et al. (2004). Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia. Haematologica, 89, 419–426.

    PubMed  CAS  Google Scholar 

  73. Catley, L., Weisberg, E., Tai, Y. T., et al. (2003). NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood, 102, 2615–2622.

    Article  PubMed  CAS  Google Scholar 

  74. Scuto, A., Kirschbaum, M., Kowolik, C., et al. (2008). The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph- acute lymphoblastic leukemia cells. Blood, 111, 5093–5100.

    Article  PubMed  CAS  Google Scholar 

  75. Shaker, S., Bernstein, M., Momparler, L. F., et al. (2003). Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2′-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leukemia Research, 27, 437–444.

    Article  PubMed  CAS  Google Scholar 

  76. Lemaire, M., Momparler, L. F., Farinha, N. J., et al. (2004). Enhancement of antineoplastic action of 5-aza-2′-deoxycytidine by phenylbutyrate on L1210 leukemic cells. Leukaemia & Lymphoma, 45, 147–154.

    Article  CAS  Google Scholar 

  77. Sarbassov, D. D., Ali, S. M., & Sabatini, D. M. (2005). Growing roles for the mTOR pathway. Current Opinion in Cell Biology, 17, 596–603.

    Article  PubMed  CAS  Google Scholar 

  78. Sabatini, D. M. (2006). mTOR and cancer: Insights into a complex relationship. Nature Reviews. Cancer, 6, 729–734.

    Article  PubMed  CAS  Google Scholar 

  79. Sarbassov, D. D., Guertin, D. A., Ali, S. M., et al. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307, 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  80. Hresko, R. C., & Mueckler, M. (2005). mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. The Journal of Biological Chemistry, 280, 40406–40416.

    Article  PubMed  CAS  Google Scholar 

  81. Sarbassov, D. D., Ali, S. M., Kim, D. H., et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current Biology, 14, 1296–1302.

    Article  PubMed  CAS  Google Scholar 

  82. Muise-Helmericks, R. C., Grimes, H. L., Bellacosa, A., et al. (1998). Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. The Journal of Biological Chemistry, 273, 29864–29872.

    Article  PubMed  CAS  Google Scholar 

  83. Gao, N., Flynn, D. C., Zhang, Z., et al. (2004). G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. American Journal of Physiology. Cell Physiology, 287, C281–C291.

    Article  PubMed  CAS  Google Scholar 

  84. Law, M., Forrester, E., Chytil, A., et al. (2006). Rapamycin disrupts cyclin/cyclin-dependent kinase/p21/proliferating cell nuclear antigen complexes and cyclin D1 reverses rapamycin action by stabilizing these complexes. Cancer Research, 66, 1070–1080.

    Article  PubMed  CAS  Google Scholar 

  85. Rudelius, M., Pittaluga, S., Nishizuka, S., et al. (2006). Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood, 108, 1668–1676.

    Article  PubMed  CAS  Google Scholar 

  86. Hudson, C. C., Liu, M., Chiang, G. G., et al. (2002). Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Molecular and Cellular Biology, 22, 7004–7014.

    Article  PubMed  CAS  Google Scholar 

  87. Del Bufalo, D., Ciuffreda, L., Trisciuoglio, D., et al. (2006). Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Research, 66, 5549–5554.

    Article  PubMed  Google Scholar 

  88. Thomas, G. V., Tran, C., Mellinghoff, I. K., et al. (2006). Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Natural Medicines, 12, 122–127.

    Article  CAS  Google Scholar 

  89. Hudes, G., Carducci, M., Tomczak, P., et al. (2007). Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. The New England Journal of Medicine, 356, 2271–2281.

    Article  PubMed  CAS  Google Scholar 

  90. Brown, V. I., Fang, J., Alcorn, K., et al. (2003). Rapamycin is active against B-precursor leukemia in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling. Proceedings of the National Academy of Sciences of the United States of America, 100, 15113–15118.

    Article  PubMed  CAS  Google Scholar 

  91. Teachey, D. T., Obzut, D. A., Cooperman, J., et al. (2006). The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood, 107, 1149–1155.

    Article  PubMed  CAS  Google Scholar 

  92. Zhang, C. Y., Feng, Y. X., Yu, Y., et al. (2006). The molecular mechanism of resistance to methotrexate in mouse methotrexate-resistant cells by cancer drug resistance and metabolism SuperArray. Basic & Clinical Pharmacology & Toxicology, 99, 141–145.

    Article  CAS  Google Scholar 

  93. Serra, M., Reverter-Branchat, G., Maurici, D., et al. (2004). Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Annals of Oncology, 15, 151–160.

    Article  PubMed  CAS  Google Scholar 

  94. Ewen, M. E., Sluss, H. K., Sherr, C. J., et al. (1993). Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell, 73, 487–497.

    Article  PubMed  CAS  Google Scholar 

  95. Teachey, D. T., Sheen, C., Hall, J., et al. (2008). mTOR inhibitors are synergistic with methotrexate: An effective combination to treat acute lymphoblastic leukemia. Blood, 112, 2020–2023.

    Article  PubMed  CAS  Google Scholar 

  96. Perez-Atayde, A. R., Sallan, S. E., Tedrow, U., et al. (1997). Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. The American Journal of Pathology, 150, 815–821.

    PubMed  CAS  Google Scholar 

  97. Gunsilius, E. (2003). Evidence from a leukemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Advances in Experimental Medicine and Biology, 522, 17–24.

    Article  PubMed  Google Scholar 

  98. Costa, L. F., Balcells, M., Edelman, E. R., et al. (2006). Proangiogenic stimulation of bone marrow endothelium engages mTOR and is inhibited by simultaneous blockade of mTOR and NF-kappaB. Blood, 107, 285–292.

    Article  PubMed  CAS  Google Scholar 

  99. Ribatti, D., Nico, B., Crivellato, E., et al. (2007). The history of the angiogenic switch concept. Leukemia, 21, 44–52.

    Article  PubMed  CAS  Google Scholar 

  100. Mangi, M. H., & Newland, A. C. (2000). Angiogenesis and angiogenic mediators in haematological malignancies. British Journal Haematology, 111, 43–51.

    Article  CAS  Google Scholar 

  101. Dvorak, H. F. (2002). Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. Journal of Clinical Oncology, 20, 4368–4380.

    Article  PubMed  CAS  Google Scholar 

  102. Montesano, R., Vassalli, J. D., Baird, A., et al. (1986). Basic fibroblast growth factor induces angiogenesis in vitro. Proceedings of the National Academy of Sciences of the United States of America, 83, 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  103. Basilico, C., & Moscatelli, D. (1992). The FGF family of growth factors and oncogenes. Advances in Cancer Research, 59, 115–165.

    Article  PubMed  CAS  Google Scholar 

  104. Nagy, J. A., & Senger, D. R. (2006). VEGF-A, cytoskeletal dynamics, and the pathological vascular phenotype. Experimental Cell Research, 312, 538–548.

    Article  PubMed  CAS  Google Scholar 

  105. Hicklin, D. J., & Ellis, L. M. (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Journal of Clinical Oncology, 23, 1011–1027.

    Article  PubMed  CAS  Google Scholar 

  106. Moore, M. A. (1990). Haemopoietic growth factor interactions: In vitro and in vivo preclinical evaluation. Cancer Surveys, 9, 7–80.

    PubMed  CAS  Google Scholar 

  107. Kittler, E. L., McGrath, H., Temeles, D., et al. (1992). Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma. Blood, 79, 3168–3178.

    PubMed  CAS  Google Scholar 

  108. Cluitmans, F. H., Esendam, B. H., Landegent, J. E., et al. (1995). Constitutive in vivo cytokine and hematopoietic growth factor gene expression in the bone marrow and peripheral blood of healthy individuals. Blood, 85, 2038–2044.

    PubMed  CAS  Google Scholar 

  109. Stachel, D., Albert, M., Meilbeck, R., et al. (2007). Expression of angiogenic factors in childhood B-cell precursor acute lymphoblastic leukemia. Oncology Reports, 17, 147–152.

    PubMed  CAS  Google Scholar 

  110. Avramis, I. A., Panosyan, E. H., Dorey, F., et al. (2006). Correlation between high vascular endothelial growth factor-A serum levels and treatment outcome in patients with standard-risk acute lymphoblastic leukemia: A report from Children’s Oncology Group Study CCG-1962. Clinical Cancer Research, 12, 6978–6984.

    Article  PubMed  CAS  Google Scholar 

  111. Faderl, S., Do, K. A., Johnson, M. M., et al. (2005). Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia. Blood, 106, 4303–4307.

    Article  PubMed  CAS  Google Scholar 

  112. Yetgin, S., Yenicesu, I., Cetin, M., & Tuncer, M. (2001). Clinical importance of serum vascular endothelial and basic fibroblast growth factors in children with acute lymphoblastic leukemia. Leukaemia & Lymphoma, 42, 83–88.

    Article  CAS  Google Scholar 

  113. Pule, M. A., Gullmann, C., Dennis, D., et al. (2002). Increased angiogenesis in bone marrow of children with acute lymphoblastic leukaemia has no prognostic significance. British Journal Haematology, 118, 991–998.

    Article  Google Scholar 

  114. www.clinicaltrials.gov, Accessed on August 21, 2008.

  115. Ruiz i Altaba, A., Sanchez, P., et al. (2002). Gli and hedgehog in cancer: Tumours, embryos and stem cells. Nature Reviews. Cancer, 2, 361–372.

    Article  PubMed  CAS  Google Scholar 

  116. Ingham, P. W., & McMahon, A. P. (2001). Hedgehog signaling in animal development: Paradigms and principles. Genes & Development, 15, 3059–3087.

    Article  CAS  Google Scholar 

  117. Ruiz i Altaba, A., Palma, V., & Dahmane, N. (2002). Hedgehog-Gli signalling and the growth of the brain. Nature Reviews. Neuroscience, 3, 24–33.

    Article  PubMed  CAS  Google Scholar 

  118. Felsher, D. W., & Bishop, J. M. (1999). Reversible tumorigenesis by MYC in hematopoietic lineages. Molecular Cell, 4, 199–207.

    Article  PubMed  CAS  Google Scholar 

  119. Ruiz i Altaba, A. (1999). Gli proteins and Hedgehog signaling: Development and cancer. Trends in Genetics, 15, 418–425.

    Article  PubMed  CAS  Google Scholar 

  120. Corcoran, R. B., & Scott, M. P. (2001). A mouse model for medulloblastoma and basal cell nevus syndrome. Journal of Neurooncology, 53, 307–318.

    Article  CAS  Google Scholar 

  121. Varas, A., Hager-Theodorides, A. L., Sacedon, R., et al. (2003). The role of morphogens in T-cell development. Trends in Immunology, 24, 197–206.

    Article  PubMed  CAS  Google Scholar 

  122. Stewart, G. A., Lowrey, J. A., Wakelin, S. J., et al. (2002). Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells. Journal of Immunology, 169, 5451–5457.

    CAS  Google Scholar 

  123. Lowrey, J. A., Stewart, G. A., Lindey, S., et al. (2002). Sonic hedgehog promotes cell cycle progression in activated peripheral CD4(+) T lymphocytes. Journal of Immunology, 169, 1869–1875.

    CAS  Google Scholar 

  124. Regl, G., Kasper, M., Schnidar, H., et al. (2004). Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Research, 64, 7724–7731.

    Article  PubMed  CAS  Google Scholar 

  125. Ji, Z., Mei, F. C., Johnson, B. H., et al. (2007). Protein kinase A, not Epac, suppresses hedgehog activity and regulates glucocorticoid sensitivity in acute lymphoblastic leukemia cells. The Journal of Biological Chemistry, 282, 37370–37377.

    Article  PubMed  CAS  Google Scholar 

  126. Lo Russo, P. M., Rudin, C., Borad, M., et al. (2008). A first-in-human, first-in-class, phase (ph) I study of systemic Hedgehog (Hh) pathway antagonist, GDC-0449, in patients (pts) with advanced solid tumors. In: ASCO Annual Meeting. Journal of Clinical Oncology, 26(3516), 157.

    Google Scholar 

  127. Tissing, W. J., Meijerink, J. P., den Boer, M. L., et al. (2003). Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia, 17, 17–25.

    Article  PubMed  CAS  Google Scholar 

  128. Altieri, D. C. (2008). Survivin, cancer networks and pathway-directed drug discovery. Nature Reviews. Cancer, 8, 61–70.

    Article  PubMed  CAS  Google Scholar 

  129. Che, X. F., Zheng, C. L., Owatari, S., et al. (2006). Overexpression of survivin in primary ATL cells and sodium arsenite induces apoptosis by down-regulating survivin expression in ATL cell lines. Blood, 107, 4880–4887.

    Article  PubMed  CAS  Google Scholar 

  130. Xing, Z., Conway, E. M., Kang, C., et al. (2004). Essential role of survivin, an inhibitor of apoptosis protein, in T cell development, maturation, and homeostasis. The Journal of Experimental Medicine, 199, 69–80.

    Article  PubMed  CAS  Google Scholar 

  131. Leung, C. G., Xu, Y., Mularski, B., et al. (2007). Requirements for survivin in terminal differentiation of erythroid cells and maintenance of hematopoietic stem and progenitor cells. The Journal of Experimental Medicine, 204, 1603–1611.

    PubMed  CAS  Google Scholar 

  132. Okada, H., Bakal, C., Shahinian, A., et al. (2004). Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. The Journal of Experimental Medicine, 199, 399–410.

    Article  PubMed  CAS  Google Scholar 

  133. Nakayama, K., & Kamihira, S. (2002). Survivin an important determinant for prognosis in adult T-cell leukemia: A novel biomarker in practical hemato-oncology. Leukaemia & Lymphoma, 43, 2249–2255.

    Article  CAS  Google Scholar 

  134. Sugahara, K., Uemura, A., Harasawa, H., et al. (2004). Clinical relevance of survivin as a biomarker in neoplasms, especially in adult T-cell leukemias and acute leukemias. International Journal of Hematology, 80, 52–58.

    Article  PubMed  CAS  Google Scholar 

  135. Troeger, A., Siepermann, M., Escherich, G., et al. (2007). Survivin and its prognostic significance in pediatric acute B-cell precursor lymphoblastic leukemia. Haematologica, 92, 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  136. Goel, S., Burris, H., Mendelson, et al. (2007). ASCO Annual Meeting. Journal of Clinical Oncology, 25(3584), 158.

    Google Scholar 

  137. Ellisen, L. W., Bird, J., West, D. C., et al. (1991). TAN-1, the human homolog of the drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 66, 649–661.

    Article  PubMed  CAS  Google Scholar 

  138. Radtke, F., Wilson, A., Stark, G., et al. (1999). Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity, 10, 547–558.

    Article  PubMed  CAS  Google Scholar 

  139. Rand, M. D., Grimm, L. M., Artavanis-Tsakonas, S., et al. (2000). Calcium depletion dissociates and activates heterodimeric notch receptors. Molecular and Cellular Biology, 20, 1825–1835.

    Article  PubMed  CAS  Google Scholar 

  140. Sanchez-Irizarry, C., Carpenter, A. C., Weng, A. P., et al. (2004). Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Molecular and Cellular Biology, 24, 9265–9273.

    Article  PubMed  CAS  Google Scholar 

  141. Francis, R., McGrath, G., Zhang, J., et al. (2002). aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Developmental Cell, 3, 85–97.

    Article  PubMed  CAS  Google Scholar 

  142. Wallberg, A. E., Pedersen, K., Lendahl, U., & Roeder, R. G. (2002). p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Molecular and Cellular Biology, 22, 7812–7819.

    Article  PubMed  CAS  Google Scholar 

  143. Weng, A. P., Ferrando, A. A., Lee, W., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.

    Article  PubMed  CAS  Google Scholar 

  144. Vilimas, T., Mascarenhas, J., Palomero, T., et al. (2007). Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Natural Medicines, 13, 70–77.

    Article  CAS  Google Scholar 

  145. Pear, W. S., Aster, J. C., Scott, M. L., et al. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. The Journal of Experimental Medicine, 183, 2283–2291.

    Article  PubMed  CAS  Google Scholar 

  146. Rohn, J. L., Lauring, A. S., Linenberger, M. L., & Overbaugh, J. (1996). Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. Journal of Virology, 70, 8071–8080.

    PubMed  CAS  Google Scholar 

  147. Wong, G. T., Manfra, D., Poulet, F. M., et al. (2004). Chronic treatment with the gamma-secretase inhibitor LY-411, 575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. The Journal of Biological Chemistry, 279, 12876–12882.

    Article  PubMed  CAS  Google Scholar 

  148. De Keersmaecker, K., Lahortiga, I., Mentens, N., et al. (2008). In vitro validation of gamma-secretase inhibitors alone or in combination with other anti-cancer drugs for the treatment of T-cell acute lymphoblastic leukemia. Haematologica, 93, 533–542.

    Article  PubMed  CAS  Google Scholar 

  149. Chan, S. M., Weng, A. P., Tibshirani, R., et al. (2007). Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood, 110, 278–286.

    Article  PubMed  CAS  Google Scholar 

  150. Horton, T. M., Pati, D., Plon, S. E., et al. (2007). A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: A children’s oncology group study. Clinical Cancer Research, 13, 1516–1522.

    Article  PubMed  CAS  Google Scholar 

  151. Avellino, R., Romano, S., Parasole, R., et al. (2005). Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood, 106, 1400–1406.

    Article  PubMed  CAS  Google Scholar 

  152. Sonneveld, P., Hajek, R., Nagler, A., et al. (2008). Combined pegylated liposomal doxorubicin and bortezomib is highly effective in patients with recurrent or refractory multiple myeloma who received prior thalidomide/lenalidomide therapy. Cancer, 112, 1529–1537.

    Article  PubMed  CAS  Google Scholar 

  153. Sebban, C., Lepage, E., Vernant, J. P., et al. (1994). Allogeneic bone marrow transplantation in adult acute lymphoblastic leukemia in first complete remission: A comparative study. French Group of therapy of adult acute lymphoblastic leukemia. Journal of Clinical Oncology, 12, 2580–2587.

    PubMed  CAS  Google Scholar 

  154. Goldstone, A. H., Richards, S. M., Lazarus, H. M., et al. (2008). In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: Final results of the International ALL trial (MRC UKALL XII/ECOG E2993). Blood, 111, 1827–1833.

    Article  PubMed  CAS  Google Scholar 

  155. Sullivan, K. M., Weiden, P. L., Storb, R., et al. (1989). Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia. Blood, 73, 1720–1728.

    PubMed  CAS  Google Scholar 

  156. Horowitz, M. M., Gale, R. P., Sondel, P. M., et al. (1990). Graft-versus-leukemia reactions after bone marrow transplantation. Blood, 75, 555–562.

    PubMed  CAS  Google Scholar 

  157. Delannoy, A., Cazin, B., Thomas, X., et al. (2002). Treatment of acute lymphoblastic leukemia in the elderly: An evaluation of interferon alpha given as a single agent after complete remission. Leukaemia & Lymphoma, 43, 75–81.

    Article  CAS  Google Scholar 

  158. Takeda, K., Kaisho, T., & Akira, S. (2003). Toll-like receptors. Annual Review of Immunology, 21, 335–376.

    Article  PubMed  CAS  Google Scholar 

  159. Corthals, S. L., Wynne, K., She, K., et al. (2006). Differential immune effects mediated by Toll-like receptors stimulation in precursor B-cell acute lymphoblastic leukaemia. British Journal of Haematology, 132, 452–458.

    PubMed  CAS  Google Scholar 

  160. Manegold, C., Gravenor, D., Woytowitz, D., et al. (2008). Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. Journal of Clinical Oncology, 26, 3979–3986.

    Article  PubMed  CAS  Google Scholar 

  161. Korycka, A., Lech-Maranda, E., & Robak, T. (2008). Novel purine nucleoside analogues for hematological malignancies. Recent Patents on Anticancer Drug Discovery, 3, 123–136.

    Article  CAS  Google Scholar 

  162. Galmarini, C. M., Popowycz, F., & Joseph, B. (2008). Cytotoxic nucleoside analogues: Different strategies to improve their clinical efficacy. Current Medicinal Chemistry, 15, 1072–1082.

    Article  PubMed  CAS  Google Scholar 

  163. Larson, R. A. (2007). Three new drugs for acute lymphoblastic leukemia: Nelarabine, clofarabine, and forodesine. Seminars in Oncology, 34, S13–S20.

    Article  PubMed  CAS  Google Scholar 

  164. Torelli, G. F., Guarini, A., Porzia, A., et al. (2005). FLT3 inhibition in t(4;11)+ adult acute lymphoid leukaemia. British Journal Haematology, 130, 43–50.

    Article  CAS  Google Scholar 

  165. Brown, P., Levis, M., Shurtleff, S., et al. (2005). FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood, 105, 812–820.

    Article  PubMed  CAS  Google Scholar 

  166. Karp, J. E., Passaniti, A., Gojo, I., et al. (2005). Phase I and pharmacokinetic study of flavopiridol followed by 1-beta-D-arabinofuranosylcytosine and mitoxantrone in relapsed and refractory adult acute leukemias. Clinical Cancer Research, 11, 8403–8412.

    Article  PubMed  CAS  Google Scholar 

  167. Marcucci, G., Byrd, J. C., Dai, G., et al. (2003). Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood, 101, 425–432.

    Article  PubMed  CAS  Google Scholar 

  168. Rahmani, M., Reese, E., Dai, Y., et al. (2005). Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ Cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change. Molecular Pharmacology, 67, 1166–1176.

    Article  PubMed  CAS  Google Scholar 

  169. Podar, K., Chauhan, D., & Anderson, K. C. (2009). Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia, 23, 10–24.

    Article  PubMed  CAS  Google Scholar 

  170. Brown, V. I., Seif, A. E., Reid, G. S., et al. (2008). Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunologic Research, 42, 84–105.

    Article  PubMed  CAS  Google Scholar 

  171. Ramakrishnan, A., & Deeg, H. J. (2009). A novel role for the marrow microenvironment in initiating and sustaining hematopoietic disease. Expert Opinion on Biological Therapy, 9, 21–28.

    Article  PubMed  CAS  Google Scholar 

  172. Pui, C. H., & Jeha, S. (2007). New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nature Reviews. Drug Discovery, 6, 149–165.

    Article  PubMed  CAS  Google Scholar 

  173. Bello, C., & Sotomayor, E. M. (2007). Monoclonal antibodies for B-cell lymphomas: Rituximab and beyond. Hematology American Society of Hematology Education Program, 2007, 233–242.

    Article  Google Scholar 

  174. Thomas, D. A., Faderl, S., O’Brien, S., et al. (2006). Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer, 106, 1569–1580.

    Article  PubMed  CAS  Google Scholar 

  175. Raetz, E. A., Cairo, M. S., Borowitz, M. J., et al. (2008). Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: A Children’s Oncology Group Pilot Study. Journal of Clinical Oncology, 26, 3756–3762.

    Article  PubMed  CAS  Google Scholar 

  176. Uckun, F. M., Jaszcz, W., Ambrus, J. L., et al. (1988). Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood, 71, 13–29.

    PubMed  CAS  Google Scholar 

  177. Anderson, K. C., Bates, M. P., Slaughenhoupt, B. L., et al. (1984). Expression of human B cell-associated antigens on leukemias and lymphomas: A model of human B cell differentiation. Blood, 63, 1424–1433.

    PubMed  CAS  Google Scholar 

  178. Szatrowski, T. P., Dodge, R. K., Reynolds, C., et al. (2003). Lineage specific treatment of adult patients with acute lymphoblastic leukemia in first remission with anti-B4-blocked ricin or high-dose cytarabine: Cancer and Leukemia Group B Study 9311. Cancer, 97, 1471–1480.

    Article  PubMed  CAS  Google Scholar 

  179. Tsimberidou, A. M., Giles, F. J., Kantarjian, H. M., et al. (2003). Anti-B4 blocked ricin post chemotherapy in patients with chronic lymphocytic leukemia–long-term follow-up of a monoclonal antibody-based approach to residual disease. Leukaemia & Lymphoma, 44, 1719–1725.

    Article  CAS  Google Scholar 

  180. Frampton, J. E., & Wagstaff, A. J. (2003). Alemtuzumab. Drugs, 63, 1229–1243. discussion 45-6.

    Article  PubMed  CAS  Google Scholar 

  181. Gilleece, M. H., & Dexter, T. M. (1993). Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood, 82, 807–812.

    PubMed  CAS  Google Scholar 

  182. Dinndorf, P. A., Andrews, R. G., Benjamin, D., et al. (1986). Expression of normal myeloid-associated antigens by acute leukemia cells. Blood, 67, 1048–1053.

    PubMed  CAS  Google Scholar 

  183. Pui, C. H., Rubnitz, J. E., Hancock, M. L., et al. (1998). Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemia. Journal of Clinical Oncology, 16, 3768–3773.

    PubMed  CAS  Google Scholar 

  184. Lo-Coco, F., Cimino, G., Breccia, M., et al. (2004). Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood, 104, 1995–1999.

    Article  PubMed  CAS  Google Scholar 

  185. Sievers, E. L. (2001). Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukaemia in first relapse. Expert Opinion on Biological Therapy, 1, 893–901.

    Article  PubMed  CAS  Google Scholar 

  186. Chevallier, P., Mahe, B., Garand, R., et al. (2008). Combination of chemotherapy and gemtuzumab ozogamicin in adult Philadelphia positive acute lymphoblastic leukemia patient harboring CD33 expression. International Journal of Hematology, 88, 209–211.

    Article  PubMed  Google Scholar 

  187. Cotter, M., Rooney, S., O’Marcaigh, A., et al. (2003). Successful use of gemtuzumab ozogamicin in a child with relapsed CD33-positive acute lymphoblastic leukaemia. British Journal Haematology, 122, 687–688.

    Article  Google Scholar 

  188. Fleisher, A. S., Raman, R., Siemers, E. R., et al. (2008). Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Archives of Neurology, 65, 1031–1038.

    Article  PubMed  Google Scholar 

  189. Leonard, J. P., Link, B. K., Emmanouilides, C., et al. (2007). Phase I trial of toll-like receptor 9 agonist PF-3512676 with and following rituximab in patients with recurrent indolent and aggressive non Hodgkin’s lymphoma. Clinical Cancer Research, 13, 6168–6174.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille N. Abboud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Abboud, C.N. (2011). Molecular Therapies. In: Advani, A., Lazarus, H. (eds) Adult Acute Lymphocytic Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-60761-707-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-707-5_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-706-8

  • Online ISBN: 978-1-60761-707-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics