Skip to main content

Catheter-Related Infections in Cancer Patients

  • Chapter
  • First Online:

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Central venous catheters (CVCs) play a major role in the management of high-risk patients, particularly cancer patients, and are mainly used for the administration of anticancer agents, antibiotics, and blood products. Catheter-related blood stream infection (CRBSI) rates are influenced by patient-related factors, such as type and severity of the illness, by catheter-related factors, and institutional factors (e.g., bed size and academic affiliation). Catheter-related infections could be local, such as exit site, tunnel, and pocket infections; or systemic such as catheter-related bloodstream infection. Many diagnostic methods have been developed, some of which require catheter removal, whereas others do not. Strategies for prevention and management of CRBSI are presented in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maki DG, Mermel LA. Infections due to infusion therapy. In: Bennet JV, Brachaman PS, editors. Hospital infections. Philadelphia: Lippincott-Raven; 1998. p. 689–724.

    Google Scholar 

  2. O’Grady NP, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter related infections. MMWR Recomm Rep. 2002;51:1–29.

    PubMed  Google Scholar 

  3. National Nosocomial Infections Surveillance System. National nosocomial infections (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470–85.

    Article  Google Scholar 

  4. Maki DG, Stolz SM, Wheeler S, Mermel LA. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic impregnated catheter: a randomized controlled trial. Ann Intern Med. 1997;127:257–66.

    Article  PubMed  CAS  Google Scholar 

  5. Mermel LA, McCormick RD, Springman SR, Maki DG. The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med. 1991;91(Suppl 3B):197S–205.

    Article  PubMed  CAS  Google Scholar 

  6. Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis. 1993;168:400–7.

    Article  PubMed  CAS  Google Scholar 

  7. Stiges-Serra A, Puig P, Linares J, et al. Hub colonization as the initial step in an outbreak of catheter-related sepsis due to coagulase negative staphylococci during parenteral nutrition. J Parenter Enteral Nutr. 1984;8:668–72.

    Article  Google Scholar 

  8. Salzman MB, Isenberg HD, Shapiro JF, et al. A prospective study of the catheter hub as the portal of entry for microorganisms causing catheter-related sepsis in neonates. J Infect Dis. 1993;167:487–90.

    Article  PubMed  CAS  Google Scholar 

  9. Centers for Disease Control. Nosocomial bacteremia associated with intravenous fluid therapy. MMWR. 1971;20 (Suppl 9):S1–2.

    Google Scholar 

  10. Maki DG, Rhame FS, Mackel DC, et al. Nation-wide epidemic of septicemia caused by contaminated intravenous products. Am J Med. 1976;60:471–85.

    Article  PubMed  CAS  Google Scholar 

  11. Mermel LA, Farr BM, Sherertz RJ, et al. Guidelines for the management of intravascular cathéter related infections. Clin Infect Dis. 2001;32:1249–72.

    Article  PubMed  CAS  Google Scholar 

  12. Safdar N, Maki DG. Inflammation at the insertion site is not predictive of catheter-related bloodstream infection with short-term, noncuffed central venous catheters. Crit Care Med. 2002;30:2632–5.

    Article  PubMed  Google Scholar 

  13. Chatzinikolau I, Hanna H, Hachem R, Alakech B, Tarrabd J, Raad I. Differential quantitative blood culture for the diagnosis of catheter related blood stream infections associated with short and long term catheters: a prospective study. Diagn Microbial Infect Dis. 2004;50:167–72.

    Article  Google Scholar 

  14. Douard MC, Clementi E, Arlet G, et al. Negative catheter-tip culture and diagnosis of catheter-related bacteraemia. Nutrition. 1994;10:397–404.

    PubMed  CAS  Google Scholar 

  15. Capdevila JA, Planes AM, Palomar M, et al. Value of differential quantitative blood cultures in the diagnosis of catheter-related sepsis. Eur J Clin Microbiol Infect Dis. 1992;11:403–7.

    Article  PubMed  CAS  Google Scholar 

  16. Douard MC, Arlet G, Longuet P, et al. Diagnosis of venous access port-related infections. Clin Infect Dis. 1999;29:1197–202.

    Article  PubMed  CAS  Google Scholar 

  17. Flynn PM, Shenep JL, Barrett FF. Differential quantitation with a commercial blood culture tube for diagnosis of catheter-related infection. J Clin Microbiol. 1988;26:1045–6.

    PubMed  CAS  Google Scholar 

  18. Blot F, Schmidt E, Nitenberg G, et al. Earlier positivity of central venous versus peripheral-blood cultures is highly predictive of catheter-related sepsis. J Clin Microbiol. 1998;36:105–9.

    PubMed  CAS  Google Scholar 

  19. Blot F, Nitenberg G, Chachaty E, et al. Diagnosis of catheter related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet. 1999;354:1071–7.

    Article  PubMed  CAS  Google Scholar 

  20. Raad I, Hanna HA, Alakech B, Chatzinikolaou I, Johnson MM, Tarrand J. Differential time to positivity: a useful method for diagnosing catheter-related bloodstream infections. Ann Intern Med. 2004;140:18–25.

    Article  PubMed  Google Scholar 

  21. Raad I, Hanna HA, Alakech B, et al. Differential time to positivity: a useful method for diagnosing catheter-related bloodstream infections. Ann Intern Med. 2004;140:18–25.

    Article  PubMed  Google Scholar 

  22. Acuna M, O’Ryan M, Cofre J, Alvarez I, Benadof D, Rodriguez P, et al. Differential time to positivity and quantitative cultures for noninvasive diagnosis of catheter related blood stream infection in children. Pediatr Infect Dis J. 2008;27:681–5.

    Article  PubMed  Google Scholar 

  23. Safdar N, Fine JP, Maki DG. Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med. 2005;142:451–66.

    Article  PubMed  Google Scholar 

  24. Hanna R, Raad II. Diagnosis of catheter-related bloodstream infection. Curr Infect Dis Rep. 2005;7:413–9.

    Article  PubMed  Google Scholar 

  25. Maki DG, Weise CE, Sarafin HW. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med. 1977;296:1305–9.

    Article  PubMed  CAS  Google Scholar 

  26. Rello J, Gatell JM, Almirall J, Campistol JM, Gonzalez J, Puig de la Bellacasa J. Evaluation of culture techniques for identification of catheter-related infection in hemodialysis patient. Eur J Clin Microbiol Infect Dis. 1989;8:620–2.

    Article  PubMed  CAS  Google Scholar 

  27. Gutierrez J, Leon C, Matamoros R, Nogales C, Martin E. Catheter related bacteraemia and fungaemia. Reliability of two methods for catheter culture. Diagn Microbiol Infect Dis. 1992;15:575–8.

    Article  PubMed  CAS  Google Scholar 

  28. Cercenado E, Ena J, Rodriguez-Creixems M, Romero I, Bouza E. A conservative procedure for the diagnosis of catheter-related infections. Arch Intern Med. 1990;150:1417–20.

    Article  PubMed  CAS  Google Scholar 

  29. Rello J, Coll P, Prats G. Laboratory diagnosis of catheter-related bacteraemia. Scand J Infect Dis. 1991;23:583–8.

    Article  PubMed  CAS  Google Scholar 

  30. Aufwerber E, Ringertz S, Ransjo U. Routine semiquantitative cultures and central venous catheter-related bacteraemia. APMIS. 1991;99:627–30.

    Article  PubMed  CAS  Google Scholar 

  31. Raad II, Sabbagh MF, Rand KH, Sherertz RJ. Quantitative tip culture methods and the diagnosis of central venous catheter-related infections. Diagn Microbiol Infect Dis. 1992;15:13–20.

    Article  PubMed  CAS  Google Scholar 

  32. Collignon PJ, Soni N, Pearson IY, Woods WP, Munro R, Sorrell TC. Is semiquantitative culture of central vein catheter tips useful in the diagnosis of catheter-associated bacteraemia? J Clin Microbiol. 1986;24:532–5.

    PubMed  CAS  Google Scholar 

  33. Widmer AF, Nettleman M, Flint K, Wenzel RP. The clinical impact of culturing central venous catheters. A prospective study. Arch Intern Med. 1992;152:1299–302.

    Article  PubMed  CAS  Google Scholar 

  34. Raad II, Sabbagh MF, Rand KH, Sheretz RJ. Quantitative tip culture methods and the diagnosis of central venous catheter related infections. Diagn Microbiol Infect Dis. 1992;15:13–20.

    Article  PubMed  CAS  Google Scholar 

  35. Bouza E, Alvarado N, Alcala L, et al. A prospective, randomized, and comparative study of 3 different methods for the diagnosis of intravascular catheter colonization. Clin Infect Dis. 2005;40:1096–100.

    Article  PubMed  Google Scholar 

  36. Bjornson HS, Colley R, Bower RH, Duty VP, Schwartz-Fulton JT, Fischer JE. Association between microorganism growth at the catheter insertion site and colonization of the catheter in patients receiving total parenteral nutrition. Surgery. 1982;92:720–7.

    PubMed  CAS  Google Scholar 

  37. Brun-Buisson C, Abrouk F, Legrand P, Huet Y, Larabi S, Rapin M. Diagnosis of central venous catheter-related sepsis. Critical level of quantitative tip culture. Arch Intern Med. 1987;147:873–7.

    Article  PubMed  CAS  Google Scholar 

  38. Sherertz R, Raad I, Belani A, et al. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J Clin Microbiol. 1990;28:76–82.

    PubMed  CAS  Google Scholar 

  39. Cleri DJ, Corrado ML, Seligman SJ. Quantitative culture of intravenous catheters and other intravascular inserts. J Infect Dis. 1980;141:781–6.

    Article  PubMed  CAS  Google Scholar 

  40. Brun-Buisson C, Abrouk F, Legrand P, et al. Diagnosis of central venous catheter related sepsis. A prospective study. Arch Intern Med. 1987;147:873–7.

    Article  PubMed  CAS  Google Scholar 

  41. Widmer AF, Frei R. Diagnosis of central venous catheter related infection: comparison of the roll plate and sonication technique in 1000 catheters [abstract K-2036]. In: Paper presented at the 43rd annual interscience conference on antimicrobial agents and chemotherapy, Chicago, 14–17 Sept 2003.

    Google Scholar 

  42. Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Eng J Med. 2006;355:2725–32.

    Article  CAS  Google Scholar 

  43. Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter related bloodstream infection: a meta-analysis. JAMA. 1999;281:261–7.

    Article  PubMed  CAS  Google Scholar 

  44. Mermel LA. Prevention of intravascular catheter related infections. Ann Intern Med. 2000;132:391–402. Erratum, Ann Inter Med 2000;133:5.

    Article  PubMed  CAS  Google Scholar 

  45. Widmer AF, Frei R. Diagnosis of central-venous catheter-related infection: comparison of the roll-plate and sonication technique in 1000 catheters [abstract K-2036]. In: 43rd annual interscience conference on antimicrobial agents chemotherapy, Chicago, 14–17 Sept 2003.

    Google Scholar 

  46. Spencer RC, Kristinsson KG. Failure to diagnose intravascular associated infection by direct Gram staining of catheter segments. J Hosp Infect. 1986;7:305–6.

    Article  PubMed  CAS  Google Scholar 

  47. Crnich CJ, Maki DG. The promise of novel technology for the prevention of intravascular device-related bloodstream infection. I. Pathogenesis and short-term devices. Clin Infect Dis. 2002;34:1232–42.

    Article  PubMed  Google Scholar 

  48. Maki DG, Ringer M, Alvarado CJ. Prospective randomized trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet. 1991;338:339–43.

    Article  PubMed  CAS  Google Scholar 

  49. Pemberton LB, Ross V, Cuddy P, Kremer H, Fessler T, McGurk E. No difference in catheter sepsis between standard and antiseptic central venous catheters: a prospective randomized trial. Ann Intern Med. 1997;127:257–66.

    Article  Google Scholar 

  50. Collin GR. Decreasing catheter colonization through the use of an antiseptic-impregnated catheter: a continuous quality improvement project. Chest. 1999;54:868–72.

    Google Scholar 

  51. Veenstra DL, Saint S, Sullivan SD. Cost-effectiveness of antiseptic-impregnated central venous catheters for the prevention of catheter-related bloodstream infection. JAMA. 1999;282(6):554–60.

    Article  PubMed  CAS  Google Scholar 

  52. Brun-Buisson C, Doyon F, Sollet JP, Cochard JF, et al. Prevention of intravascular catheter-related infection with newer chlorhexidine-silver sulfadiazine-coated catheters: a randomized controlled trial. Intensive Care Med. 2004;30(5):837–43.

    Article  PubMed  Google Scholar 

  53. Brun-Buisson C, Doyon F, Sollet JP, Cochard JF, Cohen Y, Nitenberg G. Prevention of intravascular catheter-related infection with newer chlorhexidine-silver sulfadiazine-coated catheters: a randomized controlled trial. Intensive Care Med. 2004;30:837–43.

    Article  PubMed  Google Scholar 

  54. Rupp ME, Lisco SJ, Lipsett PA, et al. Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infection. A randomized, controlled trial. Ann Intern Med. 2005;143:570–80.

    Article  PubMed  CAS  Google Scholar 

  55. Ostendorf T, Meinhold A, Harter C, et al. Chlorhexidine and silver-sulfadiazine coated central venous catheters in haemato­logical patients – a double-blind, randomized, prospective, controlled trial. Support Care Cancer. 2005;13:993–1000.

    Article  PubMed  Google Scholar 

  56. Raad I, Darouiche R, Dupuis J, et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med. 1997;127(4):267–74.

    Article  PubMed  CAS  Google Scholar 

  57. Hanna H, Benjamin R, Chatzinikolaou I, et al. Long-term silicone central venous catheters impregnated with minocycline and rifampin decrease rates of catheter-related bloodstream infection in cancer patients: a prospective randomized clinical trial. J Clin Oncol. 2004;22(15):3163–71.

    Article  PubMed  CAS  Google Scholar 

  58. Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A, et al. Comparison of two anti-microbial impregnated central venous catheters. N Engl J Med. 1999;340:1–8.

    Article  PubMed  CAS  Google Scholar 

  59. Wright F, Heyland D, Drover J, McDonald S, Zoutman D. Antibiotic-coated central lines: Do they work in the critical care settings? Clin Intensive Care. 2001;12(1):21–8.

    Google Scholar 

  60. Chatzinikolau I, Hanna H, Graviss L, Chaiban G, Perego C, Arbuckle R, et al. Clinical experience with minocycline and rifampin-impregnated central venous catheters in bone marrow transplantation recipients: efficacy and low risk of developing staphylococcal resistance. Infect Control Hosp Epidemiol. 2003;24(12):961–3.

    Article  Google Scholar 

  61. Sampath LA, Tambe SM, Modak SM. In vitro and in vivo efficacy of catheters impregnated with antiseptics or antibiotics: evaluation of the risk of bacterial resistance to the antimicrobials in the catheters. Infect Control Hosp Epidemiol. 2001;22(10):640–6.

    Article  PubMed  CAS  Google Scholar 

  62. Munson El, Heard SO, Doern GV. In vitro exposure of bacteria to antimicrobial impregnated-central venous catheters doesn’t not directly lead to the emergence of antimicrobial resistance. Chest. 2004;126:1628–35.

    Article  PubMed  Google Scholar 

  63. Raad I, Darouiche R, Dupis J, Abi-Said D, Gabrielli A, Hachem R, et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter related colonization and bloodstream infections. A randomized, Double Blind Trial. Ann Intern Med. 1997;127:267–74.

    Article  PubMed  CAS  Google Scholar 

  64. Raad I. Zero tolerance for catheter-related bloodstream infections: the unnegotiable objective. Infect Control Hosp Epidemiol. 2008;29:952–3.

    Article  Google Scholar 

  65. Randolph AG, Cook DJ, Gonzales CA, Andrew M. Benefit of heparin in central venous and pulmonary artery catheters: ­meta-analysis of randomized controlled trials. Chest. 1998;113:165–71.

    Article  PubMed  CAS  Google Scholar 

  66. Shanks RM, Donegan NP, Graber ML, et al. Heparin stimulates Staphylococcus aureus biofilm formation. Infect Immun. 2005;73:4596–606.

    Article  PubMed  CAS  Google Scholar 

  67. Henrickson KJ, Axtell RA, Hoover SM, et al. Prevention of central venous catheter-related infections and thrombotic events in immunocompromised children by the use of vancomycin/ ciprofloxacin/heparin flush solution: a randomized, multicenter, double-blind trial. J Clin Oncol. 2000;18:1269–78.

    PubMed  CAS  Google Scholar 

  68. Garland JS, Henrickson KJ, Maki DG. A prospective randomized trial of vancomycin-heparin lock for prevention of catheter-related bloodstream infection in an NNICU [abstract 1734]. In: 2002 annual meeting of the Pediatric Academic Societies, Baltimore, 4–7 May 2002.

    Google Scholar 

  69. Rackoff WR, Weiman M, Jacobowski D, et al. A randomized, controlled trial of the efficacy of a heparin and vancomycin solution in preventing central venous catheter infections in children. J Pediatr. 1995;127:147–51.

    Article  PubMed  CAS  Google Scholar 

  70. Daghistani D, Horn M, Rodriguez Z, Schoenike S, Toledano S. Prevention of indwelling central venous catheter sepsis. Med Pediatr Oncol. 1996;26:405–8.

    Article  PubMed  CAS  Google Scholar 

  71. Dogra GK, Herson H, Hutchison B, et al. Prevention of tunneled hemodialysis catheter-related infections using catheter-restricted filling with gentamicin and citrate: a randomized controlled study. J Am Soc Nephrol. 2002;13:2133–9.

    Article  PubMed  CAS  Google Scholar 

  72. Bleyer AJ, Mason L, Russell G, Raad II, Sherertz RJ. A randomized, controlled trial of a new vascular catheter flush solution (minocycline-EDTA) in temporary hemodialysis access. Infect Control Hosp Epidemiol. 2005;26:520–4.

    Article  PubMed  Google Scholar 

  73. Raad I, Hanna H, Jiang Y, et al. Comparative activities of daptomycin, linezolid, and tigecycline against catheter-related methicillin-resistant Staphylococcus bacteremic isolates embedded in biofilm. Antimicrob Agents Chemother. 2007;51:1656–60.

    Article  PubMed  CAS  Google Scholar 

  74. Raad I, Chatzinikolaou I, Chaiban G, et al. In vitro and ex vivo activity of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother. 2003;47:3580–5.

    Article  PubMed  CAS  Google Scholar 

  75. Raad I, Buzaid A, Rhyne J, Hachem R, Darouiche R, Safar H, et al. Minocycline and ethlenediaminetetraacetate for the prevention of recurrent vascular catheter infections. Clin Infect Dis. 1997;25:149–51.

    Article  PubMed  CAS  Google Scholar 

  76. Christensen GD, Bison AL, Parisi JT, et al. Nosocomial septicemia due to multiply antibiotic-resistant staphylococcus epidermis. Ann Intern Med. 1982;96:1–10.

    Article  PubMed  CAS  Google Scholar 

  77. Sattler FR, Foderaro JB, Aber RC. Staphylococcus epidermis bacteremia associated with vascular catheter: an important cause of febrile morbidity in hospitalized patients. Infect Control. 1984;5:279–83.

    PubMed  CAS  Google Scholar 

  78. Engelhard D, Elishoov H, Strauss N, et al. Nosocomial coagulase negative staphylococcal infections in bone marrow transplantation recipients with central vein catheter. Transplantation. 1996;61:430–4.

    Article  PubMed  CAS  Google Scholar 

  79. Fowler VG, Sanders LL, Sexton DJ, et al. Outcome of Staphylococcus aureus bacteraemia according to compliance with recommendations of infectious disease specialists: experience with 244 patients. Clin Infect Dis. 1998;27:478–86.

    Article  PubMed  Google Scholar 

  80. Ghanem GA, Boktour M, Warneke C, et al. Catheter-related Staphylococcus aureus bacteremia in cancer patients: high rate of complications with therapeutic implications. Medicine. 2007;86:54–60.

    Article  PubMed  Google Scholar 

  81. Abdelkefi A, Ben Romdhane N, Kriaa A, et al. Prevalence of inherited prothrombotic abnormalities and central venous catheter-related thrombosis in haematopoietic stem cell transplants recipients. Bone Marrow Transplant. 2006;36:885–9.

    Article  Google Scholar 

  82. Fowler Jr VG, Olsen MK, Corey R, et al. Clinical identifiers of complicated Staphylococcus aureus bacteraemia. Arch Intern Med. 2003;163:2066–71.

    Article  PubMed  Google Scholar 

  83. Raad I, Darouiche R, Vazquez J, et al. Efficacy and safety of weekly dalbavancin in the treatment of catheter-related bloodstream infections due to Gram-positive pathogens. Clin Infect Dis. 2005;40:374–8.

    Article  PubMed  CAS  Google Scholar 

  84. Carpenter CF, Chambers HF. Daptomycin: another novel agent for treating infection due to drug-resistant Gram-positive pathogens. Clin Infect Dis. 2004;38:994–1000.

    Article  PubMed  CAS  Google Scholar 

  85. Malanoski GJ, Samore MH, Pefanis A, Karchmer AW. Staphylococcus aureus catheter-associated bacteremia. Minimal effective therapy and unusual infectious complications associated with arterial sheath catheters. Arch Intern Med. 1995;155:1161–6.

    Article  PubMed  CAS  Google Scholar 

  86. Fowler Jr VG, Justice A, Moore C, et al. Risk factors for hematogenous complications of intravascular catheter-associated Staphylococcus aureus bacteremia. Clin Infect Dis. 2005;40:695–703.

    Article  PubMed  Google Scholar 

  87. Elting LS, Bodey GP. Septicemia due to Xanthomonas species and non-aeruginosa Pseudomonas species: increasing incidence of catheter-related infections. Medicine. 1990;69:196–206.

    Article  Google Scholar 

  88. Hanna H, Afif C, Alakech B, et al. Central venous catheter-related bacteraemia due to Gram-negative bacilli: significance of catheter removal in preventing relapse. Infect Control Hosp Epidemiol. 2004;25:646–9.

    Article  PubMed  Google Scholar 

  89. Chee L, Brown M, Sasadeusz J, MacGregor L, Grigg AP. Gram-negative organisms predominate in Hickman line-related infections in non-neutropenic patients with hematological malignancies. J Infect. 2008;56:227–33.

    Article  PubMed  CAS  Google Scholar 

  90. Rodriguez-Creixems M, Alcala L, Munoz P, Cercenado E, Vicente T, Bouza E. Bloodstream infections: evolution and trends in the microbiology workload, incidence, and etiology, 1985–2006. Medicine (Baltimore). 2008;87:234–49.

    Article  Google Scholar 

  91. Mermel LA, Farr BM, Sheretz RJ, Raad II, O’Grady N, Harris JAS, et al. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis. 2001;32:1249–72.

    Article  PubMed  CAS  Google Scholar 

  92. Strinden WD, Helgerson RB, Maki DG. Candida septic thrombosis of the great central veins associated with central catheters: clinical features and management. Ann Surg. 1985;202:653–8.

    Article  PubMed  CAS  Google Scholar 

  93. Hanna H, Afif C, Alakech B, Boktour M, Tarrand J, Hachem R, et al. Central venous catheter-related bacteremia due to gram-negative bacilli: significance of catheter-removal in preventing relapse. Infect Control Hosp Epidemiol. 2004;25(8):646–9.

    Article  PubMed  Google Scholar 

  94. Nguyen MH, Peacock Jr JE, Tanner DC, et al. Therapeutic approaches in patients with candidemia: evaluation in a multicenter, prospective observational study. Arch Intern Med. 1995;155:2429–35.

    Article  PubMed  CAS  Google Scholar 

  95. Nucci M, Colombo AL, Silveira F, et al. Risk factors for death in patients with candidemia. Infect Control Hosp Epidemiol. 1998;19:846–50.

    Article  PubMed  CAS  Google Scholar 

  96. Hung C-C, Chen Y-C, Chag S-C, Lu K-T, Hsieh W-C. Nosocomial candidemia in a university hospital in Taiwan. J Formas Med Assoc. 1996;95:19–28.

    CAS  Google Scholar 

  97. Rex JH, Bennett JE, Sugar AM, et al. Intravascular catheter-exchange and duration of candidemia. Clin Infect Dis. 1995;21:995–6.

    Article  Google Scholar 

  98. Raad I, Hanna H, Boktour M, Girgawy E, Danawi H, Mardani M, et al. Management of central venous catheters in patients with cancer and candidemia. Clin Infect Dis. 2004;38:1119–27.

    Article  PubMed  Google Scholar 

  99. Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347:2020–9.

    Article  PubMed  CAS  Google Scholar 

  100. Oudiz RJ, Widlitz A, Beckman XJ, et al. Micrococcus-associated central venous catheter infection in patients with pulmonary arterial hypertension. Chest. 2004;126:90–4.

    Article  PubMed  Google Scholar 

  101. Dziekan G, Hahn A, Thune G, et al. Methicillin-resistant Staphylococcus aureus in a teaching hospital: investigation of nosocomial transmission using a matched case-control study. J Hosp Infect. 2000;46:263–70.

    Article  PubMed  CAS  Google Scholar 

  102. Raad I, Ramos E, Hachem R, et al. The crucial role of catéters in micrococcal bloodstream infections in cancer patients. Infect Control Hosp Epidemiol. 2009;30:83–5.

    Article  PubMed  Google Scholar 

  103. Chaftari AM, Kassis C, El Issa H, Al Wohoush I, Jiang Y, Rangaraj G, et al. Novel approach using antimicrobial catheters to improve the management of central line-associated bloodstream infections in cancer patients. Cancer. 2010 Dec 14. [Epub ahead of print]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iba Al Wohoush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wohoush, I.A., Chaftari, AM., Raad, I. (2011). Catheter-Related Infections in Cancer Patients. In: Safdar, A. (eds) Principles and Practice of Cancer Infectious Diseases. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-644-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-644-3_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-643-6

  • Online ISBN: 978-1-60761-644-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics